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Abstract

We present high spatial resolution (FWHM∼0 14) observations of the CO(8–7) line in GDS-14876, a compact
star-forming galaxy at z=2.3 with a total stellar mass of log(M

å
/Me)=10.9. The spatially resolved velocity map

of the inner r 1 kpc reveals a continuous velocity gradient consistent with the kinematics of a rotating disk with
vrot(r= 1 kpc)=163±5 kms−1 and vrot/σ∼2.5. The gas-to-stellar ratios estimated from CO(8–7) and the dust

continuum emission span a broad range, = = –f M M 13% 45%
gas
CO

gas and = –f 50% 67%
gas
cont , but are

nonetheless consistent given the uncertainties in the conversion factors. The dynamical modeling yields a

dynamical mass of = -
+

( )M Mlog 10.58dyn 0.2
0.5, which is lower, but still consistent with the baryonic mass,

= + =( )M M M Mlog 11.0bar gas
CO , if the smallest CO-based gas fraction is assumed. Despite a low, overall gas

fraction, the small physical extent of the dense, star-forming gas probed by CO(8–7), ∼3× smaller than the stellar
size, implies a strong relative concentration that increases the gas fraction up to ~f 85%

gas
CO,1 kpc in the central

1 kpc. Such a gas-rich center, coupled with a high star formation rate (SFR)∼500Me yr−1, suggests that GDS-
14876 is quickly assembling a dense stellar component (bulge) in a strong nuclear starburst. Assuming its gas
reservoir is depleted without replenishment, GDS-14876 will quickly (tdepl∼ 27 Myr) become a compact quiescent
galaxy that could retain some fraction of the observed rotational support.

Key words: galaxies: high-redshift – galaxies: photometry

1. Introduction

Compact star-forming galaxies (SFGs) are frequently

referred to as a population of massive, strongly SFGs at

z2, whose small sizes and high stellar-mass concentrations

(e.g., Wuyts et al. 2011; Barro et al. 2013) closely resemble

those of typical quiescent galaxies of the same mass and

redshift (e.g., Daddi et al. 2005; Trujillo et al. 2007). These

galaxies have been identified in sizable numbers and their

properties: small stellar sizes, steep radial mass profiles, and

obscured star formation rate (SFR) properties have all been

confirmed by multiple studies (e.g., Barro et al. 2014a; van

Dokkum et al. 2015). Moreover, NIR spectroscopic follow-up

has allowed a characterization of the kinematic and dynamical

properties of their ionized gas from the analysis of rest-frame

optical emission lines (e.g., Barro et al. 2014b; van Dokkum

et al. 2015; Nelson et al. 2016). These initial results revealed

high integrated velocity dispersions (σ200 km s−1
) and

large dynamical masses, roughly consistent with their stellar

masses, which imply relatively low gas (and dark matter)

fractions and short depletion times. All of this evidence is

consistent with the evolutionary picture in which compact

SFGs are in a short-lived starburst phase, triggered by a

dissipative event, which leads to the rapid formation of a
compact core and subsequent quenching into a compact
quiescent galaxy (e.g.; Wellons et al. 2015; Zolotov et al.
2015).
Nonetheless, tension with the dynamical constraints emerged

when further spectroscopic follow-up of compact SFGs
revealed that at least 20% have dynamical masses that are up
to 10× lower than their stellar masses (van Dokkum et al.
2015). The most likely explanation for such large discrepancies
are the uncertainties on the dynamical modeling assumptions.
For example, the line of sight inclination, the ratio between
ordered and random motions of the gas (i.e., the amount of
rotational support, vrot/σ), the extent of gas profile relative to
the stellar-mass distribution, or the aperture corrections to scale
the measurements within the slit to either galaxy-wide or
effective (r= re) values can all contribute to the observed
difference (e.g., van Dokkum et al. 2015; Price et al. 2016).
A way to reduce these uncertainties is obtaining emission

line velocity maps with similar or better spatial resolution than
the stellar-mass maps derived from Hubble Space Telescope

(HST) data (e.g., Wuyts et al. 2012). These resolved maps
can trace the kinematic properties of the gas and allow a
more precise dynamical modeling by comparing the gas and
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stellar-mass profiles at a similar scale. The high spatial
resolution of submillimeter spectroscopy with Atacama Large
Millimeter/submillimeter Array (ALMA) and the Karl G.
Jansky Very Large Array (VLA) are a perfect match for this
analysis. Submillimeter observations are insensitive to the dust
obscuration that heavily attenuates optical emission lines and
provide not only resolved kinematics from CO and carbon lines
(e.g., Popping et al. 2017; Tadaki et al. 2017), but also far-IR
continuum detections to characterize the SFR and the baryonic
content (i.e., gas and stars) of the galaxies (e.g., Rujopakarn
et al. 2016; Scoville et al. 2016).

This work presents CO J=8–7 line and submillimeter
continuum observations of a compact SFG at z=2.3 using
ALMA. From the joint analysis of the high spatial resolution
HST/ACS, HST/WFC3, and ALMA continuum and CO line
imaging, we simultaneously characterize the spatial distribution
and kinematics of the molecular gas. Throughout this Letter,
we quote magnitudes in the AB system, assume a Chabrier
(2003) initial mass function, and adopt the following
cosmological parameters: (ΩM, ΩΛ, h)=(0.3, 0.7, 0.7).

2. Target Selection and Observations

The galaxy analyzed in this Letter is drawn from the compact
SFGs sample in the CANDELS (Grogin et al. 2011) GOODS-S
region presented in Barro et al. (2014a, 2016). The panels in
Figure 1 summarize the selection criteria in SFR and
compactness. Figure 2 shows the UV to near-IR spectral
energy distribution (SED), which includes extensive multi-
band data ranging from U to 8 μm (Guo et al. 2013).
Furthermore, we include far-IR data from Spitzer MIPS
(Pérez-González et al. 2008), Herschel PACS and SPIRE from
the GOODS-Herschel survey (Elbaz et al. 2011), and VLA 21
and 5 cm maps (Kellermann et al. 2008; Rujopakarn
et al. 2016). The stellar population properties are determined
by fitting the optical and NIR SED using FAST (Kriek

et al. 2009), assuming Bruzual & Charlot (2003) stellar

population synthesis models, an exponentially declining star

formation history, and the Calzetti et al. (2000) dust law with

attenuation 0<AV<4, yielding log(M
å
/Me)=10.9. The

SFR was determined in Barro et al. (2016) from a combination

of rest-frame UV and IR SFR indicators and modeling the

far-IR emission with dust-emission templates, yielding

log(SFR/Me y−1
)=2.7.

The submillimeter observations of GDS-14876 were taken as

part of an ALMA cycle-3 campaign (ID: 2015.1.00907.S; PI: G.

Barro) to study CO emission lines in compact SFGs at z=2–3.
The observations were conducted on 2016 September 17 in band

7 using four spectral windows in the largest bandwidth mode. The

on-source integration time was 51minutes in an extended array

configuration, C39-7 (the shortest and longest baselines were

15.1m and 3.1 km, respectively). The water vapor during the

observations was PWV=0.5 mm. Flux, phase, and bandpass

calibrators were also obtained, for a total time of ∼2hr. All the
correlators were set to a bandwidth of 1.875 GHz covering 128

channels. The reference spectral window (spw0) was centered at

278.57GHz to target the CO(8–7) emission line, assuming the

redshift derived from optical lines (z= 2.309). The other spectral

windows were centered at 276.91, 288.91, and 290.91GHz.
These spectral windows were used to observe the band 7

continuum of the target.
We use the CASA software (McMullin et al. 2007) to

process and clean the data. We use the tclean task with

natural weighting for the uv visibility plane. This resulted in a

synthetic beam size with an average angular resolution of

FWHM=0 14×0 12 (1.15× 0.98 kpc), with a major-axis

position angle (PA) of 70°. The rms noise of the observations is

0.19 mJy/beam for the CO(8–7) line, measured in 20 km s−1

channel bins, and σ=28 μJy/beam or 1.5mJy/arcsec2 for the
continuum, measured on the clean continuum maps excluding

the frequency range of the CO line.

Figure 1. Left: logarithm of SFR vs. stellar mass for GDS-14876 (blue circle) and other massive SFGs at z∼2 (gray squares) observed with ALMA and HST, drawn
from Spilker et al. (2016), Rujopakarn et al. (2016), and Popping et al. (2017). The black lines show the locus and ×5 limits (solid and dashed) of the SFR sequence at
z=2.25 from Whitaker et al. (2014). The background is colored by the predicted gas fraction determined from the empirical prediction of Genzel et al. (2015). GDS-
14876 lies above the SFR sequence and is expected to have a large fgas∼80%. The red line and circles show the location of the quiescent population at the same
redshift, selected by low sSFR <−1 Gyr−1. Right: logarithm of the effective mass surface density vs. stellar mass for galaxies in CANDELS-GDS at z∼2
(grayscale) and all galaxies from the left panel. The dashed line indicates the compactness selection criterion of Barro et al. (2017).
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3. Structural Properties

Figure 2 shows the WFC3/ACS color-composite image of
the galaxy as well as the ALMA 1.1mm continuum emission
and CO(8–7) velocity maps. We measure the structural
properties of GDS-14876 in the F160W image, which at
z=2.3 traces the rest-frame optical emission, using GALFIT

(Peng et al. 2010) assuming a single two-dimensional Sérsic
profile. We obtain size and Sérsic index values of re=
2.3±0.1 kpc and n=0.6. The total (99%) isophotal size is
rtot=8.25±0.04 kpc (outer white contours in Figure 2).

Following Barro et al. (2016), we use GALFIT and the
synthetic point-spread function of the ALMA beam to compute
the size and Sérsic index of the continuum emission, obtaining
values of = r 0.74 0.04 kpce , n=1.6. To measure the
structural properties of the CO emission line region, we
subtract the continuum flux from the image using CASA’s
uvsubcont task and then collapse the resulting data cube in
velocity space using a ±250 km s−1 bin around the central
wavelength of the CO[8–7] line. Finally, we run GALFIT on
the resulting image, obtaining values of re=0.67±0.05 kpc
and n=0.9.

Both the continuum and emission line sizes are ∼3× smaller
than the rest-frame optical size (Figure 2). This is consistent
with previous results based on dust continuum measurements
(e.g., Tadaki et al. 2015; Barro et al. 2016; Rujopakarn
et al. 2016), which suggest that the compact CO and far-IR
emission trace a strong nuclear starburst. This compact burst
contrasts with the typical inside-growth of SFGs in which gas
profiles are more extended than the stellar distribution (e.g.,
Nelson et al. 2016). We note, however, that given the high-
order CO transition, it is possible that ALMA only detects the

region where J=8–7 can be excited, i.e., a dense and strongly

ionized region in the center.

4. Dust and Gas Masses

4.1. Continuum-based Measurement

We fit the mid-to-FIR SED using different libraries of dust-

emission templates (e.g., Chary & Elbaz 2001; Dale &

Helou 2002) to estimate the total IR luminosity and SFR (see

Figure 2). In addition, we fit to the models by Draine & Li

(2007, DL07) and to a set of modified blackbody models

(MBBs; e.g., Casey et al. 2012) to estimate the dust

temperature and dust mass of the galaxy. The best-fit models

and the corresponding confidence intervals are computed by

exploring the parameter space using the Python Markov Chain

Monte Carlo package emcee (Foreman-Mackey et al. 2013).

The MBB fit assumes an average dust emissivity of κ=
1 cm2 g−1 at 850μm (e.g., Dunne et al. 2003; Scoville

et al. 2016) and a range of β=1.5–2.5. Both estimates of the

dust mass are roughly consistent within the errors. The DL07

models yield a value of = ( )M Mlog 9.2 0.3dust
DL07 , while

the MBB models with best-fit values β∼1.5 and T=33K
provide a slightly lower value of = ( )M Mlog 8.9 0.2dust

MBB .

Based on these Mdust values, we estimate the molecular

gas content using the gas-to-dust ratio by assuming

δGDRMdust=MH2+MH I∼MH2. The value of δGDR depends

primarily on the metallicity of the galaxy (e.g., Sandstrom

et al. 2013). Here, we assume the typical value for solar

metallicity, δGDR∼100. This leads to gas masses of

= ( )M Mlog 11.2 0.3gas
DL07 and = ( )M Mlog 10.9gas

MBB

Figure 2. Left: from top to bottom, 2 5×2 5 (20×20 kpc) images of GDS-14876 in WFC3/F160W and ALMA870μm, and CO(8–7) rotation velocity and
dispersion maps at the same physical scale (with the F160W contours shown in white). Right: UV-to-FIR SED of GDS-14876. The black line shows the best-fit BC03
stellar population model for the photometry up to 8 μm rest-frame (gray squares). The orange-to-red and black squares show the mid-to-far-IR photometry and radio
data. The green, purple, and blue lines show the best-fit dust-emission models from the libraries of Chary & Elbaz (2001), Dale & Helou (2002), and Rieke et al.
(2009). The gray and pink regions depict 300 models drawn from the posterior probability distribution of the fit to the Draine & Li (2007) models and to an MBB
model, respectively. The median values and confidence intervals for Mdust and Tdust are indicated.
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0.2 dex. Lower values of the metallicity would yield larger gas
masses.

4.2. CO-based Measurement

We estimate the gas mass from the CO(8–7) line luminosity
using

n
¢ = ´ D

+
-[ ] ( )

( )

( )

L S v
D

z
K km s pc 3.25 10

1
,

1

L
CO

1 2 7
CO

2

3
obs
2

where SCOΔv is the line flux and DL is the luminosity distance.

We obtain ¢ = -Llog 9.65 0.17 dexCO,8 7 . From ¢L CO,

we estimate the total mass of molecular hydrogen as

a= ¢( ) (M M L Rlog log J Jgas CO CO, ,1), where = -[ (R S S 1J J,1

)] J0 2 is the conversion factor to correct for the lower

Rayleigh–Jeans brightness temperature of the J=8–7 trans-

ition relative to 1–0, and αCO is the CO-to-H2 conversion

factor. For the J=8–7 transition the conversion factor is

relatively unconstrained, e.g., R8,1=0.9 (Bradford et al. 2009),

R8,1=0.01–0.4 (Danielson et al. 2013; Kamenetzky

et al. 2016). Here, we adopt a conservative value of R8,1=
0.30±0.20, where the more sub-thermally excited the gas is

(R8,11), or the lower the interstellar medium (ISM) density

is, the higher the gas mass (see, e.g., Daddi et al. 2015). The

value of αCO also depends on the physical conditions of the

ISM. Adopting αCO=0.8 Me (K km s−1 pc2)−1, the typical

value for nearby ultra-luminous infrared galaxies and SMGs

(e.g., Tacconi et al. 2008), we obtain =( )M Mlog gas
SMG

-
+10.08 dex0.18
0.30 . If we use the larger Milky Way CO-to-H2

conversion, αCO=4.3 Me (K km s−1 pc2)−1, the resulting gas

mass is = -
+

( )M Mlog 10.81 dexgas
MW

0.18
0.30 .

In summary, different indicators yield values of the dense,
star-forming gas mass that may differ up to ∼1dex; none-
theless, given the wide range of modeling assumptions and
uncertainties in the conversion factors, these values are still
consistent. In Section 6, we discuss which of these estimates
are more consistent with the dynamical constraints. The
estimates based on the CO line provide a lower limit and
imply gas fractions of ~ -

+f 13 %
gas
CO

4
10 to -

+45 %10
17 for the SMG

and MW gas-to-mass conversions, respectively. The dust-
continuum-based values computed with either the MBB or
DL07 models yield higher gas fractions of = f 50 11%

gas
cont

to 67±15%, respectively.
Note that these fractions refer to the total, integrated masses.

The spatially resolved gas-to-stellar ratio within the region
detected in CO (r1 kpc) is much larger, even for the relatively
modest CO-based gas masses, =f 85%

gas
CO,1 kpc . This value

indicates that GDS-14876 has a gas-rich nuclear region that fuels
the similarly compact starburst detected in the dust continuum
emission. Assuming no replenishment, the depletion time of this
burst is very short: = = t SFR M 27 12 Myrdepl gas

CO,SMG .

5. Kinematics and Dynamical Modeling

5.1. [O III] Kinematics

GDS-14876 was observed using the NIR multi-object
spectrograph MOSFIRE (McLean et al. 2010) on Keck-I. A full
description of the observations and data reduction in presented in
Barro et al. (2014b). The spectrum yields a clear (>5σ) detection

of the [O III] 5007Åline (left panel of Figure 3), while the
Hβ line is undetected ([O III]/Hβ0.8). The [O III] profile is
relatively narrow with a σ=55±5 kms−1.

5.2. CO Kinematics

Figure 4 shows the observed rotation velocity and dispersion
fields for GDS-14876 obtained by fitting the CO emission line
at every spaxel with a single Gaussian. The velocity field
reveals a continuous shear and a central dispersion peak that are
consistent with the kinematics of a rotating disk. Assuming that
the gas is gravitationally bound in a disk, we model the
observed kinematic profile to characterize the dynamical
properties of the galaxy.
First, we measure the integrated dispersion of the galaxy by

fitting a single Gaussian to the spectrum extracted with a 0 3
diameter circular aperture. The integrated σ=153±7 kms−1

(right panel of Figure 3) is almost 3× larger than the dispersion
inferred from [O III]. Such a large difference could indicate that
the ionized and neutral gas trace distinct physical regions (e.g.,
if [O III] traces a relatively unobscured, coronal layer of the
star-forming region). The misalignment of the MOSFIRE slit
relative to the kinematic major axis (magenta versus white slit
in the leftmost panel of Figure 4) can also lower the dispersion.
However, the line width measured on a CO spectrum extracted
along the MOSFIRE slit PA after convolving the ALMA cube
to an FWHM=0 7 resolution still yields a much larger
σ100 kms−1 and suggests that this effect is only minor.
Next, we analyze the spatially resolved velocity field using a

forward dynamical modeling procedure that fits the velocity
profiles in observed space. The 1D spectra are extracted along
the kinematic major axis using circular apertures with a
diameter equal to the FWHM of the observations. The
dynamical model assumes that the ionized gas is rotating in a
thin disk and that the disk density profile can be described by a
Freeman model (Freeman 1970). We account for the effects of
pressure support by lowering the rotation velocity following
Wuyts et al. (2016 and references therein). The fit includes the
effects of beam smearing (FWHM=0 14×0 12) and the
line of sight inclination. We estimate the latter from the optical
axis-ratio, q=0.82, following the method of van Dokkum

et al. (2015), and we obtain = -
+i 62 15
8.

The three free parameters of the dynamical fit are: the total
dynamical mass and effective radius of the disk, Mdyn and re

dyn,
and the intrinsic dispersion floor, σ0, measured at large radii.

Figure 3. Left: MOSFIRE H-band spectra of GDS-14876 showing the 2D and
collapsed 1D profile of the [O III] emission line. The gray lines
indicate±150 kms−1 for reference. Right: continuum-subtracted spectral
profile of the CO(8–7) line extracted from the ALMA image using a 0 3
diameter circular aperture. At face value, the dispersion of the CO line,
measured from a single Gaussian fitting, is ∼3× larger than that of the optical
[O III] line.
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Figure 4 shows the observed rotation and dispersion measure-
ments, extracted along a pseudo-slit, compared to the best-fit
model. The best-fit values of Mdyn and re

dyn exhibit a positive

correlation with 1σ confidence regions of = -
+r 1.7 kpce

dyn
0.4
0.5

and = -
+

( )M Mlog 10.58dyn 0.20
0.52, where the largest radius

corresponds to the largest mass. Note that the inner 1 kpc is
very well constrained by the models. However, the turnover
radius is only loosely constrained because the CO tracer
(magenta) probes a smaller region than the confidence interval
for re

dyn (gray region).
The best-fit model also yields an intrinsic σ0=73±

8 kms−1 and a rotation velocity at r=1 kpc of vrotsini=
163±5 kms−1. The dispersion value is slightly higher but
consistent with the typical range observed in massive SFGs at
z∼2 (e.g., Wisnioski et al. 2015; Price et al. 2016; Tadaki
et al. 2017). The s ~v 2.5rot 0 also indicates that the disk is
rotation dominated.

6. Discussion

Figure 5 compares the baryonic (assuming Mgas=0, i.e.,
Mbar=M

å
) and dynamical masses for a sample of massive,

compact SFGs and quiescent galaxies at z2 from the
literature. Most galaxies exhibit a relatively good agreement
within the usual ∼0.3dex scatter (dashed line). However, there
is a group of compact SFG outliers with low Mdyn and
Mdyn/Mbar=1. These outliers, found by van Dokkum et al.
(2015), have small integrated dispersions in their optical
emission lines, which leads to small dynamical masses,

sµM rdyn
2
e. GDS-14876 exhibits a similar issue, i.e., the

dynamical mass computed using σ([O III])=55 km s−1 is
almost 10× smaller than its baryonic mass (empty star) even
for the smallest fraction of dense, star-forming gas,

~f 13%
gas
CO .

The Mdynvalue inferred from the dynamical modeling of the
CO emission line provides a better agreement between total
Mdynand Mbar, although the latter is still in the unphysical
region (filled star). As discussed in the previous section, this
tension decreases for larger values of the re

dyn (or the line of
sight inclination), which could be better constrained by probing
further out into the rotation curve, possibly by observing lower-
order CO transitions that are sensitive to colder and potentially
more extended neutral gas. Nevertheless, the comparison
between total Mdynand Mbarsuggests that the galaxy is
strongly baryon dominated, and the small consistency margin

between the two masses favors the lowest CO-based gas
fraction to avoid strongly unphysical results with
Mdyn/Mbar=1. A low overall gas fraction also agrees with
similarly low values reported in recent studies of compact
SFGs (Tadaki et al. 2015; Spilker et al. 2016; Popping
et al. 2017) and leaves little room for a colder and more
extended gas component that might be undetected by the high-
order CO(8–7) emission.
The spatially resolved evolution of the  ( )M M r Rdyn ratio

from R=1 kpc to R=8 kpc exhibits a similar result. The shaded
gray region in Figure 5 shows that the tension withMdynincreases
toward the central region, where the stronger concentration of
star-forming gas relative to stars (∼3× smaller size) increases the

Figure 4. Left: moment maps of the central region of GDS-14876 showing the projected CO velocity field and velocity dispersion where S/N�3. The white circles
marking the extracted pseudo-slit using apertures with the FWHM of the minimum resolution element. The magenta lines illustrate the orientation of the slit in the
MOSFIRE [O III] observations, which is misaligned with the CO kinematic major axis by ∼50°. Right: observed (gray circles) and best-fit models (black line and 1σ
gray) for the rotation velocity and velocity dispersion profiles along the kinematic major axis. The dynamical modeling of the kinematic maps is consistent with a

rotating disk of gas. The dashed lines and gray regions indicate the CO effective radius and the 1σ confidence for re
dyn.

Figure 5. Comparison between the dynamical and stellar masses for GDS-
14876 and other samples of compact SFGs (blue) and quiescent (red) galaxies
from Barro et al. (2014b), van Dokkum et al. (2015), van de Sande et al.
(2013), and Belli et al. (2014). The blue stars show Mdyn for GDS-14876 as
computed from the CO (filled) and [O III] (empty) lines. The gray shaded area
depicts the confidence region of the comparison between cumulative Mdynand
M

å
with increasing radii from r=1 kpc to r=8 kpc (i.e., total mass). The

CO-based gas fraction at both ends is indicated. Mdynand Mbarare consistent
within the confidence range, although the latter lies predominantly in the
unphysical region, Mbar>Mdyn.
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gas fraction to ~f 85%
gas
CO,1 kpc . Note, however, that while the

dynamical model is better constrained in the center (narrower gray
region) the stellar mass within 1 kpc is likely more uncertain
because the large central obscuration and limited spatial resolution
can both bias the SED-fitting-based stellar-mass estimate,
particularly for such a small, compact galaxy.

In summary, the emerging picture from the CO and dust-
continuum-based measurements suggests that GDS-14876 is
having a compact and likely short-lived nuclear starburst that
could lead to the rapid formation of a compact quiescent
galaxy. A relevant prediction of the kinematic modeling is that
such a quiescent descendant could preserve some of the
observed rotational support, as already hinted at by recent
observations (e.g., Newman et al. 2015; Toft et al. 2017).
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