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ABSTRACT

Given the absence of directly detected dark matter (DM) as weakly interacting massive particles,

there is strong interest in the possibility that DM is an ultra-light scalar field, here denoted as “fuzzy”

DM. Ultra-diffuse galaxies, with the sizes of giant galaxies and the luminosities of dwarf galaxies, have a

wide range of DM halo masses, thus providing new opportunities for exploring the connections between

galaxies and their DM halos. Following up on new integral field unit spectroscopic observations and

dynamics modeling of the DM-dominated ultra-diffuse galaxy Dragonfly 44 in the outskirts of the Coma
Cluster, we present models of fuzzy DM constrained by the stellar dynamics of this galaxy. We infer a

scalar field mass of ∼ 3 × 10−22 eV, consistent with other constraints from galaxy dynamics but in

tension with constraints from Lyα forest power spectrum modeling. While we are unable to statistically

distinguish between fuzzy DM and “normal” cold DM models, we find that the inferred properties of

the fuzzy DM halo satisfy a number of predictions for halos in a fuzzy DM cosmology. In particular, we

find good agreement with the predicted core size–halo mass relation and the predicted transition radius

between the quantum pressure-dominated inner region and the outer halo region.

Keywords: galaxies: halos — galaxies: individual (Dragonfly 44) — galaxies: kinematics and dynamics

— cosmology: dark matter

1. INTRODUCTION

The concordant cosmological model of dark energy

plus cold dark matter (ΛCDM) has had remarkable suc-

cesses in describing the large scale structure of the uni-

verse (e.g., Tegmark et al. 2006; Planck Collaboration

2018). However, there have been a number of small scale

challenges to this picture concerning the inner density

structure of dark matter (DM) halos and the relative

numbers of subhalos (e.g., Weinberg et al. 2015; Bul-

lock & Boylan-Kolchin 2017, and references therein).

Corresponding author: Asher Wasserman

adwasser@ucsc.edu

Many authors have proposed solutions to these problems

that involve a more detailed treatment of the baryonic

physics of galaxy formation (e.g., Pontzen & Governato

2012; Martizzi et al. 2013; Schaller et al. 2015). Further-

more, given the continued absence of directly detected

DM particles (Marrodán Undagoitia & Rauch 2016; Ak-

erib et al. 2017; Aprile et al. 2018), attempts to explain

these astrophysical discrepancies with modifications of

the physics of DM have become increasingly appealing.

Frequently considered modifications include allowing for

self-interactions (SIDM; e.g., Carlson et al. 1992; Rocha

et al. 2013; Wittman et al. 2018) and increasing the DM

temperature at the time of thermal decoupling (Warm

DM; e.g., Davis et al. 1981; Lovell et al. 2017; Bozek et al.
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2019). For overviews of the intersection of astrophysics

and particle physics searches for DM, we refer readers

to the reviews of Bertone et al. (2005), Profumo (2017),

and Buckley & Peter (2018).

One promising class of models posits that the DM

particle is an extremely low-mass (� 1 eV)1 spin-0 boson

(i.e., a scalar field) manifesting quantum mechanical
wave-like behavior on astrophysical scales (∼kpc; Colpi

et al. 1986; Lee & Koh 1996; Hu et al. 2000; Matos

et al. 2009; Hui et al. 2017). Axions, a proposed solution

to the strong Charge-Parity (CP) problem in particle

physics (Peccei & Quinn 1977; Dine et al. 1981), are

a well-motivated class of models that provide one such

candidate DM particle. There are a variety of names for

these DM models: ultra-light axion DM, scalar field DM,

Bose-Einstein condensate DM, wave DM, or fuzzy DM.

Here we adopt the term Fuzzy Dark Matter (FDM) for

ultra-light (m ∼ 10−22 eV) non-thermal (i.e., restricted

to the ground state) models lacking self-interaction. We

refer to the mass of the DM scalar field in this model in

its dimensionless form as m22 = m/10−22 eV.

We note that for any model in which an ultra-light

scalar field is the dominant contributor to DM, its produc-

tion mechanism must necessarily be non-thermal (Marsh

2016), in contrast with the thermal production of weakly

interacting massive particles in the standard CDM cos-

mology (Bringmann & Hofmann 2007). Thermal pro-

duction of such a low mass of DM would lead to hot (i.e.

ultra-relativistic) DM, in conflict with observations of

the matter power spectrum and the cosmic microwave

background (CMB; e.g., Viel et al. 2005). For a broad

overview of FDM cosmologies, we refer interested readers

to Marsh (2016) and Hui et al. (2017).

The salient phenomena associated with FDM cos-
mologies are a cutoff in the halo mass function below

∼ 109 M�, and distinct density cores in the inner ∼ 1 kpc

of DM halos, with a lighter scalar field mass resulting in

a higher halo mass cutoff and a more massive inner core

(Hu et al. 2000). This cutoff in the halo mass distribution

implies less correlation of structure on smaller scales and

the delayed formation of galaxies relative to CDM. The

measured CMB and galaxy power spectra imply that,

if FDM makes up the majority of DM in the universe,

m22 must be & 10−3 (Hlozek et al. 2015). Constraints

from the Lyα forest power spectrum imply that m22 & 1,

with some models excluding scalar field masses up to

m22 ∼ 30 (Armengaud et al. 2017; Nori et al. 2019).

Complementary constraints on FDM models from both

high redshift galaxy luminosity functions and the Milky

1 For particle masses, we use the convention that c = 1, giving
mass and energy the same physical dimensions.

Way satellite luminosity function are also consistent with

m22 & 1 (Bozek et al. 2015; Schive et al. 2016; Nadler

et al. 2019).

The stellar dynamics of nearby galaxies offer further

opportunities to test FDM models. The inner density

structures of DM halos that form in an FDM cosmol-

ogy follow a stationary wave, or soliton, solution to the
Schrödinger–Poisson equation (Schive et al. 2014; Marsh

& Pop 2015). In the outer region the halo density profile

transitions to a normal CDM halo profile (e.g., a Navarro-

Frenk-White (NFW) profile, Navarro et al. 1997). The

sizes of these cores are predicted to scale inversely with

halo mass, while the symmetry of the soliton solution

requires the core density to scale inversely with the core

size (Schive et al. 2014). Higher mass halos are therefore

predicted to have smaller but denser cores.

Many previous studies of FDM density profiles in galax-

ies have focused on either dwarf spheroidal (dSph) or

ultra-faint dwarf (UFD) galaxies (e.g., Lora & Magaña

2014; Marsh & Pop 2015; Chen et al. 2017; González-

Morales et al. 2017), as their high dynamical mass-to-

light ratios minimize the impact of systematic assump-

tions about the stellar mass distribution. Studies have

generally found m22 ∼ 1 (within a factor of a few), in

slight tension with the Lyα constraints. Calabrese &

Spergel (2016) found that the stellar kinematics of two

UFDs were consistent with m22 ∼ 4, though they noted

the lack of kinematic measurements outside of the in-

ferred core radius. More recently, Marsh & Niemeyer

(2018) applied the stochastic density fluctuation model of

El-Zant et al. (2016) to study how FDM would cause dy-

namical heating of the star cluster in the UFD Eridanus

II. They argued that the survival of the EriII star cluster

implies m22 & 1000, whereas the existence of EriII itself
implies m22 & 10.

Looking toward more massive galaxies to probe FDM

scaling relations presents increasing difficulties in disen-

tangling the baryonic and dark mass components. In the

halo mass range of 1010 - 1011 M�, low surface bright-

ness (LSB) galaxies have proven to be the most amenable

to analysis. Bernal et al. (2018) modeled the rotation

curves of 18 LSBs, and their results favored a lower value

of m22 ∼ 0.05 (though see Bar et al. 2019 for a discus-

sion of the impact of the baryons on the FDM density

structure).

With the discovery of a vast population of even lower

surface brightness “ultra-diffuse” galaxies (UDGs; van

Dokkum et al. 2015; Mihos et al. 2015; Koda et al. 2015),

we now have more opportunities to test FDM in a broader

range of galaxy masses and environments. The Coma

Cluster UDG Dragonfly 44 was shown to have a large

stellar velocity dispersion, corresponding to a DM halo
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with a mass on the order of that of the Milky Way (van

Dokkum et al. 2016). In a companion paper, van Dokkum

et al. (2019) (hereafter Paper I), we present new spatially-

resolved spectroscopy of Dragonfly 44, confirming that

the potential of the galaxy is indeed dominated by DM.

In this work, we address the question of whether or not

the dynamics of Dragonfly 44 are consistent with FDM.
Throughout this work we assume the Planck Collabo-

ration 2018 values of relevant cosmological parameters,

including H0 = 67.66 km s−1 Mpc−1 and Ωm = 0.3111.

In Section 2 we summarize the photometric and spec-

troscopic data for Dragonfly 44. We describe the Jeans

modeling formalism and mass modeling assumptions in

Section 3. In Section 4 we present our derived constraints

on FDM models, and we place our results in context with

other FDM studies in Section 5.

2. DATA

Readers interested in a detailed description of the spec-

troscopic observations, data reduction, and kinematic

extraction are referred to Paper I; here we provide a
brief summary of the observational data for Dragon-

fly 44. We adopt a standard distance to Coma of 100

Mpc for the galaxy, which has an associated distance

modulus m−M = 35 and an angular distance conversion

factor of 0.485 kpc arcsec−1.

Using the V606 HST WFC3/UVIS imaging data pre-

sented by van Dokkum et al. (2017), we modeled

the stellar light of Dragonfly 44 with a Sérsic sur-

face brightness profile, deriving a total luminosity of

LV = 2.33× 108 L�,V , a major-axis effective radius of

Re = 4.7 kpc, a Sérsic index of n = 0.94, and an axis ratio

of b/a = 0.68. For our modeling purposes, we adopt the

circularized effective radius of Re,circ = Re
√
b/a = 3.87

kpc.

We obtained integral field unit (IFU) spectroscopy of

Dragonfly 44 with the Keck Cosmic Web Imager (KCWI)

in the first half of 2018, with 17 hours of exposure time
on target and an additional 8 hours on sky. We used the

medium slicer with the BM grating, yielding a field-of-

view of 16′′ × 20′′ and a spectral resolution of R ∼ 4000.

For reducing the data to rectified, wavelength cal-

ibrated cubes, we used the public Keck-maintained

pipeline, KDERP2. We aligned the individual science ex-

posures by fitting a 2D model of the flux from the HST

imaging data and interpolating to a common spatial

grid with a spatial resolution of ∼ 1.2′′. We subtracted

the sky spectrum using a principle component analysis

technique – see Paper I for further details. The final

2 https://github.com/Keck-DataReductionPipelines/KcwiDRP

signal-to-noise ratio in the optimally-combined spectrum

was 48 per pixel or 96 Å−1.

We extracted spectra in nine elliptical apertures follow-

ing the isophotes of the galaxy. We modeled the stellar

kinematic line-of-sight velocity distribution (LOSVD) as

a fourth-order Gauss–Hermite function, and we fitted

the LOSVD in each of these apertures by convolving it
with both a high-resolution template spectrum of a syn-

thetic stellar population and the instrumental line profile

(including a wavelength-dependent resolution). From

varying the ages and metallicities of the chosen stellar

population template, we found the most likely values for

an age of 10 Gyr and a metallicity of [Fe/H] = −1.25. For

each spectrum we found the best fitting central velocity

and higher-order (second, third, and fourth) moments of

the LOSVD using a Markov Chain Monte Carlo (MCMC)

simulation.

The radius of a given aperture is defined as the flux-

weighted average pixel radius. There is little evidence

for rotational motion in Dragonfly 44, with v/σ . 0.25

along the minor axis and v/σ . 0.1 along the major

axis. We computed the effective rms velocity within each

aperture as v2rms = (v − vsys)2 + σ2.

3. DYNAMICAL MODELING

We use the spherical Jeans modeling formalism pre-

sented in Wasserman et al. (2018), using an updated,

publicly available modeling code3. Under the assump-

tions of dynamical equilibrium and spherical symmetry,

the model predicts the LOS velocity dispersion as a

function of projected galactocentric radius. See Hayashi

& Obata (2019) for a discussion of the systematic un-

certainty associated with applying spherical models to

non-spherical systems. The main components of the

model are the mass profile, M(r), the tracer volume

density profile, ν(r), and the orbital anisotropy profile of

the tracers, βani(r) = 1−σ2
t /σ

2
r , where σt and σr are the

tangential and radial components of the velocity disper-

sion. We can compute the mean squared LOS velocity

as

σ2
los(R) =

2G

I(R)

∫ ∞
R

Kβ (r,R) ν(r)M(r)
dr

r
(1)

where I(R) is the tracer surface density profile and

Kβ(r,R) is the anisotropy projection kernel. For our

adopted constant anisotropy profile, the functional form

of this projection kernel is given by Mamon &  Lokas

(2005), equation A16.

We set the stellar tracer density distribution to follow

the Sérsic distribution of the star light. We assume

3 http://github.com/adwasser/Slomo.jl

https://github.com/Keck-DataReductionPipelines/KcwiDRP
http://github.com/adwasser/Slomo.jl
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that the stellar mass distribution follows the same Sérsic

luminosity distribution used for the tracers, with the

local stellar mass density given by the spatially-invariant

stellar mass-to-light ratio, Υ∗, multiplied by the stellar

luminosity density.

3.1. Halo Models

For the DM halo, we construct a flexible double power

law model with a soliton core. A generalized form of

the Navarro–Frenk–White (NFW) model (Navarro et al.

1997) is given by

ραβγ(r) = ρs

(
r

rs

)−γ (
1 +

(
r

rs

)α)(γ−β)/α

(2)

where ρs is the scale density, rs is the scale radius, γ is the

negative inner log slope, β is the negative outer log slope,

and α controls the sharpness of the transition between

the two slopes (Hernquist 1990; Di Cintio et al. 2014).

For (α, β, γ) = (1, 3, 1), this is the typical NFW profile,

which we assume to be an appropriate approximation for

CDM halos in the absence of baryonic effects or FDM

cores.

The inner soliton core region from FDM has the density

profile

ρsoliton(r) = ρsol

(
1 +

(
r

rsol

)2
)−8

(3)

where ρsol and rsol are the soliton scale density and scale

radius, respectively (Marsh & Pop 2015; Robles et al.

2019). Note that we use a slightly different definition of

the soliton radius than Schive et al. (2014) and Robles

et al. (2019); their core radius, rc, refers to the radius

where the density has fallen to half of the central den-

sity, and it is equivalent to 0.3017 rsol. In addition to

eliminating a numeric constant from the equations, our

choice of definition for the soliton radius makes the ratio

of the transition radius to the soliton radius near unity
(see Section 5.3).

From the symmetry of the soliton solution, the soliton

scale density and radius are related to the scalar field

mass as

ρsol

M�kpc−3
= 8.755× 106 h−2 m−222

(
rsol
kpc

)−4
(4)

where h is the Hubble parameter in units of 100

Mpc km s−1, and m22 is the scalar field mass in units

of 10−22 eV (Marsh & Pop 2015).

We match the inner soliton profile with the outer αβγ

profile at the transition radius, rt, by finding the root of

the function corresponding to the difference between the

two profiles. This guarantees that the density profile,

ρ(r) =

ρsoliton(r) r < rt

ραβγ(r) r ≥ rt ,
(5)

is a continuous function, and the transition radius is thus

fixed for a given set of outer halo and soliton parameters.

We reject any model that fails to converge due to the

inner profile being less dense than the outer profile at all

radii. The transition radius is found in simulations to

be a factor of a few times the core radius of the soliton,

and the transition between the soliton and normal CDM

profiles is sharp (Schive et al. 2014; Mocz et al. 2017).

While FDM halo density profiles are continuous, their

density derivatives are not.

The enclosed mass in the αβγ model is

Mαβγ(r) =
4πρsr

3
s

ω

(
r

rs

)ω
2F1

[
ω

α
,
β − γ
α

, 1 +
ω

α
;−xα

]
(6)

where ω = 3− γ and 2F1 is the hypergeometric function.

For the limiting case of the NFW profile, this simplifies

to

MNFW(r) = 4πρsr
3
s

[
ln

(
1 +

r

rs

)
− r

rs + r

]
. (7)

The enclosed mass of the soliton has an analytic form4

and is given by

Msoliton(r) =

∫ r

0

4πr̃2ρsoliton(r̃)dr̃ (8)

= 4πρsolrsol
3

∫ r/rsol

0

x2
(
1 + x2

)−8
dx

= 4πρsolrsol
3

∫ θ

0

tan2(θ) sec−16(θ) sec2(θ) dθ

= 4πρsolrsol
3

∫ θ

0

sin2(θ) cos12(θ) dθ

where in the second-to-last line we have used the trigono-

metric substitution r/rsol = tan(θ). The integral in

the last line can then be iteratively integrated by parts,

yielding the following solution.

Msoliton(r) = Msol
1

K

[
k0θ +

7∑
i=1

ki sin(2iθ)
]

(9)

where Msol = 4πρsolrsol
3, K = 1720320 and the other

constant factors are given in the table below.

4 The existence of such an analytic form was noted by Marsh &
Pop (2015), but the derivation of this profile was left as an exercise
to the reader.
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k0 k1 k2 k3 k4 k5 k6 k7

27720 17325 −1155 −4235 −2625 −903 −175 −15

Table 1. Coefficients for the analytic solution to the soliton
enclosed mass profile (Equation 9).

From Equation 4, we can also express Msol as

Msol = 1.1× 108 M� h
−2 m−222

(
rsol
kpc

)−1
. (10)

Our generic halo mass profile is then given by

M(r) =

Msoliton(r) r < rt

∆Mαβγ(r) +Msoliton(rt) r ≥ rt
(11)

where ∆Mαβγ(r) = Mαβγ(r)−Mαβγ(rt).
We parameterize the halo with the virial mass and

concentration, using the “200c” convention such that the

virial radius is given by the relation

M(r200c) = 200ρcrit
4π

3
r3200c (12)

and c200c = r200c/r−2. Note that here we use the conven-

tion that the halo concentration is given by the radius

where the halo log slope is equal to −2. This is related

to the halo scale radius as

r−2 =

(
2− γ
β − 2

)1/α

rs . (13)

Generally speaking, we must be careful in our definition

of the halo virial mass and concentration. Since the

soliton core contributes to the mass of a halo, the outer

halo density and radius scale parameters for a FDM halo

of a given virial mass and concentration are necessarily

different than those for a normal CDM halo.

However from the predicted scaling relation between

soliton core mass and halo mass, we would expect a

1010 M� halo to have . 1% of its mass locked up in the

soliton core, with this fraction decreasing with increasing

halo mass (Robles et al. 2019). Thus given the expected

halo mass range of Dragonfly 44 of ∼ 1011 − 1012 M�,

we assume that the differences in the outer halo scale

parameters in the FDM and CDM models at fixed halo

mass and concentration are negligible. We later verify

the validity of this assumption by comparing the inferred

virial mass with one computed from the posterior mass

profile, finding a negligible difference.

This generic double-power law plus soliton halo model

has eight free parameters (βani, M200c, c200c, α, β, γ,

m22, rsol) and it would be poorly constrained by the

available kinematic data. Thus, we consider the following

constraints.

We impose a prior on c200c by using the halo mass–

concentration relation (HMCR) from Diemer & Kravtsov

(2015). Practically this is accomplished by sampling both

M200c and c200c, then using a log-normal prior on c200c
whose mean is the HMCR prediction conditioned on the
sampled M200c, and whose scatter is 0.16 dex.

We consider two possibilities for the αβγ slope pa-

rameters. First, in the limit of no baryonic effects,

we assume the outer halo follows an NFW profile with

(α, β, γ) = (1, 3, 1). Alternatively assuming that baryonic

feedback – such as cycles of bursty star formation – plays

an important role, we use the halo scaling relations from

the hydrodynamics simulations of Di Cintio et al. (2014),

which map variation in log(M∗/Mvir) to α, β, and γ (see

their Equation 3). For Dragonfly 44, this results in a

shallower CDM halo, with γ ∼ 0.3.

To summarize, in addition to the CDM halo models

described in Paper I, we have added two halo models

by including the soliton core component from the FDM

model, with both NFW and αβγ outer halo profiles.

Despite the constraints of the above assumptions, the

task of inferring the properties of an FDM halo in Drag-

onfly 44 are substantial. Figure 1 illustrates the difficulty

by comparing velocity dispersion profiles from expected

FDM halo models with their CDM counterparts.

3.2. Bayesian Inference

We use a Gaussian likelihood to model the stellar veloc-

ity dispersion data, σi ± δσi in apertures with projected

galactocentric radii, Ri. For a given halo model and

model parameters, the predicted velocity dispersion, σJ,

is modeled by Equation. 1. The log likelihood is thus

lnL =
∑
i

−1

2

(
ln(2πδσ2

i ) +

(
σi − σJ(Ri)

δσi

)2
)
. (14)

We use uniform priors over the log of the halo mass,

scalar field mass, and soliton scale radius. For the orbital

anisotropy, we use a uniform prior over the symmetrized

anisotropy parameter, β̃ani = − log10(1 − βani). This

ensures that radial and tangential orbits are given equal

weight. We use the HMCR as a prior for the concen-

tration, as described in the previous section. For the

stellar mass-to-light ratio, we use a log-normal distribu-

tion with mean log10 Υ∗,V = log10(1.5) and a scatter of

0.1 dex. Here the mean value chosen is typical of an

old, low metallicity stellar population, while the chosen

scatter matches that found by Taylor et al. (2011) from

the GAMA survey. We show a summary of these model

parameters and our priors in Table 2.
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Figure 1. Illustration of mass models and their associated velocity dispersion profiles for different halo models described in
Section 3.1. The top panels show CDM models with log10M200c/M� = 11, c200c = 10.5, and rs = 9.3 kpc. The red solid line
shows a cuspy NFW halo and the orange dot-dashed line shows a cored αβγ halo. The bottom panels show FDM halos with
an outer αβγ halo profile (plotted again for comparison) for a range of possible values of m22. The left-hand panels show the
circular velocity profile associated to the halo, while the right-hand panels show the line-of-sight velocity dispersion profile. The
range of orbital anisotropy values (from βani = −1 to 0.5) is shown by the shaded region, with the line indicating the isotropic
(βani = 0) profile. Tangentially-biased profiles (βani < 0) generally display velocity dispersion profiles that increase with radius,
while radially-biased profiles generally fall with radius. In the bottom left panel, the dotted lines show the expected soliton scale
radius associated to each FDM halo (see Section 5.2). As the FDM scalar field mass gets larger, the profile approaches its CDM
analogue, with the deviations occurring on increasingly smaller scales. FDM is more “detectable” for lower m22 values where
there is more mass in the soliton core. However, the projection of this mass profile into an observable velocity dispersion tends to
wash out this signal (demonstrating the mass–anisotropy degeneracy). Furthermore even with a known anisotropy parameter,
the FDM signal is degenerate with the inner DM slope (i.e., cored or cuspy).
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For each halo model, we sample from our posterior

probability distribution,

Post(θ|(σ, δσ,R),Model) ∝ L(σ|R,Model, θ)

Prior(θ)
(15)

by using the affine-invariant ensemble MCMC algorithm

of Goodman & Weare (2010). We run chains of 128

walkers for 4000 iterations, rejecting the first 2000 itera-

tions where the MCMC might not have converged. We

visually inspect the trace plots to verify that this is an

adequate number of burn-in iterations.

4. RESULTS

Table 2 summarizes the posterior distributions for the

different halo mass models. The full posterior distribu-

tions are shown as marginalized 1D and 2D histograms

in Appendix A.

We find that all models we consider are able to repro-
duce the observed velocity dispersion profile, as shown in

Figure 2. We assess the relative quality of these models

using leave-one-out cross validation (LOO-CV; Vehtari

et al. 2015; Piironen & Vehtari 2017), finding no signif-

icant differences in the goodness-of-fit of FDM models

relative to the CDM models. Translating the differences

between models in their calculated LOO-CV informa-

tion criteria into probabilities, we find that no model is

more than ∼ 0.3 times as likely as any other model to

best describe the data. In other words, the increase in

goodness-of-fit from the FDM models is not enough to

compensate for the increased model freedom (i.e., the

additional model parameters).

As demonstrated in Figure 3, the dynamical mass

profile is best constrained at the maximum radius of

the kinematic tracers (∼ 5 kpc), with Mdyn(< 5 kpc) =

3.4+0.5
−0.4(±0.1)×109 M�, where the systematic uncertainty

(in parentheses) comes from the standard deviation be-

tween the four models.

Figure 3 also demonstrates the systematic effect that

the choice of halo model has on the inferred circular

velocity profile, with both CDM and FDM αβγ profiles

preferring more massive halos than their associated NFW

models by ∼ 0.5 dex. This is to be expected, as the cored

αβγ models put less mass in the inner region (where we

have kinematic constraints) compared to NFW models

of the same halo mass. The differences in inferred halo

mass between halo models are consistent within the

statistical uncertainties from the spread in the posterior

distributions, and the deviations indicates the difficulty

in robustly extrapolating halo masses out to spatial scales

where we lack data.

The analysis of higher order LOS velocity moments

(e.g., kurtosis) may help in distinguishing cuspy density
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σ
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O
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Data

Figure 2. Posterior predictive checks on the velocity dis-
persion profiles for the FDM halo models compared with
the kinematic observations, with the CDM halo models from
Paper I shown for comparison. The red solid and orange
dot-dashed lines show the FDM halo models for the NFW
and αβγ outer profiles. The dark blue dashed and cyan dot-
ted lines show the CDM halo models for the NFW and αβγ
profiles. The shaded regions cover the 16th through 84th
percentiles of the distribution. We see that all four models
do an adequate job of recovering the general trend of the
kinematic data.
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Figure 3. Circular velocity corresponding to the dynamical
mass (DM + stars) for the FDM halo models, compared with
their CDM halo counterparts. Note that these are profiles in
de-projected (3D) radius, in contrast to the projected (2D)
radial profiles shown in Figure 2. The bottom gray solid
line shows the circular velocity profile corresponding to just
the stellar mass for the NFW model. The black bar at the
bottom indicates the spatial extent of the kinematic data.
The dynamical mass within 5 kpc (∼ Re) is well constrained
by the data, but the mass within 1 kpc is degenerate with
the chosen model.
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Parameter Unit Prior CDM + NFW FDM + NFW CDM + αβγ FDM + αβγ

log10M200c M� U(7, 15) 10.62+0.42
−0.30 10.64+0.41

−0.32 11.20+0.63
−0.63 11.16+0.58

−0.58

log10 c200c – HMCR 1.00+0.19
−0.20 0.98+0.18

−0.19 0.98+0.13
−0.16 0.99+0.12

−0.14

log10 Υ∗ M�/L�,V N (0.176, 0.1) 0.18+0.10
−0.10 0.18+0.10

−0.10 0.19+0.10
−0.10 0.18+0.10

−0.10

β̃ani – U(−1.5, 1.5) −0.24+0.10
−0.12 −0.44+0.22

−0.29 −0.05+0.08
−0.11 −0.16+0.15

−0.39

log10m22 10−22 eV U(−3, 3) – 0.34+0.76
−0.25 – 0.51+0.62

−0.44

log10 rsol kpc U(−2, 1) – −0.22+0.25
−0.34 – −0.16+0.25

−0.26

Table 2. Model parameters for the two CDM halo models from Paper I and the two FDM halo models presented in this
work. The parameters are, from top to bottom, the halo virial mass, the halo concentration, the stellar mass-to-light ratio,
the symmetrized anisotropy parameter (β̃ani = − log10(1− βani)), the scalar field mass, and the soliton core radius. Columns
show the chosen parameterization, relevant units, the prior distribution, and posterior summaries for the four halo models.
For the priors, U(`, u) denotes a uniform prior with lower bound ` and upper bound u, N (µ, σ) denotes a Gaussian prior with
mean µ and standard deviation σ, and HMCR refers to the halo mass–concentration relation prior (see Section 3.1). Posterior
distributions are summarized as the median of the distribution and the distance to the 16th and 84th percentiles.

profiles (NFW) from shallower cored profiles (αβγ), as

discussed by Paper I. The high value of h4 measured

for the Dragonfly 44 stellar kinematic data favors the

αβγ model. However since h4 is more susceptible to

systematic biases than the velocity dispersion, we remain

largely agnostic about which halo model (and hence

which associated value for the halo mass) is correct.

As expected, the choice of CDM or FDM models has
the most impact on the inner mass profile, with FDM

models allowing a ∼ 109 M� core within 1 kpc. The inner

mass distribution is degenerate with both the chosen

model and the orbital anisotropy (see Figure 4), with the

FDM models preferring more DM inside of 1 kpc and

slightly more tangentially-biased orbits. The primary
modeling systematic affecting the anisotropy distribution

however is the outer DM profile (NFW or αβγ), with

the NFW model preferring tangential orbits βani ∼ −0.8

and the αβγ model preferring isotropic orbits. We note

that models with tangentially-biased orbits will hide the

signal of the vcirc soliton bump when projecting to the

LOS velocity dispersion.

Figure 5 shows the ratio of the enclosed (i.e., cumula-

tive) DM mass to stellar mass as a function of radius,

and it confirms that Dragonfly 44 is DM-dominated

(MDM/M∗ > 1) independently of the considered cos-
mology (FDM/CDM) or degree of baryonic impacts

(NFW/αβγ), down to the smallest spatial scales probed

by the data. As such, our inference on the mass-to-light

ratio, Υ∗, is consistent with our chosen prior. With our

chosen prior of log Υ∗ ∼ 0.176± 0.1, MDM/M∗ ∼ 20 at

r = 5 kpc, independently of the chosen mass model.

Looking at just the two FDM models, we see that

they are consistent in their posterior soliton parameter

distributions. Figure 6 shows the covariance between

the scalar field mass, the total mass within the soliton

core, and the ratio of the transition radius to the soliton

scale radius. The modes of the distributions for both

−2 −1 0 1
βani

0.0

0.5

1.0

1.5

2.0

P
(β

an
i)

FDM + NFW

FDM + αβγ

CDM + NFW

CDM + αβγ

Figure 4. Posterior distributions of the orbital anisotropy
parameter for the FDM halo models, compared with their
CDM halo counterparts. The median of each distribution
is marked by circles. The NFW models (both for CDM
and FDM) prefer tangentially biased orbits (βani < 0), with
the tail of the distributions extending to the prior bound at
β̃ani = −1.5 (βani = −30.6). The αβγ models are consistent
with isotropic orbits (βani = 0, shown by the gray dotted
line), but all of the posterior distributions are skewed in the
direction of tangential anisotropy.

NFW and αβγ models have a ∼ 109 M� soliton core

with a size of ∼ 0.6 kpc. We find a less likely second

peak in the posterior distribution for the NFW model,

towards a more massive scalar field (m22 ∼ 10). This

region has a soliton core with mass of ∼ 107 M� that

rapidly transitions to the outer NFW halo profile. Thus,

this second peak corresponds to models for which the

DM scalar field is too massive to create a dynamically

significant core on spatial scales probed by our data. For

the αβγ model, this region of parameter space has a

similar posterior density, but this manifests as a long

tail towards higher scalar field masses rather than as a

discrete second mode.
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Figure 5. Ratio of DM to stellar mass as a function of
radius for the FDM halo models, compared with their CDM
halo counterparts. The black bar at the bottom indicates the
spatial extent of the kinematic data. All four models show
Dragonfly 44 to be DM-dominated (MDM/M∗ > 1) down to
∼ 0.1 kpc.

While the observable velocity dispersion of the FDM

models will approach that of the CDM models in the limit

as m22 →∞ (see the bottom right panel of Figure 1), we

caution that this does not mean that the bounded m22

posterior distribution favors FDM over CDM. Rather,

as discussed in the beginning of this section, we need to

statistically account for the additional model freedom

that the introduction of the soliton parameters provide.

5. DISCUSSION

We now focus on the question of whether or not the

stellar dynamics of Dragonfly 44 are consistent with the

FDM hypothesis and other constraints on FDM. We find

qualitatively similar FDM constraints for both the NFW

and αβγ models (see Figure 6), and so for the sake of

simplicity we focus on the FDM + αβγ model.

5.1. Scalar field mass

We find the DM scalar field mass to be m22 = 3.3+10.3
−2.1 .

Figure 7 shows this range in the context of other ob-

servational constraints on the scalar field mass. The

values we find for m22 are similar to those for the Local

Group dSph galaxies from the study of Chen et al. (2017),

who found m22 ∼ 1.8. González-Morales et al. (2017)

found a similar value (m22 ∼ 2.4) from Jeans modeling

of the same data, but they cautioned that the orbital

anisotropy degeneracy could cause the scalar field mass

inference to be biased high. Instead of using this Jeans

analysis, they advocated instead for using mass estima-

tors with multiple stellar subpopulations (e.g., Walker

& Peñarrubia 2011), for which they derived an upper

bound of m22 < 0.4.
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4.
5

6.
0

7.
5

9.
0

lo
g 1

0
M

so
l

0.
0

0.
8

1.
6

2.
4

log10m22

0.
3

0.
6

0.
9

1.
2

r t
/r

so
l

4.
5

6.
0

7.
5

9.
0

log10Msol

0.
3

0.
6

0.
9

1.
2

rt/rsol

Figure 6. Posterior distributions for the scalar field mass
in 10−22 eV, the mass within the soliton core (in M�), and
the ratio of the transition radius to the soliton core radius
for the NFW (red, unfilled histograms) and αβγ (orange
filled histograms) halo models. The FDM constraints are
broadly similar between the two halo models, with both
models favoring a core of mass ∼ 109 M�. Both models show
a mode in m22 of ∼ 2, with a broad posterior tail towards
higher m22 values. For the NFW model, we see a second
mode at high m22, corresponding to a negligible core mass
and hence a near-zero transition radius.

Recent work by multiple authors (e.g., Iršič et al. 2017;

Armengaud et al. 2017; Kobayashi et al. 2017; Nori

et al. 2019) have used the Lyα forest power spectrum to

test FDM. Less massive FDM particles would result in

stronger deviations from ΛCDM at small spatial scales;

thus these studies infer lower bounds on the scalar field

mass, with m22 values ranging from 7 to 30.

There are a large number of modeling assumptions that

go into this lower bound, ranging from the temperature

evolution of the intergalactic medium during reionization

(e.g., Garzilli et al. 2017) to different priors on cosmo-

logical parameters. In addition, Desjacques et al. (2018)

found that even a relatively small self-interaction term

in FDM can lead to instabilities that result in notable

differences (with respect to CDM) in the cosmic web,

complicating the interpretation of Lyα forest clustering.

Thus, it remains uncertain to what degree the FDM

constraints from galaxy dynamics and the Lyα power

spectrum are in tension with one another.

5.2. Core size
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Figure 7. Posterior distributions of m22 from Dragonfly 44
(orange histogram) compared with constraints from the lit-
erature. A lower bound of m22 & 20 from modeling of the
Lyα forest (see sources in text) is shown by the gray dashed
line, with the gray shaded region showing the range of lower
bounds found in the literature. The constraint from dSph
galaxies (Chen et al. 2017) is shown by the yellow solid line.
We see that both inferences on m22 from Dragonfly 44 are
consistent with the dSph constraints, but they are in tension
with the Lyα constraint. Only ∼ 10% of samples lie to the
right of the Lyα lower bound.

The core sizes of soliton halos are predicted to scale

with halo mass and scalar field mass as rsol ∝ m−122 M
−1/3
h .

We can see this by considering the following relations,

rcore ∝ (mv)−1

v ∝
(
Mh

rh

)1/2

(16)

rh ∝M1/3
h

where the first one is from the de Broglie wavelength
of the scalar field, the second relation comes from the

virial theorem, and the third one comes from the defini-

tion of the halo virial radius. Indeed, inserting relevant

constants, we can recover within order unity the scal-

ing relation found from FDM simulations (Schive et al.

2014):

rsol
kpc

= 5.304

(
Mh

109M�

)−1/3
m−122 . (17)

We could in principle use Equation 17 as an informative

prior on rsol, which would result in stronger constraints

on m22. However, since we let rsol be a free parameter

in our modeling of FDM halos, Equation 17 acts as an

additional consistency test for the model. Figure 8 shows

the posterior distribution of the core size (multiplied by

the scalar field mass to remove its associated scaling) and

the halo mass. The mode of the posterior is well-matched

9 10 11 12 13
log10(M200c/M�)
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1
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g 1

0
(m

22
×
r s

ol
/k

p
c)

DF44

core-halo relation

dSph

Figure 8. Posterior distribution of M200c and m22 × rsol
for Dragonfly 44 compared to the expected scaling relation.
The violet line shows the functional relationship between halo
mass and core size predicted by Schive et al. (2014). The
yellow × shows the inferred core size from dSph galaxies
(Chen et al. 2017). There is a broad range of allowed core
sizes, but the mode of the distribution is consistent with the
expected scaling relation.

to this relation. In addition, we see that our derived core

size for Dragonfly 44 is less than that derived by Chen

et al. (2017) for their sample of lower halo mass dSph

galaxies, consistent with the direction of the soliton core

size–halo mass scaling relation.

5.3. Transition radius

Another consistency check for our FDM models is the

location of the transition from the inner soliton profile

to the outer CDM-like profile (rt from Equation 5). For

the outer αβγ profile, we infer rt = 0.5+0.4
−0.2 kpc and

rt/rsol = 0.8+0.2
−0.3. As shown in Fig. 6, these values are

similar for the NFW model.

Using simulations of merging FDM halos, Mocz et al.

(2017) interpreted this transition radius as the location

where the energy density due to quantum pressure is

equal to the classical kinetic energy density. They found

this transition radius to occur at rt ∼ 3.5 rc (∼ 1 rsol).

Recent work by Robles et al. (2019) identified a plau-

sible range for this ratio of the transition radius to the

soliton core radius. The maximum of this value is set

by the requirement that the radius of the peak of the

circular velocity profile is less than the virial radius. The

corresponding minimum of this transition ratio is set by

either the requirement of a local maximum in the circular

velocity profile (for halos . 1011 M�) or by the need for

the peak of the velocity profile in the FDM halo to be

less than that of the corresponding CDM halo (for more

massive halos). For a halo of mass ∼ 1011 M�, these

requirements translate to 0.6 . rt/rsol . 1.2.
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Figure 9. Posterior distribution of the ratio of the transition
radius to the soliton scale radius for Dragonfly 44 (orange
histogram), compared with the relevant bounds (violet region)
for reasonable FDM halos at the inferred halo mass (see
Robles et al. 2019, Sec. 2.2). The dotted violet line shows the
approximate value from the FDM simulations of Mocz et al.
(2017). Over two-thirds of the posterior mass for Dragonfly 44
is within these bounds, indicating good agreement with FDM
predictions.

These bounds, as well as the posterior distribution

for this transition ratio, rt/rsol, are shown in Figure 9.

We recall that our definition of the soliton core radius

differs from that used by Robles et al. (2019), requiring

a conversion factor of 3.315. In addition, we show the

same ratio as found in the simulations of Mocz et al.

(2017). Most of the posterior mass (∼ 70%) as well as

the mode of the distribution is inside of these bounds,

indicating that the inferred soliton transition radius is

in agreement with the constraints for a reasonable FDM

halo.

5.4. Future work

One potentially rewarding area for future work would

be testing FDM against galaxies with even higher halo

masses than that of Dragonfly 44. Figure 10 shows that

the difference in velocity dispersion between a CDM halo

model and a FDM model (both assuming an outer αβγ

profile) is on the order of the observational uncertainties

for a halo mass similar to that of Dragonfly 44. A

1012 M� FDM halo would be much more readily detected

with the current observational error budget. The field

UDG DGSAT I, with its high velocity dispersion of

σ = 56 km s−1(Mart́ın-Navarro et al. 2019), may be one

such promising candidate.

As discussed in Paper I, modeling higher order LOSVD

moments may help break the mass–anisotropy degener-

acy. Another possibility would be to use the exten-

sive globular star cluster system of some UDGs (van
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Figure 10. The difference in velocity dispersion between
CDM and FDM models, as a function of radius. The orange
dot-dashed line corresponds to a 1011 M� halo, similar to that
inferred for Dragonfly 44. The blue dashed line corresponds to
a 1012 M� halo, and it demonstrates a much more detectable
bump in the velocity dispersion inside of 1 kpc. The gray band
indicates the observational uncertainties in velocity dispersion
for the Dragonfly 44 data. Note that this uncertainty region
does not take into account the systematic uncertainty in
the halo mass profile from the unknown virial mass and
concentration.

Dokkum et al. 2017) as tracers of the potential. Such

multi-population Jeans modeling can also mitigate the

uncertainties from orbital anisotropy (e.g., Oldham &

Auger 2016; Zhu et al. 2016; Wasserman et al. 2018).

Most simulation studies of FDM in the literature have

not modeled the impact of baryons on the density struc-
ture of DM halos (with Bar et al. 2019 being a notable

exception). Our crude method for marginalizing over

this uncertainty was to try models with the best fit

DM profiles from the hydrodynamical simulations of Di

Cintio et al. (2014), which naturally assumed a CDM

cosmology. Stellar feedback may be critical in forming

UDGs (Di Cintio et al. 2017a; Chan et al. 2018; Jiang

et al. 2018) and would likely affect the properties of

soliton cores in FDM. Galaxy formation studies with

WDM and SIDM (e.g., Di Cintio et al. 2017b; Fitts et al.

2018; Despali et al. 2019) have helped identify better
ways of discriminating between available models, and we

believe dedicated studies of galaxy formation in a FDM

cosmology will be necessary to disentangle the effects of

baryonic feedback and new DM physics on the observable

DM mass distribution.

6. CONCLUSIONS

We applied equilibrium dynamical models to new

spatially-resolved spectroscopy of the integrated starlight

of the ultra-diffuse galaxy Dragonfly 44. We considered
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FDM halo models in which DM consists of an ultra-light

scalar field.

While we were unable to statistically distinguish be-

tween our proposed halo mass models, we were able to

test the consistency of the FDM halo models. If we

assume a FDM cosmology, the inferred scalar field mass

and soliton core size are consistent with a range of FDM
predictions, including the core size–halo mass scaling

relation and the radius of transition between the soliton

core and the outer halo.

The inferred scalar field mass from the Dragonfly 44

data is largely in agreement with other constraints from

galaxy dynamics, however it is in tension with results

from modeling the Lyα forest power spectrum. Possible

solutions to these disagreements include accounting for

any self-interactions in the scalar field or allowing for a

mixture of FDM and CDM. Future work is needed to

fully quantify this tension and to determine if FDM is a

viable alternative to CDM.
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APPENDIX

A. POSTERIOR DISTRIBUTIONS

We show the 1D and 2D marginalized posterior distributions for each of the four halo models. The parameterization

and associated units are shown in Table 2.
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Figure 11. Marginalized posterior distributions for the four halo models. The top panels show the FDM models from this work.
The bottom panels show the CDM models from Paper I. Left panels are for NFW halo profiles, and right panels show the results
for the αβγ halo profiles. Within both top (FDM) panels the parameters are (from left to right, or top to bottom) the log of the
halo mass, the log of the halo concentration, the log scalar field mass, the log soliton scale radius, the log of the stellar mass to
light ratio, the symmetric parameterization of the anisotropy parameter. Contours show iso-density surfaces from 0.5 to 2.0
“sigma” levels (for a 2D Gaussian).


