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Abstract

Cutaneous malignant melanoma (melanoma) is character-

ized by a high mutational load, extensive intertumoral and

intratumoral genetic heterogeneity, and complex tumor

microenvironment (TME) interactions. Further insights into

the mechanisms underlying melanoma are crucial for under-

standing tumor progression and responses to treatment. Here

we adapted the technology of spatial transcriptomics (ST) to

melanoma lymph node biopsies and successfully sequenced

the transcriptomes of over 2,200 tissue domains. Deconvolu-

tion combined with traditional approaches for dimensional

reduction of transcriptome-wide data enabled us to both

visualize the transcriptional landscape within the tissue and

identify gene expression profiles linked to specific histologic

entities. Our unsupervised analysis revealed a complex spatial

intratumoral composition of melanoma metastases that was

not evident through morphologic annotation. Each biopsy

showed distinct gene expression profiles and included exam-

ples of the coexistence of multiple melanoma signatures

within a single tumor region as well as shared profiles

for lymphoid tissue characterized according to their spatial

location and gene expression profiles. The lymphoid area in

close proximity to the tumor region displayed a specific

expression pattern, which may reflect the TME, a key compo-

nent to fully understanding tumor progression. In conclusion,

using the ST technology to generate gene expression profiles

reveals a detailed landscape of melanoma metastases. This

should inspire researchers to integrate spatial information

into analyses aiming to identify the factors underlying

tumor progression and therapy outcome.

Significance: Applying ST technology to gene expression

profiling in melanoma lymph node metastases reveals a com-

plex transcriptional landscape in a spatial context, which is

essential for understanding themultiple components of tumor

progression and therapy outcome. Cancer Res; 78(20); 5970–9.

�2018 AACR.

Introduction

Molecular heterogeneity both within and between tumors in

the same patient has been recognized in most cancers, and is

especially prevalent in cutaneous malignant melanoma (mela-

noma; refs. 1–5). The combination of an expansion of tumor

subclones with varying genetic and genomic alterations and the

interaction between the tumor cells and the tumor microenvi-

ronment (TME), for example, malignant, stromal, and immune

cells, during cancer progression presents an intricate situation that

influences disease development (6–8). Previous large-scale

sequencing studies have concluded that the extensive inter- and

intratumoral genetic heterogeneity observed inmelanoma reflects

one of the highest mutational loads in all cancers (4, 5, 8–13).

Furthermore, melanoma is a highly immunogenic cancer that

induces immune responses associated with immune cell infiltra-

tion both in localized and metastatic disease. Clinically, the

genetic diversity of the tumor in relation to that of the TME may

be an important factor in explaining tumor progression, response

to treatments, emergence of therapy resistance, and outcome

differences in melanoma. The heterogeneity of the disease is

clearly demonstrated by patients diagnosed with stage III mela-

noma, which is a group characterized by a high risk of relapse and

5-year relative survival rates between 40% and 70% (14).

Previous research has shown that chemotherapeutic

approaches for treating disseminated melanoma are inefficient

and have no noticeable impact on overall survival (15). Therapies

that both target BRAFV600 mutated melanomas and utilize

immune checkpoint inhibitors have changed the outlook for

patients with melanoma and also offer potential therapy options

in the adjuvant setting of stage III melanoma (16). Still, remis-

sions do not frequently last long.

Thus, further research is needed to elucidate the molecular

mechanisms underlying melanoma pathogenesis, to improve

diagnostics and to identify prognostic as well as treatment-pre-

dictive biomarkers.

The inter- and intratumoralmolecular heterogeneity in stage III

melanoma has already been analyzed with an array of analytical

approaches, including gene expression analyses, IHC, and prote-

omic approaches (10, 11, 13, 17–21). Tirosh and colleagues (13)
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analyzed the transcriptional heterogeneity in melanoma, includ-

ing lymph node metastases, with single-cell RNA sequencing

(scRNA-seq) and concluded that the intra- and interindividual

spatial, functional, and genomic heterogeneity in melanoma and

the associated tumor components shapes the TME. Although

scRNA-seq is a powerful tool for addressing transcriptional het-

erogeneity, knowledge about the spatial origins of single cells is

vital when studying the TME.

We aimed to optimize and apply spatial transcriptomics (ST)

technology (22) for the in situ and quantitative detection of gene

expression in stage III melanoma lymph nodemetastases. For this

purpose, we analyzed the transcriptomes of �2,200 tissue

domains in fresh frozen tumor sections. By retaining the posi-

tional information of the tissue domains, we could superimpose

the transcriptomic data onto histological tissue images and visu-

alize gene expression throughout the tumor.

Materials and Methods

Melanoma samples and RNA quality control

Lymph node metastases from four patients diagnosed with

stage III melanoma were included in this study. The metastases

have previously been described as well as molecularly annotated

regarding BRAF, NRAS (23), and CDKN2A (24) status. The fresh

frozen tumor tissue was stored at �70� C until analysis. The

patients were previously categorized as short-term survivors (�13

months) or long-term survivors (�60 months) following lym-

phadenectomy (24, 25). The staging was performed according to

the American Joint Committee on Cancer system 7 (26) at the

time of diagnosis. This study was conducted in accordance with

the Declaration of Helsinki with written informed consent from

all patients. The project was approved by the Regional Ethics

Committee at the Karolinska Institutet, Stockholm, Sweden.

The tumor samples were embedded in OCT (#4532, Sakura,

Alphen aan den Rijn, the Netherlands) before cryosectioning for

RNA extraction. A total of four sections permetastasis, eachwith a

width of 10mm,were placed in LysingMatrixD (#116913050;MP

Biomedicals) and lysed using FastPrep (MP Biomedicals). Total

RNA was extracted using the RNeasy Plus Mini Kit (#74134;

Qiagen) according to the manufacturer's protocol. RIN values

were determined with a 2100 Bioanalyzer, RNA 6000 Pico Kit

(Agilent) according to the manufacturer's protocol.

Hematoxylin and eosin-stained (H&E-stained) images of each

of the four tumor samples were manually annotated by a trained

pathologist to identify melanoma, stromal and lymphoid tissue.

The lymphoid tissue was a separate region in two of the samples.

The annotation was performed on one of the two consecutive

sections used for the spatial arrays.

Preparation of arrays

Two types of arrays, both prepared on CodeLink-activated

microscope glass slides (SurModics) as described by Sta
�

hl and

colleagues (22), were used in this study. For the optimization

assay, reverse transcription (RT)-primers containing a poly-

T20VN capture regionwere immobilized uniformly over the array

surface, with six identical surfaces generated per glass slide accord-

ing to the manufacturer's instructions.

Surface RT-primer for optimization assays:

[AmC6]UUUUUGACTCGTAATACGACTCACTATAGGGACA-

CGACGCTCTTCCGATCTNNNNNNNNTTTTTTTTTTTTTTTTTT-

TTVN

The arrays for spatial experiments (referred to as spatial arrays)

were printed as 1,007 spots of RT-primers containing a

poly-T20VN capture region, a spatial barcode and a unique

molecular identifier (UMI). The spots, with 200 mm center-to-

center spacing, a diameter of 100 mm, and approximately 200

million RT-primers per spot, were printed according to the

manufacturer's instructions (ArrayJet Ltd.). Six identical array

surfaces, with dimensions of 6,200 � 6,600 mm, were generated

per glass slide.

Surface RT-primer for spatial arrays:

[AmC6]UUUUUGACTCGTAATACGACTCACTATAGGGACA-

CGACGCTCTTCCGATCT[18mer_Spatial_Barcode_1to1007]WS-

NNWSNNVTTTTTTTTTTTTTTTTTTTTVN

Surface frame oligonucleotide:

[AmC6]AAATTTCGTCTGCTATCGCGCTTCTGTACC

Preparation of tumor samples for the ST analysis

Fresh frozen tumor biopsies were embedded in OCT, cryosec-

tioned at 8 and 14 mm, and placed onto the array surfaces,

followed by incubation at 37�C for 1 min. A new glass slide was

used for each of the four tumor samples, however only two array

surfaces out of six were used to generate sequencing libraries for

the spatial experiments. A fixation solution, which was prepared

by diluting 36.5%–38.0% formaldehyde (#F8775; Sigma-

Aldrich) 1:10 in 1xPBS (#09-9400; Medicago), was added on top

of the tissue sections, incubated for 10minutes, andwashedoff by

dipping the glass slides in 1� PBS. The fixated tissue sections were

covered with propan-2-ol (#A461-1; Fisher Scientific). Following

evaporation for 45 seconds,Mayer's hematoxylin (#S3309;Dako)

was added and, after a seven-minute incubation, the glass slides

were washed in RNase and DNase free MQwater. The glass slides

were briefly dried and bluing buffer (#CS702; Dako) was added

and washed off with RNase and DNase free MQ water after

2 minutes. For eosin staining, the glass slides were immerged in

a solution of Eosin (#HT110216) diluted 1:20 in Tris-base [0.45M

Tris, 0.5M acetic acid, pH 6.0]. The glass slides were then

washed in RNase and DNase free MQ water and incubated at

37�C until dry.

Before imaging, the glass slides were mounted with 85%

glycerol (#104094; Merck Millipore) and covered with coverslips

(#BB014060A1; Menzel-Gl€aser). Bright field imaging was per-

formed at 20x resolution with the Metafer Slide Scanning

platform (MetaSystems). VSlide and VSViewer software (Meta-

Systems) was used to stitch the raw images and extract .jpeg files.

The coverslips and glycerol were removed by submerging the

glass slides in RNase andDNase freeMQwater until the coverslips

came off, after which the slides were dipped in 70% ethanol.

After drying at 37�C, the glass slides were placed in ArrayIT

masks to enable separation of reagents for the six arrays per glass

slide.

The glass slides were kept in the masks for the following steps,

and removed for the wash preceding tissue removal.

The mRNA capture procedure

For each array surface, 70 mL containing 1� Exonuclease I

Reaction buffer [#B0293S; New England Biolabs (NEB); Ipswich]

and 0.19 mg/mL BSA (#B9000S; NEB) was added, followed by an

incubation time of 30 minutes at 37�C. After incubation, each

array was washed by pipetting 100 mL 0.1� SSC (#S6639; Sigma-

Aldrich), diluted in MQ RNase and DNase free water. For the

mRNA optimization assay, 70 mL of 0.1% pepsin (#P7000-25G;
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Sigma-Aldrich) dissolved in 0.1M HCl (#318965- 1000ML;

Sigma-Aldrich) was added to six optimization surfaces per sam-

ple. Incubations were performed at 37�C in duplicates for 10, 12,

and 14minutes. The same reagents and volumes were used in the

spatial arrays, but incubation timeswere based on results from the

optimization assay. After incubation, reagents were removed by

pipetting and the array surface was washed with 100 mL 0.1� SSC

as described above.

Reverse transcription, tissue removal, and material cleavage

Two different RT mixtures for were used for the optimiza-

tion- (in which fluorescent cDNA was to be generated) and

spatial arrays (intended for library preparation and sequenc-

ing). Both incubations were conducted with a total volume of

70 mL per array surface, overnight (ON) at 42�C for approxi-

mately 15 hours. The reaction mixture for the optimization

assay contained 1� first strand buffer (#18080-044; Invitro-

gen), 5 mmol/L DTT (#18080-044; Invitrogen), 0.19 mg/mL

BSA, 50 ng/mL Actinomycin D (#A1410-2MG; Sigma-Aldrich),

1% DMSO (#472301-500ML; Sigma-Aldrich), 20 U/mL Super-

script III (#18080-04; Invitrogen), 2 U/mL RNaseOUT (#10777-

019; Invitrogen), 500 mmol/L each of dATP, dGTP, and dTTP,

12.5 mmol/L of dCTP, and 25 mmol/L of Cyanine 3-dCTP

(#NEL576001EA; PerkinElmer). The same reagents were used

for the spatial arrays, except that each dNTP (#R0192; Fisher

Scientific) was present at the same concentration of 500 mmol/L

and that Cyanine 3-dCTP was excluded.

Residues of melanoma tissue were degraded and removed in

two steps. Each array surface was first incubated with 70 mL of

b-mercaptoethanol (#444203; Calbiochem) in RLT buffer

(#79216; Qiagen) at a 1:100 ratio, at 56�C for 1.5 hours, with

continuous shaking, which was followed by washing with 100

mL 0.1� SSC as described above. In the second step, each array

surface was incubated with 70 mL of Proteinase K (#19131;

Qiagen) in PKD buffer (#1034963; Qiagen, pH 7.5) at a 1:7

ratio, at 56�C for 1 hour, with interval shaking. The glass slides

were released from the masks and washed in three steps by

submerging them in beakers containing: 2� SSC with 0.1%

SDS (#71736-100ML; Sigma-Aldrich), 0.2� SSC, and 0.1�

SSC, respectively. All washing steps were performed in a ther-

momixer with continuous shaking; the first at 50�C for 10

minutes, and the remaining two at room temperature for 1

minute each.

All of the glass slides were spin-dried, after which, the optimi-

zation arrays were subjected to fluorescent scanning whereas the

spatial arrays were put back into the masks for cleavage of the

mRNA:cDNA material.

Spatial library preparation and sequencing

The barcoded mRNA/cDNA material was cleaved off from the

arrays and sequencing libraries were prepared in solution. Briefly,

second-strand cDNA was synthesized, followed by in vitro tran-

scription and adapter ligation. Sequencing handles and indexes

were added in a PCR, and thefinished libraries were sequenced on

the Illumina NextSeq platform with paired-end sequencing, 31

bases from read 1 and 121 from read 2. The protocol is described

in detail in Sta
�

hl and colleagues (22)

Image alignment

Spot visualization and image alignment were both performed

as previously described by Sta
�

hl and colleagues (22).

Read alignment and generation of count data

Sequencing data were processed using the ST pipeline, with

standard settings, as described by Fern�andez and colleagues

(27). In short, read 2 was mapped against the human genome

(GRCh38) and read 1 was used for UMI filtering and spatial

information. The ST pipeline generated one matrix (.tsv-file)

per sample containing gene counts per spatial barcode (i.e.,

tissue domain) as the output. Data points for complexity curves

were generated using a built-in function of the ST pipeline (27).

Annotation reads were subsampled before proceeding to UMI-

filtering for each subsample, resulting in a computed number

of unique molecules for a stepwise increasing number of

annotated reads. The resulting data points were plotted in

RStudio, version 0.99.903, The R Project for Statistical Com-

puting, Vienna, Austria.

Correlation of biological replicates

The count data were normalized by log2-transformation of

counts permillion (CPM)þ1 pseudocount, and scatterplots were

generated for each pair of consecutive section using the ggplot2

package (28) in RStudio (version 1.1.453). The built-in stats

package was used to compute Pearson correlations.

Principal component analysis and hierarchical clustering of

"bulk" data

Matrix data from the ST pipeline were imported into RStudio

(version 0.99.903) and count data from all spatial IDs (tissue

domains) within a dataset were merged. Read counts were nor-

malizedwithDESeq2 (29), a principal component analysis (PCA)

plot was generated with ggplot2 (28), and hierarchical clustering

was performed with pheatmap (30).

Factor analysis

Count data generated from the STpipelinewere analyzedwith a

factor analysis method previously described by Berglund, Maas-

kola, Schultz and colleagues (31). Four out of 20 generated factors

were named and classified according the manual histopatholog-

ical annotation.

PCA of individual tissue sections

The matrix with count data generated from the ST pipeline was

imported into RStudio (version 0.99.903) and filtered by remov-

ing all tissue domains with less than 500 genes. The data were

normalized using the scran package (32). Variance calculations

and PCA were conducted using built-in functions.

Results

Overview of subjects

This study included samples from lymph node metastases

from four patients with stage IIIc melanoma (Table 1). All but

one sample were BRAFv600 positive and one patient was a

long-term survivor according to the outcome classification by

Johansson and colleagues (>60 months; Table 1; ref. 25). The

RNA quality control prior to the ST analysis showed RNA

integrity numbers (RIN) between 6.2 and 7.4 (Table 1). A

manual histologic annotation, performed by a trained pathol-

ogist, identified areas of tumor cells (i.e., melanoma), stroma,

and lymphoid within the metastases (Supplementary Fig. S1).

The annotations were used for comparison with results from

the ST gene expression analyses.

Thrane et al.
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Procedure for spatial analysis of lymph node metastases

The two-dimensional gene expression analysis provided by the

ST procedure was based on fresh frozen tissue sections from the

four tumor biopsies (denoted 1–4; Fig. 1). Briefly, the sections

were placed on glass slides containing RT-primers arrayed as spots

that corresponded to tissue domains comprising between 5 and

40 cells. The histologic sections were stained with H&E and

imaged before the cells were permeabilized and the mRNA was

captured. The RT-primers at each spot had a unique spatial ID

barcode, which was sequenced along with the transcript to enable

trace-back to a specific tissue domain. After the release of cDNA:

mRNA, library construction, and sequencing, the transcriptome-

wide data were decomposed into factors (31) and the gene

expression profiles were visualized using t-distributed stochastic

neighbor embedding (t-SNE; Fig. 1; ref. 33).

An optimization assay employing arrays coated with polyA-

capturing RT-primers followed by RT with fluorescently

labeled nucleotides was performed to determine the optimal

time for melanoma tissue permeabilization (Supplementary

Fig. S2A and S2B).

Generating spatially resolved transcriptomic data from

melanoma lymph node metastases

Barcoded arrays were used to generate spatially resolved tran-

scriptomic sequence libraries. An average of 286 tissue domains

per section were analyzed, and a total of over 2,200 domains were

Table 1. Clinical dataa

Tumor sample Gender BRAF status NRAS status CDKN2A status Survival
b

RIN value

1 Male mut wt hd 10þ years 6.2

2 Female wt wt hd 401 days 7.1

3 Male mut wt wt 208 days 7.4

4 Male mut wt wt 305 days 6.9

NOTE: Overview of clinical and genetic data, including RNA quality (RIN value), for each of the tumor samples from patients with stage IIIc melanoma.

Abbreviations: hd, hemizygous deletion; mut, mutated; wt, wild type.
aAll data except for the RIN value was generated prior to this study.
bOverall survival from the diagnosis of stage III melanoma.

Figure 1.

Spatial transcriptomics overview. Schematic overview of the STs technology, along with the downstream analysis. The barcoded microarrays contained

1,007 printed spots of RT-primers with unique barcode sequences. Each spot had a diameter of 100 mm, thus corresponding to a tissue domain.

The center-to-center distance was 200 mm.
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investigated in this study. After data processing and UMI filtering,

each tissue section was represented by between 1.4 and 4.2

million unique molecules (transcripts), or an average of nearly

3,000 transcripts per tissue domain (Supplementary Table S3A).

All libraries were sequenced at a depth close to saturation (Sup-

plementary Fig. S3B). Scatterplots for each pair of biological

replicates and calculated Pearson correlations are included in

Supplementary Fig. S3C.

We first explored the transcriptomic data as an in silico bulk

sample and thereby mimicking bulk RNA-seq data, by merging

gene expression data from all of the tissue domainswithin a tissue

section. To achieve an overview of the metastases, the eight

datasets (two sections from each metastasis) from the four dif-

ferent biopsies were analyzed with PCA (Fig. 2A; Supplementary

Fig. S4). The fourmetastaseswere clearly separated in thePCAplot

whereas each pair of tissue sections from the same tumor showed

low variance. To further investigate the merged datasets, hierar-

chical clustering was performed for the 50 most variable genes

(Fig. 2B).

Visualizing gene expression in 2,200 tissue domains by factor

analysis and t-SNE

The spatial information provided by the barcoded arrays was

then included in the analysis to visualize the tissue context of gene

expression and increase the granularity of the analysis. The gene

expression data of all 2,200 tissue domains from the four pairs of

melanoma sections were subjected to a factor analysis method

that had earlier been used to explore tumor heterogeneity in

prostate cancer (31). In short, unsupervised dimensionality

reduction was used to decompose the data into 20 factors

describing gene expression profiles, which were then organized

as spatial factor activity maps for the tissue domains. The prin-

ciples of factor analysis as well as factor contributions are illus-

trated in Supplementary Fig. S5A to S5C. In several cases, a factor's

activitymap showed a clear link to the histologic patterns noted in

the metastases. By using the manual histopathologic annotation

as a reference, these factorswere classified andnamed accordingly.

Gene expression profiles showing the relative contribution of

genes to a specific factor are listed in Supplementary Fig. S6.

To achieve an overview of all gene expression profiles across the

tissue sections, the 20 factors were further decomposed into a

color scale, and each tissue domain assigned a color based on

factor activity (Supplementary Fig. S7; ref. 31). Areas of a similar

color thus share similar gene expression profiles, and each pair of

tumor sections shared certain regions having the same color.

Most of the areas (colors) were shared between tumor section

pairs across the four studied metastases.

In general, this analysis demonstrated extensive heterogeneity

between the four differentmetastases, which confirmed the initial

PCA and hierarchical clustering analyses described above.

The tumor sections were examined in further detail to explore

gene expression profiles in relation to the manually annotated

areas of melanoma, stroma, and lymphoid tissue. All of these

regions, especially those associated with melanoma, showed

highly diverse gene expression across biopsies. For example, the

t-SNE results for biopsy 1 demonstrated a distinct delineation

between the melanoma, stromal and lymphoid tissue regions,

with the tumor region represented by a single color (Fig. 3A and

Figure 2.

Analysis of in silico bulk data. Data

from all spots (tissue domains)

within a section was merged to mimic

bulk RNA-seq data. A, PCA of all

sections (variance per component is

shown in Supplementary Fig. S4). B,

Hierarchical clustering of the

50 most variable genes.
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B). In contrast, tumor cells in biopsy 2 were characterized by

extensive heterogeneity within the melanoma area, which indi-

cates the presence of several distinct expression profiles (Fig. 3A

and B). Notably, the "monoclonal" biopsy 1 was from a patient

classified as a long-term survivorwhereas themore heterogeneous

biopsy 2 was from a patient facing short-term survival.

Two factors showed recurrent activity across biopsies in areas

manually annotated as melanoma (Fig. 3C). One of the factors,

referred to as Melanoma-A (A representing one of twomelanoma

tumor profiles identified) mainly included CD63 and PMEL

overexpression whereas the other, Melanoma-B, showed height-

ened expression of S100B and FTH1, among others. The top five

genes of these factors, according to detected mRNA transcript

amounts, are listed in Fig. 3D, and the complete gene expression

profiles are shown in Supplementary Fig. S6. Melanoma-A was

prevalent in regions annotated as melanoma in biopsy 1, but not

as noticeable in biopsies 2 and 4 (Supplementary Figs. S1 and S8).

Melanoma-A and Melanoma-B had an overlapping pattern in

biopsy 2 (Supplementary Fig. S8). This overlapping profile across

biopsies was not visible in the color scale generated by t-SNE of all

factors, which emphasizes the increased granularity that examin-

ing the factors individually can provide (Supplementary Fig. S8).

Melanoma-B was clearly present in biopsy 4, but was not iden-

tified for biopsy 1. The two factors (Melanoma-A and -B) coexisted

in the tumor areas of biopsies 2 and 4 (Supplementary Fig. S8).

The lymphoid factor, corresponding to lymphoid tissue

(Fig. 3C and E), was evident in biopsies 1 and 2 (Supplementary

Fig. S8), and was also revealed in the t-SNE analysis (Fig. 3B;

Supplementary Fig. S7). The other two biopsies (3 and 4) did not

contain any lymphoid tissue based on the manual and compu-

tational annotations.

A visualization of gene expression in the TME

According to the manual annotation, biopsy 1 had regions

of lymphoid tissue that were both in close proximity to, and at

a distance from, the tumor area; therefore, this biopsy was

chosen for further studies concerning how the TME affects

gene expression. The initial factor analysis identified a transi-

tion area (Supplementary Figs. S6 and S8), which showed high

expression of FTL, B2M, APOE, and HLA-associated genes

(HLA A-C).

We performed a PCA using the gene expression data obtained

from all tissue domains (284 spots) of biopsy 1 to provide amore

detailed analysis of spatial gene expression (Fig. 4A and B). The

result showed four clusters that strongly reflected the histological

areas annotated by the pathologist. The tissue domains within the

melanoma area shared common gene expression profiles that

differed from the expression profiles dominating in distant lym-

phoid regions (Fig. 4B and C). This result confirms the previous

factor analysis.

The tissue domains corresponding to lymphoid regions in close

proximity to the melanoma area were grouped in a separate PCA

cluster than lymphoid regions further away from the tumor

(Fig. 4B and C). This clearly demonstrates that multiple gene

Figure 3.

Tumor morphology and results from factor analysis. A, H&E-stained tissue images of biopsy 1 (top) and 2 (bottom) with marked melanoma (black), stromal (red),

and lymphoid (yellow) tissue regions. B, t-SNE color visualization of gene expression, summarizing gene expression profiles from the factor analysis.

C, Spatial activity maps of factors Melanoma-A, Melanoma-B, and Lymphoid. D, A representation of the most abundant genes in factors Melanoma-A and

Melanoma-B. E, Magnified images of areas manually annotated as lymphoid tissue and melanoma, respectively.
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expression programs, which are possibly influenced by distance

from tumor cells, exist within lymphoid tissue. Four of the major

genes contributing to the cluster separations (Fig. 4D) are dis-

played in Fig. 4E as spatial heat maps. PMEL is clearly exclusive to

melanoma areas, whereas SPP1 was detected in a slightly larger

area that also covers the lymphoid tissue in close proximity to the

tumor cells. The factor analysis described above included both of

these genes in Melanoma-A, a factor that was clearly prevalent in

the tumor area of biopsy 1. In areas manually annotated as

lymphoid tissue, CD74 was primarily detected at a distance from

the melanoma area whereas IGLL5 was more prevalent closer to

the tumor cells.

Discussion

In this exploratory study of the applications of ST technology to

melanoma research, we demonstrate intra- and intertumoral gene

expression heterogeneity in lymph node metastases using in situ

transcriptome-wide methodology. The analysis of spatial RNA

sequencing information from over 2,200 tissue domains, when

comparedwith single bulk analysis of tumors, provides numerous

avenues for analysis using unsupervised machine learning

approaches and is particularly robust in revealing spatial trends

in gene expression. Overall, we could confirm matches between

histological entities and gene expression profiles, but the tested

approach revealed a significantly more complex transcriptional

landscape than what can be observed from a histopathologic

analysis.

The routine investigation ofmelanoma andmetastasis biopsies

relies on a pathologist's manual evaluation in combination with

molecular analyses and IHC, which are especially important

before starting targeted therapies or administering checkpoint

inhibitors. To date, there are no tools in clinical use that allow

healthcare professionals to analyze or follow genetically hetero-

geneous tumor clones in relation to melanoma progression

or treatment outcome. By using unsupervised factor analysis, we

not only confirmed both malignant and nonmalignant tissue

areas, but also identified various expression "clones" within

the metastases and delineated location-dependent expression

patterns in lymphoid tissue.
A number of technologies have been introduced in the last

years to spatially detect RNA and proteins in histologic sections

(34–37), and multiplexed immunofluorescence (IF) has

improved IHC by enabling simultaneous detection of multiple

antigen markers (34).The CO-Detection by indexing (CODEX)

approach utilizes antibodies tagged with oligonucleotide

indexes that are decoded by iterative fluorescence labeling and

scanning. In a preprint by Goltsev and colleagues 66 antigens

were detected in fresh frozen tissue using the CODEX technol-

ogy (35). Imaging Mass Cytometry allows for detection of up to

40 target proteins at a resolution of 1 mm, which can be

increased at the expense of reduced sensitivity (36). Compared

with ST, IF approaches typically provide a higher degree of

spatial resolution, but with a limited number of antigen mar-

kers, and thereby enable a powerful complement for in-depth

studies. The digital spatial profiling (DSP) by Nanostring was

recently used in a study by Ziai and colleagues to spatially

detect 29 proteins and 39 RNA species in regions of interest

(ROI) from lung cancer tissue (37). In addition to spatial

approaches, RNA-seq is comparable to ST by also providing

Figure 4.

PCA on an individual section and spatial heatmaps. A, H&E-stained tissue image with pathologic annotation. B and C, PCA conducted on tissue domains

resulted in four clusters. Using the pathologic annotation as reference, cluster 1 corresponds to stromal or lymphoid tissue surrounding the melanoma areas,

whereas cluster 2 clearly represents the melanoma region. Cluster 3 includes tissue domains in the border area between the lymphoid and tumor tissues,

likely containing a mixture of cells from these two tissue types. Cluster 4 represents lymphoid tissue physically separated from the cancer region—a

separation also revealed by the PCA plot. D, Mean expression of the 25 genes with highest variance across tissue domains. Dashed red line shows the

average value across all features. E, Four genes that showed both high variance and mean expression were selected for visualization as spatial heatmaps.
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unbiased, transcriptome-wide data. Sta
�

hl and colleagues (22)

evaluated the performance of ST by comparing in silico RNA-seq

libraries from spatial data with libraries prepared in solution

from extracted and fragmented total RNA frommouse olfactory

bulb. They found 0.89% of the genes to be shared, whereas

0.053%, and 0.052% were exclusive to the RNA-seq, and

the spatial library, respectively. In total nearly 18,000 genes

were detected and the two libraries showed a Pearson correla-

tion of r ¼ 0.94.
Although the PCAperformedon in silicobulk samples indicated

low variance between the two consecutive sections of each tumor

sample, the spatial t-SNE (but not PCA) visualization suggested

heterogeneity, particularly in sample 4. This fact did not appear to

affect the results of the factor analysis, as we still found the same

factors being active in the two replicates, indicating quite subtle

differences between consecutive sections. The scatterplot of the

biological replicates also showed an even representation of highly

and lowly expressed genes, with a Pearson correlation of 0.86. The

reproducibility of ST has previously been evaluated on more

homogenous nontumor tissue (mouse olfactory bulb), showing

a Pearson correlation r ¼ 0.97 between two consecutive

sections (22).

The signatures of factors Melanoma-A and -B included both

cancer- and immune-associated genes that are most likely

active in the tumor area. For example, CD63, which showed

increased expression in Melanoma-A, may act either as a tumor

suppressor or participate in cell signaling and aniokis resis-

tance through the PI3K signaling pathway independently of

Akt phosphorylation (38). Interestingly, Biopsy 1 from a long-

term survivor demonstrated a homogenous expression pattern

in the melanoma cell area as compared to the corresponding

region in Biopsy 2 from a short-term survivor. This could

represent a picture of tumor clonal heterogeneity but it may

also be related to phenotypic switching, which occurs in

melanoma through epithelial–mesenchymal transition (EMT;

ref. 39). Many pathways play a role in EMT, including RAS/

RAF/MEK/ERK, PI3K/AKT/mTOR, Wnt/b-catenin as well as

downstream effectors of these pathways, which induce EMT

expression transcription factors. For example, among the gene

expression profiles in our report showing a large contribution

of genes related to a specific factor, RTK-genes, such as ERBB3,

were represented. Phenotypic switching is critical in melanoma

through melanocyte lineage differentiation during tumor pro-

gression and in response to treatment, for example, BRAF- and

MEK-inhibiting therapy (40, 41). The ST technology may be

applied to guide microdissection of defined sections to address

this in future.
The gene expression profile of the lymphoid factor involved

HLA genes and CD74, the latter of which has been shown to be

associated with favorable recurrence-free survival and overall

survival in stage III melanoma (42). The expression of HLA genes

is essential for immune-mediated regression of metastases, with

certain HLA variants causing resistance to immune therapy

(43–44). There may thus be a link between HLA genotype and

the immunoediting of oncogenes and tumor suppressors (45).

IFNg or TIS signatures describedbyAyers and colleagues (46)were

not found in the factor analysis. As indicated by the manual

pathologic annotation, lymphoid areas were only present in two

of the metastases. Therefore, a possible explanation is that T cell

activation is present in too few of the 2,200 tissue domains for the

signature to represent one of the 20 factors generated in our

analyses. However, when examining the signature genes in the

spatial data of oneof the tumorswith lymphoid tissue, the IFNg or

TIS signatures were expressed particularly within the transition

area described below (count matrixes for exploring genes / gene

signatures of interest are available at http://www.spatialtranscrip

tomicsresearch.org/).

The expression of HLA genes was also found in the factor we

classified as the transition area, which corresponds to regions

between the melanoma and lymphoid areas that could not

be manually defined. Further examination of this transition

area could provide more information regarding tumor hetero-

geneity and resistance mechanisms in melanoma. Tirosh

and colleagues (13) analyzed the transcriptional heterogeneity

in melanoma, including lymph node metastases, by scRNA-seq,

and concluded that the TME is shaped by spatial, functional,

and genomic heterogeneity of melanoma as well as the asso-

ciated tumor components. They also found that genes

expressed by cancer-associated fibroblasts seem to affect the

proportion of T-cells in the melanoma lymph node metastases.

We can only speculate about whether the genetically defined

transition areas in the TME identified through our approach

host cancer-derived factors that interact with immune cells

similarly as what has been described for stromal-derived cells

in melanoma and situations of immune cell abundance. In the

present report, the most abundantly expressed genes in the

transition area were FTL, B2M, APOE and HLA-associated genes

(HLA A-C). These genes have been linked with tumor growth

regulation through the GADD45/JNK pathway in other cancers

such as in glioblastomas (FTL; ref. 47), along with loss of

immunogenicity and acquired resistance to PD-1 blockade in

patients with melanoma through defects in the pathways

involved in interferon-receptor signaling, such as B2M, and in

antigen presentation (43, 44, 48).

For validation, we performed a joint analysis of our data and a

public available dataset from Tirosh and colleagues (13). In

summary, the single-cell RNA-seq data confirmed the extensive

heterogeneity across patients that was also found in the spatial

data. Interestingly however, patient-specific signatures from the

single-cell data could be detected in specific regions of the

metastases.

Our findings that cell–cell interactions in the TME may

support tumor progression and influence therapy response

warranted further analyses. We therefore performed individual

analyses of tissue sections to visualize the TME using principle

component analysis. This approach identified multiple gene

expression programs in lymphoid tissue that might depend

on distance from the tumor cell clusters. Notably, genes such as

PMEL and SPP1 were overexpressed in the tumor cell cluster

whereas lymphoid tissue regions far away from, and in close

proximity to, the tumor cell areas were characterized by expres-

sion of the immune-related genes CD74 and IGLL5, respective-

ly. The transition area could only be clearly identified in one

out of the four tumors analyzed in this study and more samples

would be required for a deeper understanding of the TME in

this region.

In conclusion, the spatial information added to transcriptomic

analyses has revealed amore detailed portrait of the heterogeneity

among melanoma metastases. The presented results should

motivate researchers to integrate the spatial component into

analyses of the multiple factors underlying tumor progression

and therapy outcome.
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