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Abstract

We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of 12CO(1–0) and 12CO(2–1) in
the central 40″ (680 pc) of the nuclear starburst galaxy NGC 253, including its molecular outflow. We measure the
ratio of brightness temperature for CO(2–1)/CO(1–0), r21, in the central starburst and outflow-related features. We
discuss how r21 can be used to constrain the optical depth of the CO emission, which impacts the inferred mass of
the outflow and consequently the molecular mass outflow rate. We find r211 throughout, consistent with a
majority of the CO emission being optically thick in the outflow, as it is in the starburst. This suggests that the
molecular outflow mass is 3–6 times larger than the lower limit reported for optically thin CO emission from warm
molecular gas. The implied molecular mass outflow rate is 25–50Me yr−1, assuming that the conversion factor for
the outflowing gas is similar to our best estimates for the bulk of the starburst. This is a factor of 9–19 times larger
than the star formation rate in NGC 253. We see tentative evidence for an extended, diffuse CO(2–1) component.

Key words: astrochemistry – galaxies: ISM – galaxies: individual (NGC 253) – ISM: jets and outflows – molecular
processes – opacity

1. Introduction

Galactic-scale outflows/winds play a crucial role in galaxy
evolution. They have been theoretically predicted to suppress
and quench star formation (e.g., Dekel & Silk 1986; Barai
et al. 2013; Muratov et al. 2015; Keller et al. 2016; Krumholz
et al. 2017; Su et al. 2017), potentially enrich the intergalactic
medium (IGM) (Oppenheimer et al. 2010), and possibly lead to
the observed rarity of star-forming massive galaxies in the local
universe (e.g., Somerville et al. 2008). The importance of
outflows stems from their mass loss, and the impact it has on
the later evolution of the galaxy. The mass outflow rate is
especially important for the molecular phase, which has the
potential to dominate the mass loss (e.g., Leroy et al. 2015c),
and it is also closely related to star formation. If molecular gas
is ejected in large quantities, it will not be available to fuel
future star formation. Only recently, with new millimeter and
submillimeter arrays, such as the Atacama Large Millimeter/
submillimeter Array (ALMA), it has become feasible to study
the molecular phase of these outflows in detail.

Molecular gas is most easily traced using bright CO lines
observed in the millimeter frequency regime. A standard
optical depth tracer is 12CO/13CO. However, 13CO is difficult
to detect in relatively faint outflow features. Alternatively, the
12CO(1–0) and 12CO(2–1) transitions13 can be used to

characterize the optical depth via the CO(2–1)/CO(1–0)
brightness temperature ratio, r21 (e.g., Knapp et al. 1980;
Eckart et al. 1990). While CO is generally optically thick, it
may be optically thin in turbulent regions or in regions with
high velocity dispersion in general such as winds or outflows.
Assuming the observed emission is from optically thick clouds

that are warm (Tkin20 K), and above the effective critical
density (n102–103 depending on optical depth), r21 should be
approximately unity. There are, however, certain caveats to this
approach, as r21 is also dependent on temperature and density.
These degeneracies can be broken with constraints on the
temperature and densities. We assume temperatures consistent
with appropriate estimates for conditions within the wind and
utilize previous work by Walter et al. (2017) to provide density
constraints. These constraints are provided in Section 3.2.
Because CO(2–1) has an inherently higher optical depth than

CO(1–0), in optically thin gas this ratio has a theoretical limit
of r21≈4—provided the gas is warm and its density is high
enough to be in Local Thermodynamic Equilibrium (LTE).
Temperature gradients, density effects on excitation, or the
presence of multiple gas components, however, can complicate
this picture. Nonetheless, within the typical temperature range
for molecular clouds the assumption that r21∼1 for optically
thick emission holds to first order (e.g., Eckart et al. 1990;
Leroy et al. 2009). This lends the primary motivation for the
work we present here: to determine whether or not the CO
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We use CO henceforth to refer to the main isotopologue 12CO.
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emission observed in the outflow of NGC 253 is optically thick.

To assess the optical depth within the outflow, r21 must be

measured in any extended outflow features.
There are few high-resolution studies of molecular outflows.

Starburst-driven molecular outflows have been observed in a

number of nearby galaxies, for example, M 82 (Walter et al.

2002; Leroy et al. 2015c), NGC 253 (Bolatto et al. 2013a;

Walter et al. 2017), NGC 1808 (Salak et al. 2016), and

ESO320-G030 (Pereira-Santaella et al. 2016). The mass-loss

rates in these outflows were found to be comparable to the star

formation rates of their host galaxies, although with uncertain-

ties due to the geometry and mass estimation. In particular,

there are large uncertainties associated with the molecular mass

to CO luminosity ratio, especially in an environment that is

very different from that of a galaxy disk (e.g., Bolatto et al.

2013b). Obtaining accurate mass outflow rates is key to assess

the full impact of galactic-scale molecular winds on the star

formation processes within their host galaxies.
At a distance of 3.5 Mpc (corresponding to 17.0 pc per

arcsec, Rekola et al. 2005), with a systemic velocity of

243 km s−1, NGC 253 is the nearest nuclear starburst galaxy in

the Southern sky, and it hosts a starburst-driven molecular

outflow well-suited for detailed study. This proximity, as well

as the nearly edge-on orientation (inclination i=78°) of

NGC 253, render it an ideal template for resolved studies of

multiphase winds. Bolatto et al. (2013a) found evidence for a

prominent molecular wind, with a total molecular mass outflow

rate of at least 3–9Me yr−1, amounting to 1–3 times the global

star formation rate of NGC 253. This estimate is a lower limit,

because its calculation assumed optically thin CO emission

from warm gas in the outflow.
Not much is known about the optical depth of the CO

emission in this environment. Meier et al. (2015) measure

CO(1–0)/C17O(1–0) ratios of �350 in the starbursting inner

disk of NGC253, indicating a typical value of τ=2–5 (for

their assumed 16O/17O isotopic ratio), corresponding to

moderate optical depth. Unfortunately, C17O emission is much

weaker than that of CO, so these measurements were not

possible in the outflow. Walter et al. (2017) find that some

outflow features, such as the SW Streamer, have clear

associated emission from high-dipole molecules (HCN,

HCO+, CS, and CN) commonly used to trace high-density

molecular gas. The presence of these molecular species

requires volume and surface densities that are hard to reconcile

with optically thin CO emission, and suggest instead a larger

mass for these features. There remains, however, the possibility

that the high-dipole molecule emission is excited not by

collisions with H2, but by electron collisions, depending on the

electron density in the outflowing gas (see also Goldsmith &

Kauffmann 2017). Given a sufficiently high abundance of

electrons, this mechanism could efficiently produce molecular

emission from high-dipole molecules even in low density and

low optical depth gas (see discussion in Walter et al. 2017). In

this work, we aim to assess the optical depth of the CO

emission in order to further constrain the molecular mass of the

outflow.
This paper is organized as follows: Section 2 presents the

observations, data reduction, and initial presentation of the

data. Our analysis and results are presented in Section 3,

followed by a discussion in Section 4. The final results are

summarized in Section 5.

2. Observations and Data Reduction

We use observations of the CO(1–0) and CO(2–1) line
emission in NGC253, obtained with ALMA using the mosaicing
mode. CO (1–0) data are from ALMA Cycles 0 and 1 (program
ID: ADS/JAO.ALMA#2011.1.00172.S, 2012.1.00108.S; PI:
Bolatto) with the 12 m array and ALMA Compact Array
(ACA), combined with Mopra observations to account for the
short-spacings (PI: J. Ott). CO (2–1) data are from ALMA Cycle
2 (programme ID: ADS/JAO.ALMA#2013.1.00191.S; PI:
Bolatto) and include a 14-pointing mosaic with the 12 m array
using Nyquist sampling, ACA, and Total Power (TP) data. The
center of the observed region is offset from the center of
NGC 253 in order to include the full extent of the southern
outflow.
Observing dates, times, and calibrators pertaining to the

CO(2–1) data presented here are listed in Table 1. Calibration
and processing of the CO(1–0) is described in Leroy et al.
(2015a). We use the same cube in this analysis and thus refer
the reader to that paper for a full description of the CO(1–0)
observations and data reduction.
Calibration of the CO(2–1) data was done using the

Common Astronomy Software Application (CASA). Initial
calibration used scripts provided by ALMA staff for the ACA
data and the ALMA pipeline for the 12 m data. CASA version
4.2.2 was used for the pipeline and initial imaging. The 12 m
and ACA data are of good quality and require minimal
additional flagging. A single iteration of phase-only self-
calibration using line-free channels, followed by another
iteration of phase and amplitude calibration of the 12 m data
improved image quality. The same approach was taken for the
self-calibration of the ACA data, but with the 12 m data used as
a model. The 12 m and ACA data were combined using
CONCAT followed by continuum subtraction using UVCONT-

SUB. Image cubes were created using Briggs weighting with a
robust parameter of 0.5 in order to optimize both the sensitivity

Table 1

Observational and Instrumental Parameters

Parameter Value

CO(1–0) see Leroy et al. (2015a)

CO(2–1)

Observation Dates—ACA 2014 Jun 28

Observation Dates—12 m Array 2014 Dec 28

Observation Dates—TP Array 2015 May 02

2015 Jul 16

2015 Aug 14

2015 Aug 16

2015 Aug 17

Number of Antennas ACA 10

Number of Antennas 12 m Array 36

Calibrators 12 m and ACA—Flux Uranus

Gain J0038-2459

Bandpass J2258-2758

Total Integration Time—ACA 0.5 hr

Total Integration Time—12 m Array 0.35 hr

Total Integration Time—TP Array 6.75 hr

Calibrator TP J0038+2459

Channel Spacing (final cubes) 5.0 km s−1

Beam Size (smoothed cubes) 1 9×1 4

32×24 pc

rms Noise (CO (1–0) smoothed cube) 2.5 mJy beam−1

(CO (2–1) smoothed cube) 2.2 mJy beam−1
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to diffuse gas and the resolution. To reduce sidelobes, a mask
was created using the interactive mode of CLEAN. This mask
was then used during a noninteractive CLEAN. A primary beam
correction was applied to the cubes prior to combining them
with TP data. The cubes were then combined with the TP data
using FEATHER with an SD factor of 1 to recover missing flux
(using CASA version 4.7.2).

The synthesized beam size of the original CO(2–1) cube is
1 7×1 0 with PA=80°.9 and the rms noise is 2.0mJy beam−1

over a 5 km s−1 channel. To maintain consistent spatial resolution
for our analysis, the final cubes are smoothed to 1 9×1 4, with
a PA of 78° in order to match the CO(1–0) cube.

3. Results and Analysis

We show the full resolution CO(2–1) data in Figure 1 There is
emission from an extended component that can be seen at a typical
level of �30σ (∼30mJy beam−1 over 30 km s−1, Figure 1) in all
channels between−180.5 and 170.5 km s−1 km s−1with respect to
the systemic velocity of 243 km s−1. We discuss the reality of this
emission in Section 3.4. Figure 2 shows a zeroth-moment map of
the CO(2–1) created with IMMOMENTS and including all emission
above a 2σ threshold in channels ranging from −208 to
222 km s−1 at 5 km s−1 velocity resolution. Prominent outflow
features can be seen throughout the data, with the most notable
being the so-called SW streamer (Walter et al. 2017) from
−60.5 km s−1 to 25.5 km s−1 (highlighted by the elongated ellipse
in Figure 1). This feature and its comparison to the main disk are
the primary focus of the analysis presented in this section.

3.1. Obtaining r21

To simplify the interpretation of the line ratios in physical
terms, we convert the observations from flux density to surface
brightness, expressed in Rayleigh–Jeans temperature units, and
perform the correction for the cosmic microwave background
(see, for example, Equation(6) in Bolatto et al. 2013b). To
obtain r21, we divide the CO(2–1) cube by a similarly corrected
CO(1–0) cube.

In order to avoid division by zero, the thresholds are initially
set at 20 mJy beam−1 in the CO(1–0) cube. After taking the
ratio of the CO(2–1) and CO(1–0) cubes, artificially high ratios
on the edges are eliminated by creating a mask, which is then
smoothed with a Gaussian using IMSMOOTH to a target
resolution of 2 0×1 5. (The smoothing is elliptical as
opposed to circular in order to preserve resolution of the
1 9×1 4 beam of the cubes. The orientation of the
smoothing Gaussian is the same as that of the cubes.) Emission
that falls within 70% of the peak of the smoothed mask is then
included in the final ratio cube. This threshold is somewhat
arbitrary, but is chosen because it excludes the border artifacts
while including as much emission associated with narrow
outflow features as possible. We then apply this final mask to
the ratio cube, which effectively eliminates any artificially high
border values.

3.2. Interpreting r21

There are a number of treatments of the basics of CO line
ratios in the literature (see, for example, Eckart et al. 1990), but
since this is at the core of the measurement we summarize the
main equations and results here. The observed flux density for a

 -J J 1 transition at frequency ν, nS
obs, is

= - -n
t

n n
-( )( ( ) ( )) ( )S e B T B T1 , 1J
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where T Jex, is the excitation temperature of the transition, Tcmb

is the temperature of the cosmic microwave background

(CMB), Bν is the Planck function, and τJ is the optical depth

of the transition. From this, we can compute that the observed

Rayleigh–Jeans brightness temperature for the same transition,

which for simplicity we will note below by its upper quantum

number as TJ, is
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where νJ is the frequency and the excitation temperature of the

transition, and h and k are the Planck and Boltzmann constants.

For rotational transitions νJ=Jν1. The CMB correction is

usually a small effect, that in terms of Rayleigh–Jeans

brightness temperature amounts to 0.84 and 0.20K at the

frequencies of the 1−0 and 2−1 transitions respectively.
If we ignore the small CMB correction in order to simplify

the equations, the ratio of brightness temperatures for two
consecutive transitions is
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For the low J transitions of CO and because of their low

effective critical densities we can assume LTE, that is, the

distribution of the population among energy levels will follow

the Boltzmann equation at the physical temperature of the

system. In that case, their excitation temperature will be simply

the kinetic temperature of the gas = =+T T TJ Jex, ex, 1 kin

(a somewhat more general assumption, thermalization, implies

= +T TJ Jex, ex, 1 and is equivalent for the calculations below).

Attaining LTE requires densities to be large, in principle larger

than the critical density of the highest transition: the critical

density for CO(1–0) is ncr≈2.2×103 cm−3 at T∼30K
(Yang et al. 2010), with a weak dependency on temperature

and a strong ∝J3 dependency on the upper level of the

transition. For optically thick lines, however, radiative trapping

increases the excitation resulting in lower effective critical

densities ∼ncr/τ. This implies that, in gas with moderate

optical depth, LTE-like conditions can be reached for

n∼103 cm−3. Moreover, because hν1/k=5.53 K, for emis-

sion arising from warm gas Tkin?hν/k for the low J

transitions of CO. In those conditions the last factor in

Equation (3) can be simplified to be ∼J/(J+ 1), canceling the

central factor. Therefore, we expect r21 ratios approaching

unity for optically thick (τ?1) emission arising in warm

(Tkin> 11 K), moderately dense (n> 103 cm−3) gas.
In the case of optically thin emission (τ=1), on the other

hand, the first factor in Equation (3) simplifies to be t t~ +J J1 .
The optical depth for the transition  -J J 1 is simply

t
p m

=
+
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where μ is the dipole moment, NJ is the column density in the

upper level of the transition, and Δv is the velocity dispersion.
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Thus, if the two transitions arise from the same parcel of gas

(and therefore have the same velocity dispersion), Equation (3)

is reduced to

»
++ - n+
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1
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implying that in warm gas, r21 can be as high as 4. Note that the

ratio of optical depths for thermalized emission from “warm”

gas is simply

t
t

»
++
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⎛
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⎠
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J

J

1
, 6

J

J

1
2

Figure 1. Channel maps showing the CO(2–1) cube at the original (1 7×1 0) resolution. Channels are integrated over 30 km s−1 as opposed to the original km s−1

widths. Velocities are given with respect to the systemic velocity. The color scale is deliberately set to enhance both low-level outflow features and the ∼15σ faint
component extending �20″ above the midplane. Black 3σ and dashed gray −3σ contours are shown. The maximum signal is 3.6 Jy beam−1, yielding a signal-to-noise
ratio of 4400. The elongated ellipse marks the SW streamer (Walter et al. 2017), while the circles indicate select features related to the outflow, including emission at
velocities not corresponding to rotation, and bubbles or shells. The emission to the southeast (bottom left, −90.5 to +110.5 km s−1) is from a spiral arm. The beam is
shown in the bottom left panel. The CO(1–0) cube is presented in Leroy et al. (2015c).
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implying that the optical depth grows faster for the higher

transition than for the lower one.
In the presence of temperature gradients, the r21 ratio may be

somewhat larger than unity even for optically thick emission,
but it is extremely unlikely to reach as high a value as in warm,

optically thin gas. Ratios less than unity, r21<1, can also be
caused by temperature gradients, or alternatively for subther-
mal excitation (i.e., Tex< Tkin). The latter is very unlikey in

NGC253, particularly in its central starbursting regions.
Because of Equation (6), optically thick emission arising from
regions with temperature gradients where the temperature is

increasing into the emitting cloud, are a more likely
explanation for r21<1.

3.3. Measurements in NGC 253

We measure r21 in selected regions in NGC 253 over a
1 9×1 4 aperture in all cases. We make this measurement in
the regions marked 1–10 from Leroy et al. (2015b). We also

measure r21 along the SW streamer (labeled as SWS 1–3) and
in five additional features with kinematics and morphology
consistent with outflowing gas (labeled OF 1–5). The locations

of these figures are shown in Figure 2.
We are particularly interested in obtaining a measure of r21 at

the velocities where the emission peaks. This maximizes the

SNR of the measurement, and focuses it on the spectral range
that contributes the most to the emission. Thus, for the selected

regions, we measure the ratio of CO(1–0) and CO(2–1)
brightness temperatures over custom 30 km s−1 velocity
ranges. These ranges encompass both the CO(1–0) and

CO(2–1) peak values in most regions. There are some
exceptions, outlined below. These spectral ranges are shown
as shaded gray regions in Figures 4–6.

The peaks in regions 5 and 6 are less distinct than in other
regions. Furthermore, both of these regions show some
variation in r21. For region 5, we have selected the velocity
range over which to measure r21 to fall within the approximate
center of the flattened broader emission peak. For region 6, we
select a spectral range that contains the peak of the CO(2–1)
emission, as well as a local maximum for the CO(1–0)
emission.
In the SW streamer, there are two distinct spectral features:

one (toward negative velocities) is associated with the
outflowing gas, while the other (toward positive velocities)
corresponds to gas that is in the background of the streamer,
participating in the rotation of the disk of NGC 253. Our
measurements of r21 are in the spectral feature corresponding to
the outflowing gas.
Using this procedure, we find that the r21 ratio takes values

between 0.5 and 1.0. In particular, we do not measure values of
r21 that would be indicative of optically thin emission in the
SW streamer. We present these values in Table 2 and discuss
the effects of spatial filtering in Section 3.4.
The ratio r21 is significantly less than unity in locations

corresponding to regions 1 and 2 (Figure 3). The CO(2–1) and
CO(1–0) spectra in these regions are very similar, but have
different amplitudes (Figure 4). Their similar kinematics
indicate that the emission from each is likely cospatial.
Pointing 2 is near the base of an outflow bubble that has burst
in the NW direction (best seen at 55.5 km s−1 in Figure 1 near
the NW edge of the map and in the faint emission of Figure 2).
At 110.5 km s−1 in Figure 1, it can be seen that pointing 1 is
near a relatively faint, diffuse feature that extends above the
disk such that it is parallel to the SW Streamer, although not
coincident.

3.4. Flux Recovery

The degree to which we recover extended emission can have
an important impact on the measured line ratios. Our
interferometric maps include ACA and single dish, so we
expect them to do a good job of recovering emission on all
spatial scales. In order to assess how well we are doing, we
compare the ALMA data with single-dish observations in the
literature. We smooth the cubes using IMSMOOTH to a 23″
FWHM beam size in order to match the resolution presented in
Mauersberger et al. (1996) and Harrison et al. (1999). After
smoothing, we convert frommJy beam−1 to K. We then create
integrated intensity maps over the full velocity range of the
emission −201–229 km s−1 and compare the integrated fluxes
with those provided in Harrison et al. (1999) over the same
region. Our total CO(1–0) flux is 650 K km s−1. This value is
∼72% of the single-dish value presented in Mauersberger et al.
(1996) using the Institut de Radioastronomie Millimétrique
(IRAM) 30 m telescope. The flux we measure for CO(2–1) is
840 K km s−1, which is 79% of the flux listed in Harrison et al.
(1999), derived from James Clerk Maxwell Telescope (JCMT)

observations, and is slightly higher than the value reported by
Mauersberger et al. (1996) using the IRAM 30 m telescope.
Based on this we conclude that our fluxes measured within the
same 23″ aperture and at 23″ resolution are very comparable to
previous measurements of NGC 253, since uncertainties at the
level of 20% and larger are not uncommon.
To further assess the impact of the uncertainties associated

with the combination of single-dish and interferometer data on
r21, we compare line ratios obtained from maps that have

Figure 2. Integrated intensity map of the CO(2–1) at a 1 9×1 4 resolution.
The map is created integrating all emission over a 2σ threshold
(4.4 mJy beam−1 in a 5 km s−1 channel), for channels from −208 to
222 km s−1. The ellipses are the same as those in Figure 1. The labeled points
correspond to the locations of spectra shown in Figures 4–6.
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single-dish total power information included, and maps that do

not have it. The results are presented in the sixth column of

Table 2. The absence of short-spacing corrections typically

affect the ratios by <10%, although the effect can be as large as

50% in the most extreme case. Note that including the short-

spacing correction in principle improves the accuracy of the

flux measurement, therefore the r21 values that include them in

the fourth column should be the ones used.
Imperfect recovery of the large spatial scales usually

manifests itself in a number of artifacts in the map, particularly

the presence of a negative depression (a “bowl”) surrounding

the bright emission that is due to the attenuation of the large

spatial scales. Similar artifacts can also be present due to

imperfect deconvolution (cleaning) of the interferometric

images. As can be seen in Figure 4, regions 1–10 do not show

substantial negative ranges in their spectra, suggesting that this

is not affecting the values of r21 measured for the bright

emission. This can be more of a concern for measurements of

r21 in faint emission near bright emission. Regions in the SW

streamer (Figure 5) show some velocity ranges with negative

values. Note, however, that this tends to affect mostly the CO

(1–0) spectra. However, these velocity ranges are not included
in our r21 measurements.
It should be noted that some of the regions are near the edge

of the map. Consequently, they may suffer from poor flux
recovery. In particular, this issue likely affects regions 1 and 2,
as well as OF 3–5 in Table 1. In these cases r21 could be
artificially low.

3.5. The Extended CO(2–1) Component

As Figure 1 shows, there is widespread faint, extended
emission on scales of ∼20″ (340 pc) surrounding the bright
regions, with typical intensities of (∼20–85 mJy beam−1. This
component is mostly due to the combination of the total power
(single-dish) data with the interferometric observations.
The question is whether this widespread emission is real, or a

feature introduced in the combination: given that the peak flux
of the central regions of NGC 253 is a few Janskys per beam,
the extended emission could be due to imperfections in the
single-dish map at the level of a few percent, or possibly an
error in the relative amplitude calibration of the single-dish and
interferometric data. We have tried to reduce the chance of

Figure 3. r21 ratio maps of NGC 253. The masking procedure described at the beginning of Section 3 has been applied. The black contour is unity. Annotations are as
in Figure 1.
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introducing artifacts when combining single-dish and inter-
ferometric data. We started by flagging ∼20% of the total-
power data showing possible baseline problems that may
require high-order polynomial fits. Following flagging, we did
the baseline removal by fitting channels free of emission (i.e.,
channels with absolute velocities between −300 and
−10 km s−1 and from 500 to 700 km s−1), with a first-order
polynomial. Proceeding in this manner removed a fraction of
the extended component present in our original combination
using the total-power data as delivered, but did not remove
all the extended emission. The remaining extended emission
is roughly contained between approximately −100 and
170 km s−1 with respect to the systemic velocity. It is possible
that there is a relative amplitude calibration error, but it would
have to be large to explain the observation.

In terms of its impact on the r21 values we discuss, the
extended component is relatively unimportant. It has a peak
brightness of 150 mJy beam−1, with typical values of
40 mJy beam−1, and is spread throughout a 40″ region
surrounding the main disk. In most cases, because we measure
r21 over a narrow spectral range including the emission peaks,
the extended component contributes at or less than a few
percent to the CO(2–1) value, and consequently, a negligible
amount to r21.
Ultimately, we are unable to demonstrate that the extended

emission is an artifact. We thus tentatively propose that it is a
real feature, with some degree of skepticism, and discuss its
properties further in Section 4.3.
We see no indication of an analogous component in the

existing CO(1–0) data. However, the imperfect zero-spacing

Figure 4. Spectra extracted from unmasked cubes corresponding to points 1–10 from Figure 2. TJ is the Rayleigh–Jeans brightness temperature as defined at the
beginning of Section 3. Solid lines represent spectra that include short-spacing corrections from either the Mopra or the TP array. Dashed lines represent the same
spectra, but without short-spacing corrections. The shaded gray regions represent the velocity range over which r21 measurements are taken.

7

The Astrophysical Journal, 867:111 (12pp), 2018 November 10 Zschaechner et al.



correction, as indicated by the slight negatives surrounding the
brightest emission in those data, may make the detection of an
extended component difficult. Where present, the negative
values are typically 4–6 σ (0.2–0.3 K) in a 5 km s−1 channel,
while the CO(2–1) extended component is ∼0.4 K. Given that
these are worse case scenarios for the detection of an extended
component, if an extended CO(1–0) component exists it has to
be considerably fainter than that observed in CO(2–1). Thus,
the corresponding r21 values would be high, indicating a low
optical depth for the extended component.

4. Discussion

4.1. Optical Depth in the Starburst and Outflow

The ratios in Table 2 are most compatible with the
hypothesis that the CO emission is optically thick in both the
starburst and the different outflow regions. For the starburst
region this is not surprising. Indeed, Meier et al. (2015) do a
more direct test of the optical depth of CO in this region by
comparing the = J 1 0 emission from the C18O and C17O
isotopologues, and conclude that the CO(1–0) transition has
τ∼2–6 depending on the precise oxygen isotopic ratio. This
also appears to be consistent with optical depth estimates based
on 12CO/13CO ratios (Paglione et al. 2004).

Note, however, that in general we measure r21<1. This
departure is not due to subthermal excitation, or exceedingly
cold gas temperatures. The former would predict extremely low
HCN/CO line ratios, contrary to what is observed, while the
latter would predict low excitation for the higher CO
transitions, which is not observed either (Bradford et al.
2003; Sakamoto et al. 2011; Meier et al. 2015). Most likely the
low ratios are due to temperature gradients, as discussed
in Section 3.2 (see also Scoville & Solomon 1974; Young &
Scoville 1984). The existence of regions with measured r21<
1 is consistent with observations of other sources (e.g., Braine
& Combes 1992; Leroy et al. 2009, 2013; Saintonge et al.
2017). For example, resolved observations of giant molecular
clouds in Orion by Sakamoto et al. (1994) and Nishimura et al.
(2015) also find ratios on the order of ∼0.6 in “intermediate
regions”—i.e.,those regions not coincident with H II regions or
ridges. Some of these values may be attributable to subthermal
excitation or low temperatures, but because of how easy it is to
excite the CO(2–1) transition it seems apparent that most of
them must be due to temperature gradient effects.
The situation for the different measurements in the SW

streamer and other outflow features, is similar. There the values
of r21, if anything, cluster closer to unity. The most natural

Figure 5. Same as Figure 4 but for spectra extracted from unmasked cubes
corresponding to the SW streamer (labeled as “SWS” in Figure 2).

Figure 6. Same as Figure 4 but for additional potential outflow features labeled
as “OF” in Figure 2.
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conclusion is that the majority of the molecular gas has
conditions such that the CO emission is also optically thick
throughout the SW streamer and other outflow features. It is
possible to create a scenario where the emission is optically
thin but the densities are finely tuned to not excite CO(2–1)
efficiently. It seems, however, extremely unlikely that such a
finely tuned situation would be attained throughout the
outflowing gas. It is also possible to finely tune the temperature
to create a similar effect, but that scenario is even more
contrived because of the low energies of both transitions.

The optical depth of the CO emission has an impact on the
mass estimate for the outflow features, and the precise
molecular outflow rate of the source.

4.2. Implications for the Molecular Outflow Rate

Bolatto et al. (2013a) assumed optically thin emission from
warm gas to compute lower limits to the molecular mass and
the mass loss rate due to the outflow in NGC 253 of
6.6×106Me and 9Me yr−1 respectively.

The results presented here, together with those from Walter
et al. (2017), suggest that the real masses and mass loss rates
are larger, perhaps considerably larger. Based on the detection
of high-density tracers, Walter et al. (2017) outlined a scenario
where, although it is perhaps possible to excite the HCN
emission in the “minimum mass” SW streamer, it would be
much easier if its mass were a factor of ∼5 higher. The
optically thin CO-to-H2 conversion factor employed in these
calculations was αCO=0.34Me (K km s−1 pc2)−1 (Bolatto
et al. 2013a). This is a factor of ∼13 times lower than the
CO-to-H2 conversion factor for self-gravitating giant molecular
clouds in the Milky Way disk and in the disks of other normal
metallicity galaxies (Bolatto et al. 2013b). In the case of
NGC 253 and other starbursts the conversion factor for the gas
producing the bulk of the CO luminosity is frequently lower,

due to a combination of higher temperature and increased
velocity dispersion in gas that is not self-gravitating.
The best estimates for the starburst region of NGC 253

constrain the CO-to-H2 conversion factor there to be
αCO=1−2Me (K km s−1 pc2)−1 (Sakamoto et al. 2011;
Leroy et al. 2015a), 3 to 6 times larger than the optically thin
value (Bolatto et al. 2013a). If we adopt this range of
conversion factors for all the molecular gas in the outflow,
the implied molecular masses and mass loss rates would
accordingly increase to MH2∼2–4×107Me and ~ṀH2

–25 50Me yr−1 respectively. The resulting mass-loading para-
meter for the starburst-driven molecular wind, h = Ṁ SFRH2 ,
would be in the range of 9 to 19. Needless to say, there are
considerable uncertainties associated with these values beyond
the adoption of a conversion factor. Among them, are the
precise apportioning of CO emission to the outflow, the
geometry of the outflow built into the corrections for
projection, and the fraction of the outflowing gas that actually
escapes the host galaxy.
Observed trends between η and outflow energetics are

presented in Cicone et al. (2014). The adjusted η for NGC 253
does not set it apart from other starburst galaxies in that sample
as an increased αCO is not a trait intrinsic to the observations
and would presumably apply to the entire sample. Moreover,
an η of 10–20 (especially when a significant fraction of the
outflowing material may be reaccreted onto the host galaxy) is
consistent with the result of simulations (e.g., Hopkins
et al. 2012; Muratov et al. 2015).

4.3. The Nature of the CO(2–1) Extended Component

The low-level extended component seen in the CO(2–1)
merits further discussion. We assessed whether this emission is
real in Section 3.5, and it appears that it is very difficult to
explain it as an artifact of the calibration or the combination.

Table 2

Molecular Cloud Locations from Leroy et al. (2015a) and Additional Outflow Features

Region Number R.A. Decl. r21
a 2σb r21

*c % Differenced

1 00 47 32.01 −25 17 27.8 0.51e 0.04 0.51 1%

2 00 47 32.27 −25 17 19.7 0.67e 0.04 0.66 2%

3 00 47 32.80 −25 17 21.0 0.82 0.06 0.84 3%

4 00 47 32.97 −25 17 19.5 0.83 0.07 0.86 3%

5 00 47 33.21 −25 17 17.4 1.01 0.12 1.05 4%

6 00 47 33.32 −25 17 15.2 0.95 0.19 1.04 9%

7 00 47 33.64 −25 17 12.8 0.93 0.08 0.95 3%

8 00 47 34.02 −25 17 10.9 0.85 0.03 0.92 7%

9 00 47 34.16 −25 17 11.8 0.72 0.08 0.79 6%

10 00 47 34.23 −25 17 07.4 0.75 0.09 0.81 7%

SW streamer 1 00 47 32.95 −25 17 25.0 0.79 0.03 0.84 6%

SW streamer 2 00 47 33.13 −25 17 28.5 0.78 0.12 0.49 46%

SW streamer 3 00 47 33.32 −25 17 32.8 0.83 0.10 0.67 22%

Outflow 1 00 47 33.69 −25 17 21.8 0.91 0.12 0.95 5%

Outflow 2 00 47 34.03 −25 17 20.6 0.60 0.05 0.62 2%

Outflow 3 00 47 33.36 −25 17 10.3 0.65e 0.10 0.77 18%

Outflow 4 00 47 33.60 −25 17 08.5 0.55e 0.50 0.61 9%

Outflow 5 00 47 32.86 −25 17 13.9 0.70e 0.07 0.89 24%

Notes.
a
Average value for the ratio in each region for the range of channels specified in the text. Values include CMB correction.

b
2σ values over the measured velocity range.

c
Same as (a), but for cubes without short-spacing corrections.

d
The percent difference between r21 and r21

* defined as *´ -∣ ∣r r100 21 21
1

2
(r21+r21

*
).

e
Values of r21 are likely artificially low due to missing flux at the edge of the map.
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Assuming that this feature is indeed real, we now consider its
morphology and kinematics and discuss possible physical
interpretations.

Examination of the channel maps from −90.5 to
110.5 km s−1 in Figure 1 shows that the extended emission
component spans the region between the central starburst and
the southeastern spiral arm. In the same channels, the extended
component spatially overlaps with outflow features both above
and below the midplane. Furthermore, the extended component
seems most prominent in the western half of NGC 253, in
particular to the southwest where the SW streamer and
additional compact outflow features are located (Figure 2).

The velocity dispersion map in Figure 7 shows higher
dispersions in the emission above and below the central region,
as high as ∼90 km s−1 and more in some cases. This compares
to the velocity dispersion in the starburst region, which is
generally lower than 50 km s−1. Interestingly, the higher
velocity dispersion regions show evidence for a biconical
structure, narrowing at the central starburst region and
expanding above and below it. This structure is best seen in
the right panel of Figure 7, where the color bar has been
adjusted to show only regions with velocity dispersion higher
than 50 km s−1. This biconical structure resembles the structure
of the ionized wind in NGC 253 (Westmoquette et al. 2011). It
is plausible that what we are seeing is a faint, extended
component of CO-emitting molecular gas that completely
surrounds the ionized cone. Enhancements in the CO emission
such as the SW streamer at the other individually identified
features may be due to individual clouds entrained in the
outflow, that are found in the process of being disrupted and
ejected. But the entire ionized outflow may be encased in a
sheath of faint CO emission created by the ejection of
molecular material from the largely molecular environment of
the starburst region.

In an attempt to include only the extended component, we
create a zeroth-moment map by including only emission from
6–15 mJy beam−1 km s−1 in each 5 km s−1 channel (Figure 8).

Figure 7. CO(2–1) dispersion maps including all emission above a 5σ threshold (11 mJy beam−1 in a 5 km s−1 channel). The two panels are the same, but with
different boundaries on their color scales (left is 0–90 km s−1 and right is 50–90 km s−1). In both panels, emission extending above the midplane clearly has higher
velocity dispersion than the emission within the disk. The right panel excludes most in-disk emission and shows hints of a biconical structure. Ellipses and marks are
the same as those in Figure 3. For clarity, ellipses are only included in the left-most panel.

Figure 8. Zeroth-moment map excluding as much main-disk and dense outflow
emission as possible. The map is created via masking emission outside the
range of 6–15 mJy beam−1 km s−1 in each 5 km s−1 channel, as well as setting
a velocity dispersion requirement of 50 km s−1 prior to masking. Regions with
emission below this range are shown in black and regions with emission above
this range are shown in white. Only the unmasked emission shown here is
included in our estimate of the mass of the extended component. Ellipses and
regions are the same as those marked in Figure 2.
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A second criteria is that the included emission must also have a
velocity dispersion higher than 50 km s−1 (prior to making the
6–15 mJy beam−1 km s−1 constraint, when all emission above
2σ is included in a second-moment map). It may be that more
emission is included in the extended component, but we set a
strict threshold in order to avoid including the edges of distinct
outflow features. We first determine that the diffuse, high-
dispersion component accounts for ∼15% of the total emission
in the central region and outflow (not including emission
associated with the spiral arm visible to the southwest). This
fraction is consistent with the fraction of diffuse CO observed
in other galaxies (e.g., Caldú-Primo et al. 2013; Pety et al.
2013). The corresponding luminosity for the high velocity
dispersion emission is 2.7×104 K km s−1 pc2. If we interpret
this as likely optically thin CO(2–1) emission from a diffuse
and warm molecular component, we can estimate its mass by
applying a CO(1–0) optically thin conversion factor of
αCO=0.34Me (K km s−1 pc2)−1, and assuming r21∼3–4.
The resulting mass is highly uncertain, given the assumptions,
but on the order of ∼2.6×104Me.

We first estimate that this component extends approximately
20″ above the midplane on either side. Its morphology and the
78° inclination of the galaxy render projection effects (for
example, emission from the midplane of the NGC 253 disk
seen in projection and interpreted as emission extended above
the disk) difficult to gauge. Since the galaxy is not edge-on, we
must estimate the radial extent of the emission to gauge the
effect of projection. For this purpose, we assume that the high
velocity dispersion emission extends ∼30″ (500 pc) in radius
(R) on either side of the central region. Thus, the minimum
deprojected height assuming all emission is from the midplane
is =h R icosmid , corresponding to ∼100 pc. To obtain the
maximum height, we ignore these projection effects, and
instead directly convert the observed height hobs of 20″ to pc.
This yields a maximum height of 340 pc. The disk is clearly not
infinitely thin, nor is the disk perfectly edge-on. Thus, the true
height of the emission above the midplane is somewhere
between 100 and 340 pc.

This extent above the midplane is much less than that of the
extended CO(2–1) component detected in M 82 by Leroy et al.
(2015c). However, the maps of NGC 253 presented here cover a
much smaller region than that observed in M 82—with the area
mapped in M 82 being a factor of∼30 larger. Furthermore, there
are clear indications in Figure 1 that the CO(2–1) extends well
beyond the currently mapped region of NGC 253. Thus, these
observations do not preclude such an extended component in
NGC 253. The emission detected in NGC 253 may also be
consistent with the aforementioned diffuse CO emission
observed in normal galaxies (e.g., Caldú-Primo et al. 2013; Pety
et al. 2013).

5. Summary

We present and analyze the 12CO(1–0) and 12CO(2–1)
emission in the central regions and galactic wind of NGC 253,
yielding the following results:

(1) The ratio of the brightness temperatures of CO(2–1) and
CO(1–0), r21, is close to unity for the majority of cases
within both the disk and the outflow (the SW streamer,
for example), indicating that the CO(1–0) emission is
optically thick. In fact most values of r21 are under unity.
We attribute this to temperature gradients in the optically

thick emitting gas. The values of r21 we measure are
otherwise similar to those common in a range of
environments such as galaxy disks. It should be noted
that r21 is rather insensitive to environmental factors.

(2) The fact that the bulk of the emission in the outflow has
r211 implies that mass estimates based on an optically
thin CO-to-H2 conversion factor will underestimate its
true mass. If, lacking a better constraint, we adopt the
same conversion factor observed in the central region of
the NGC 253 starburst for all the emission associated
with the molecular outflow, following the calculations
of Bolatto et al. (2013a), the implied molecular mass
outflow rate increases by factors of 3−6 to ~ṀH2

–25 50 Me yr−1. The resulting mass-loading parameter
would be η∼9−19.

(3) We report the tentative detection of a faint CO(2–1)
extended emission component. This low-level emission
has very little impact on our measured r21 values. The
fraction of this emission with high velocity dispersion
(>50 km s−1) appears to be distributed on a biconical
structure approximately coincident with the ionized
outflow.
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