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Abstract

The detection of spatially-varying blur without having

any information about the blur type is a challenging task.

In this paper, we propose a novel effective approach to ad-

dress this blur detection problem from a single image with-

out requiring any knowledge about the blur type, level, or

camera settings. Our approach computes blur detection

maps based on a novel High-frequency multiscale Fusion

and Sort Transform (HiFST) of gradient magnitudes. The

evaluations of the proposed approach on a diverse set of

blurry images with different blur types, levels, and contents

demonstrate that the proposed algorithm performs favor-

ably against the state-of-the-art methods qualitatively and

quantitatively.

1. Introduction

Many images contain blurred regions. Blur can be

caused by different factors such as defocus, camera/object

motion, or camera shake. While it is common in photog-

raphy to deliberately use a shallow focus technique to give

prominence to foreground objects based on defocus, unin-

tentional blur due to degradation factors can decrease the

image quality. Blur detection plays an important role in

many computer vision and computer graphics applications

including but not limited to image segmentation, depth es-

timation, image deblurring and refocusing, and background

blur magnification.

In recent years, a variety of methods have been proposed

to address the issue of deblurring by estimating blur kernels

and performing a deconvolution [2, 5, 6, 13, 14, 16, 19, 23,

22, 34, 38, 37]. In this work, we do not aim to do kernel

estimation and deconvolution. Instead, the objective of this

work is to propose an effective blur detection method from a

single image without having any information about the blur

type, level, or the camera settings. Figure 1 shows sample

results of our proposed method.

Despite the success of existing spatially-varying blur de-

Figure 1. Example results of our proposed blur detection method.

(a) Input images. (b) Ground-truth binary blur maps, with white

corresponding to sharp and black corresponding to blurred re-

gion. (c) Grayscale blur detection maps generated by our proposed

method with higher intensities corresponding to sharper regions.

tection methods, there are only few methods focusing on

spatially-varying blur detection regardless of the blur type

[3, 20, 26, 27, 28, 32], and the rest perform well only on

defocus blur or motion blur. Moreover, the performance of

most of the existing methods degrades drastically when tak-

ing into account the effects of camera noise and distortion.

Therefore, noise-free and artifact-free assumptions could be

unsuitable when dealing with real-word images.

The contributions of this work are summarized as fol-

lows. We propose a robust spatially-varying blur detec-

tion method from a single image based on a novel high-

frequency multiscale fusion and sort transform (HiFST) of

gradient magnitudes to determine the level of blur at each

location in an image. We evaluate our proposed algorithm

on both defocus and motion blur types to demonstrate the

effectiveness of our method. We also test the robustness of

our method by adding different levels of noise as well as

different types and levels of distortions to the input image.
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We compare our method with state-of-the-art algorithms us-

ing their provided implementations and demonstrate that

our proposed method outperforms existing state-of-the-art

methods quantitatively and qualitatively. Finally, we pro-

vide a few applications of our method including camera fo-

cus points estimation, blur magnification, depth of field es-

timation, depth from focus, and deblurring.

1.1. Related work

Blur detection methods can be divided into two cat-

egories: 1) methods that make use of multiple images

[8, 9, 24, 33, 39, 40], and 2) methods that require only a

single image [1, 3, 4, 7, 10, 15, 20, 21, 24, 26, 27, 28, 30,

31, 32, 36, 41, 42, 43]. In the first category, a set of im-

ages of the same scene are captured using multiple focus

settings. Then the blur map is estimated during an implicit

or explicit process. Different factors such as occlusion and

requiring the scene to be static cause the application of these

methods to be limited in practice. In recent years, several

methods have been proposed to recover a blur map from

a single image without having any information about the

camera settings.

In general, blur detection algorithms from a single im-

age can be divided into gradient-based, intensity-based and

transform-based algorithms. In [3], Chakrabarti et al. pro-

pose a sub-band decomposition based approach. They es-

timate the likelihood function of a given candidate point

spread function (PSF) based on local frequency component

analysis. Liu et al. [20] propose a method which employs

features such as image color, gradient, and spectrum infor-

mation to classify blurred images. Shi et al. [26] propose

a method based on different features such as gradient his-

togram span, kurtosis, and data-driven local filters to differ-

entiate between blurred and unblurred image regions. Shi

et al. [27] propose a method based on utilizing a sparse rep-

resentation of image patches using a learned dictionary for

the detection of slight perceivable blur. In [28], Su et al.

propose a method based on examining singular value infor-

mation to measure blurriness. The blur type (motion blur

or defocus blur) is then determined based on certain alpha

channel constraints. In [32], Tang et al. employ the image

spectrum residual [12], and then they use an iterative updat-

ing mechanism to refine the blur map from coarse to fine

by exploiting the intrinsic relevance of similar neighboring

image regions.

In [7], Elder and Zucker propose a method that makes

use of the first- and second-order gradient information for

local blur estimation. Bae and Durand [1] estimate the size

of the blur kernel at edges, building on the method by [7],

and then propagate this defocus measure over the image

with a non-homogeneous optimization. In their propaga-

tion, they assume that blurriness is smooth where inten-

sity and color are similar. Tai and Brown [30] propose a

method for estimating a defocus blur map based on the rela-

tionship between the image contrast and the image gradient

in a local image region, namely local contrast prior. They

use the local contrast prior to measure the defocus at each

pixel and then apply Markov Random Field propagation to

refine the defocus map. In [31], Tang et al. use the rela-

tionship between the amount of spatially-varying defocus

blur and spectrum contrast at edge locations to estimate the

blur amount at the edge locations. Then a defocus map is

obtained by propagating the blur amount at edge locations

over the image using a non-homogeneous optimization pro-

cedure. Yi and Eramian [36] propose a local binary patterns

(LBP) based method for defocus blur segmentation by us-

ing the distribution of uniform LBP patterns in blurred and

unblurred image regions. Zhang and Hirakawa [38] pro-

pose a method for estimating a defocus blur map from a

single image via local frequency component analysis simi-

lar to [3]; they also incorporate smoothness and color edge

information into consideration to generate a blur map indi-

cating the amount of blur at each pixel. Zhuo and Sim [43]

compute the defocus blur from the ratio between the gradi-

ents of input and re-blurred images. Then they propagate

the blur amount at edge locations to the entire image via

matting interpolation to obtain the full defocus map.

In comparison to these methods, we introduce a new

method to estimate spatially-varying blur from a single im-

age. Our work is based on a multiscale transform decom-

position followed by the fusion and sorting of the high-

frequency coefficients of gradient magnitudes. The pro-

posed method is not limited by the type of blur and does

not require information about the blur type, level, or camera

settings. Experimental results demonstrate the effectiveness

and robustness of our method in providing a reliable blur

detection map for different types and levels of blur.

2. Proposed algorithm

To motivate our work, we first describe our proposed

High-frequency multiscale Fusion and Sort Transform

(HiFST), and then its role in image blur detection.

2.1. Highfrequency multiscale fusion and sort
transform

The Discrete Cosine Transform (DCT) has emerged as

one of the most popular transformations for many com-

puter vision and image compression applications. The DCT

transforms a signal from a spatial representation into a fre-

quency representation. DCT coefficients can represent dif-

ferent frequencies, and therefore can be informative about

the image structure, energy, and bluriness. It is well known

that blur would cause a reduction in the high frequencies of

the image. Here we divide the DCT coefficients into low-,

middle-, and high-frequency bands and consider the high-

frequency DCT coefficients.
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Figure 2. Illustration of the sorted absolute values of the high-

frequency DCT coefficients for a sharp and blurry patch in a semi-

log plot. (a) An input image with sharp (red patch) and blurry (blue

patch) regions, (b) sharp patch, (c) blurry patch, and (d) semi-log

plot of the sorted absolute values of the high-frequency DCT co-

efficients for the sharp and blurry patches.

The proposed High-frequency multiscale Fusion and

Sort Transform (HiFST) is based on computing locally at

each pixel a patch-based multi-resolution (computed for dif-

ferent patch sizes around each pixel) DCT. For each pixel,

the high-frequency DCT coefficients are extracted for each

resolution (size of patch surrounding the considered pixel).

The high-frequency coefficients from all resolutions are

then combined together in a vector and sorted in the or-

der of increasing absolute values. In this way, a vector of

multiscale-fused and sorted high-frequency transform coef-

ficients is generated for each image pixel.

Figure 2 shows the semi-log plot of a sharp and blurry

patch to illustrate the effectiveness of the sorted absolute

values of the high-frequency DCT coefficients in differenti-

ating between a sharp and blurry region. As shown in Figure

2, after sorting the absolute values of the high-frequency co-

efficients in increasing order, obtained using the grayscale

versions of patches (a) and (b), there is a clear visual dif-

ference between the sorted coefficients of the blurred and

unblurred patches. In other words, as shown in Figure

2, we can see that the values of the sorted coefficients in

the blurry block (red block) are correspondingly smaller

than the sorted coefficients values in the sharp block (blue

block). We aim to model this property for blur detection

purposes.

Let I denote the N1 × N2-pixel input image. We first

compute the DCT of the input image in a patch-wise man-

ner. Let PM
i,j (i

′, j′) denote a patch of size M × M cen-

tered at pixel (i, j), with i −
⌊

M
2

⌋

≤ i′ ≤ i +
⌊

M
2

⌋

, and

j −
⌊

M
2

⌋

≤ j′ ≤ j +
⌊

M
2

⌋

, where ⌊M
2 ⌋ denotes floor of

M
2 . Let P̂M

i,j (υ, ν), 0 ≤ υ, ν ≤ M − 1, denote the DCT of

Figure 3. Illustration of DCT coefficients for a 7 × 7 block while

dividing them into low-, middle-, and high-frequency bands.

PM
i,j (i

′, j′).
In our proposed method, we divide the computed DCT

coefficients for each patch into three frequency bands,

namely low, middle, and high-frequency bands [17], and

consider the high-frequency components. Figure 3 illus-

trates the three defined frequency bands for a 7× 7 block.

Let HM
i,j denote a vector consisting of the absolute val-

ues of the high-frequency DCT coefficients of P̂M
i,j . HM

i,j is

given by:

HM
i,j = {|P̂M

i,j (υ, ν)| : υ+ν ≥ M−1, 0 ≤ υ, ν ≤ M−1}.
(1)

We define the increasingly sorted vector of the absolute

values of high-frequency DCT coefficients as:

Li,j = sort(HM
i,j ), (2)

where Li,j is a 1 × M2+M
2 vector. Let Li,j;t be the tth

element in vector Li,j and let Lt be the tth layer that is

obtained by grouping all the tth elements Li,j;t for all po-

sitions (i, j). Lt can be represented as an N1 × N2 matrix

given by:

Lt = {Li,j;t, 0 ≤ i < N1, 0 ≤ j < N2}. (3)

The proposed HiFST consists of the M2+M
2 normalized

layers L̂t, 1 ≤ t ≤ M2+M
2 , where L̂t is given by:

L̂t =
Lt −min(Lt)

max(Lt)−min(Lt)
, 1 ≤ t ≤

M2 +M

2
. (4)

By normalizing each layer between [0, 1], each layer can

better differentiate between the blurred and unblurred re-

gions in the image and measure locally the level of blur. In

Eqs. (2)-(3), we differentiate between the blurred and un-

blurred regions in a local adaptive manner by extracting the

high-frequency DCT coefficients in a block-wise manner

and then grouping and normalizing sorted DCT coefficients

belonging to the same position.
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Figure 4. Illustration of the normalized-sorted high-frequency de-

composition layers for a blurry image, where the unblurred regions

have larger values than the blurred ones.

In Figure 4 for illustration purposes, we employ a nor-

malized sorted high-frequency DCT decomposition on each

7×7 block with one block located at each pixel, which leads

to 28 layers. The first layer contains the normalized small-

est high frequency values, which yields to differentiating

between the sharp and blurry regions. As we move toward

the higher layers which consist of larger high-frequency co-

efficients, we can see more structures and edges appear for

both the sharp and blurred regions while the discrimination

between blurred and unblurred regions is still noticeable.

Considering only one resolution may not accurately indi-

cate whether an image or patch is blurred or not. The scale

ambiguity has been studied in various applications [26, 35].

Therefore, here we take into account a multiscale model to

fuse information from different scales. With our multiscale

analysis, our method is able to deal with blur in either small-

scale or large-scale structures, so that blurred and unblurred

regions are detected more effectively. We utilize a multi-

scale HiFST decomposition as follows:

Li,j = sort(

m
⋃

r=1

HMr

i,j ), (5)

where Mr = 22+r if even and Mr = 22+r − 1 if odd,
⋃m

r=1 denotes the union of all the high-frequency DCT co-

efficients computed in m different scales with different res-

olutions, and Li,j is a 1 ×
∑m

r=1
Mr

2+Mr

2 vector. Then Lt

and L̂t can be computed as described in Eqs. (3) and (4).

2.2. Proposed spatiallyvarying blur detection

In the following, we present in details our spatially-

varying blur detection approach which is based on the

fusion, sorting, and normalization of multiscale high-

frequency DCT coefficients of gradient magnitudes to de-

tect blurred and unblurred regions from a single image with-

out having any information about the camera settings or the

blur type. The flowchart of our proposed algorithm is pro-

Figure 5. Flowchart of our proposed blur detection algorithm along

with example outputs for each stage.

vided in Figure 5. A blurred image, B, can be modeled as

follows:

B = A ∗ b+ n, (6)

where A is a sharp latent image, b is the blur kernel, ∗ is

the convolution operator, and n is the camera noise. Our

goal is to estimate the blur map from the observed blurry

image B. Given the image B, we first apply a Gaussian fil-

ter with a small kernel to remove the high-frequency noise.

The Gaussian filter is given by:

g(i, j;σ) =
1

2πσ2
exp(−

i2 + j2

2σ2
), (7)

where σ is set to 0.5 in our experiment. Let Bg denote the

Gaussian filtered image of the input blurry image B. The

gradient magnitudes of an image can effectively capture im-

age local structures, to which the human visual system is

highly sensitive. By computing the gradient magnitudes,

most of the spatial redundancy is removed, and the image

structure and shape components are preserved. The gradi-

ent magnitude image G of the Gaussian filtered image, Bg ,

is computed by:

G =
√

(Bg ∗ hx)2 + (Bg ∗ hy)2, (8)

where hx =

[

1 0
0 −1

]

, and hy =

[

0 1
−1 0

]

.

Next we apply the HiFST (Section 2.1) decomposition

on the computed gradient image, G, in a multiscale manner.

As shown in Figure 6, blur can be perceived differently in

different scales. Given an image G, we compute its mul-

tiscale HiFST as described in Section 2.1 where the image

I is now replaced with the gradient magnitude image G.

We compute Lt and L̂t as described in Section 2.1, where

m = 4. To compute our proposed blur detection map, we

consider only the first
∑m

r=1 Mr layers. Based on our ex-

periment and observation, using the first
∑m

r=1 Mr layers1

of the HiFST provides sufficient information to compute the
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Scale 4
Scale 3

Scale 2

Scale 1

Figure 6. Demonstration of multiscale blur perception for different

scales. The blur confidence highly depends on the patch scale.

blur map. Our proposed blur detection map, D, is computed

as follows:

D = T ◦ ω, (9a)

where ◦ denotes the Hadamard product of matrices T and

w whose elements are given by:

Ti,j = max({L̂i,j;t : t = 1, ...,

m
∑

r=1

Mr}),

0 ≤ i < N1, 0 ≤ j < N2,

(9b)

ωi,j = −
∑

(i′,j′)∈Rk
(i,j)

P (Ti′,j′) log[P (Ti′,j′)], (9c)

where Rk
(i,j) denotes a k × k patch centered at pixel (i, j),

and P denotes a probability function. From Eqs. (9b) and

(9c), it can be seen that T is obtained by max pooling, and ω

is obtained by computing the local entropy map of T , using

a k × k neighborhood around the corresponding pixel in T

(in our implementation, we use k = 7)1. The entropy map

(ω) is used as a weighting factor to give more weight to the

salient regions in the image. The final blur map is smoothed

using edge-preserving filters [11] to suppress the influence

of outliers and preserve boundaries.

We further extend our proposed algorithm to estimate

the camera focus points map. The camera focus points

map shows the focus points of the camera while taking a

photo. Intuitively, this region should have the highest in-

tensity in the blur detection map. We compute the camera

focus points map by as follows:

F =

{

1

0

D′ ≥ Th

D′ < Th
, (10)

where F denotes the camera focus points map and D′ is

a Gaussian smoothed version of D, normalized between

[0,1]. In our experiment, we set the threshod value, Th,

to 0.98.1

1 The selection of this value is not critical. The results are very close

when the value is chosen within a ±20% range.

Figure 7. Quantitative Precision-Recall comparison on the blur

dataset [26] for different methods.

3. Results

In this section we evaluate the performance of our

proposed method, HiFST, quantitatively and qualitatively.

Here we show that our proposed method outperforms the

existing algorithms in terms of both quantitative and quali-

tative results regardless of the blur type. Moreover, we eval-

uate the robustness of our method to different types and lev-

els of distortions.

For quantitative comparison, we evaluate our method on

a variety of images with different types and amount of blur

provided in dataset [26] and compare our results with state-

of-the-art algorithms [1, 3, 20, 26, 27, 28, 31, 32, 36, 43].

Figure 7 shows the precision-recall curve for the blur

dataset [26], which consists of 296 images with motion blur

and 704 images with defocus blur. In our experiment, we

binarized the blur detection map by varying the threshold

within the range [0, 255]. Our proposed method achieves

the highest precision within the entire recall range [0, 1],

which conveys its potential for different levels and types of

blur.

In Figure 8, we evaluate the performance of our method

qualitatively on images provided in [26, 27] with different

contents as well as different types and levels of blur, in

which we added zero-mean Gaussian noise with σ2 = 10−4

to take into account the camera noise. Although the amount

of noise is not easily noticeable by human eyes, it simulates

the practical camera noise case. We evaluate the perfor-

mance of the proposed algorithm against the state-of-the-

art methods [3, 20, 26, 27, 28, 32, 36]2. In the provided

maps, the unblurred regions have higher intensities than the

2More visual results as well as our MATLAB code are available at:

http://ivulab.asu.edu/software.
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Figure 8. Visual comparison on images selected from [26, 27] while adding zero-mean Gaussian noise with σ2
= 10

−4 to the input images.

blurred ones. As shown in Figure 8, our proposed method

can handle different types of blur and can distinguish be-

tween the blurred and unblurred regions effectively. Algo-

rithms [3, 36] dramatically failed due to their sensitivity to

the noise or type of blur. Moreover, although algorithms

[20, 26, 27, 28, 32] can detect the blur map for some of

the images, their detected maps include incorrectly labeled

regions compared to the ground-truth. In contrast, our pro-

posed method can distinguish between the blurred and un-

blurred regions with high accuracy regardless of the blur

type.

Furthermore, Figure 9 (a) demonstrates the effectiveness

of our multiscale approach by comparing it to just using one

single scale. We evaluate the precision-recall curves result-

ing from our method when it just uses one scale at a time

(Mr = 22+r − 1, 1 ≤ r ≤ 4) and compare it to our fi-
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(a)

(b)

Figure 9. (a) Precision-Recall curves between our proposed

method in a multiscale manner and the results of our method

via each scale separately. (b) Precision-Recall comparison of

our proposed method on the blur dataset [26] in which we

add zero-mean Gaussian noise with different variance σ2
=

{0, 10−5, 10−4, 10−3, 10−2} to the input image.

nal multiscale method. As shown in Figure 9 (a) employing

all the scales leads to the best results. Furthermore, to val-

idate the robustness of our method qualitatively and quan-

titatively, we test our method on dataset [26] while adding

zero-mean Gaussian noise with different densities to the in-

put images. In our experiment the variance (σ2) of the noise

is varied between zero to 10−2. As shown in Figure 9(b),

the resulting precision-recall curves in the presence of noise

with σ2 = {0, 10−5, 10−4} are almost the same. By adding

noise with larger variances, σ2 = 10−3 and σ2 = 10−2, the

precision-recall curves show only a slight drop in perfor-

mance as compared to the noise-free case and show that the

proposed method still achieves competitive results.

In Figure 10, we evaluate the robustness of our method

qualitatively on images from the Categorical Image Quality

(CSIQ) database[18] with different types and levels of dis-

tortions, such as zero-mean Gaussian noise, adaptive noise,

and JPEG. As shown in Figure 10, our proposed method

has the capability of estimating the blur map for distorted

images.

Figure 10. Qualitative evaluation of the robustness of our proposed

method to different types and levels of distortions for images in the

CSIQ database [18]. (a) Distorted images under different levels of

white noise. (b) Distorted images under different levels of adap-

tive noise. (c) Distorted images under different levels of JPEG

distortion.

Finally, to further demonstrate the performance of our

proposed method for different blur types, we test our algo-

rithms on 6 synthetic examples of an image with different

types of blur on the background region, such as lens, Gaus-

sian, motion, radial, zoom, and surface blur. As shown in

Figure 11, our proposed method can handle all these blur

types accurately compared to the ground-truth.

Figure 11. Visual results of our proposed method on images with

different types of blur.

4. Applications

In this section, we demonstrate the use of our proposed

blur detection map in a few applications, such as blur mag-

nification, deblurring, depth of field (DOF), depth from fo-

cus (DFF), and camera focus points estimation.
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4.1. Blur Magnification

Given the estimated blur map, we can perform blur mag-

nification [1]. Blur magnification increases the level of blur

in out-of-focus areas and makes the image have a shallower

DOF. Therefore, the in-focus object would be highlighted

more. Figure 12 shows examples of blur magnification by

using our detected blur map.

Figure 12. Blur magnification. (a) Input image. (b) Our estimated

blur map. (c) Results after blur magnification using our proposed

blur map.

4.2. Deblurring

In Figure 13, we use our estimated blur map (Figure

13(b)) in the deblurring algorithm described in [25] and re-

cover the clear image; Figure 13(c) represents the deblur-

ring result.

Figure 13. Application of our proposed method in deblurring.

(a) Input image. (b) Our estimated blur map. (c) Deblurred re-

sults.

4.3. Depth of field estimation

Depth of Field (DOF) refers to the area of the picture

that is in-focus in an image. It is determined by three fac-

tors, including aperture size, distance from the lens, and the

focal length of the lens. Let D̃ denote the median of the nor-

malized blur map D, and be used as an estimation for the

DOF. In Figure 14, we provide four images which are taken

with the same camera and distance from the objects. In our

experiment, the camera focus is set to be on the face of the

front object and the aperture size changes by choosing dif-

ferent f-stop, such as f/2.8, f/5, f/16, and f/22. As shown

in Figure 14, by decreasing the aperture size (increasing the

f-stop) the DOF increases and our blur map as well as D̃

change in a consistent way. Also as shown in the third row

of Figure 14, the camera focus points map (red spot inside

the square) for all the images stay consistent.

Figure 14. Application of our proposed method in detecting blur

for a photo taken under different aperture sizes in a dynamic set-

ting. First row: input images. Second row: detected blur maps;

D̃ denotes the median value of the normalized blur map D. Third

row: estimated camera focus points.

4.4. Depth from focus

In Figure 15, we provide the application of our proposed

method for depth from focus (DFF). As shown in Figure

15, by changing the camera focus, our estimated blur maps

change in a consistent way.

Figure 15. Application of our method to changing the camera fo-

cus and DFF. (a) & (c) are images from [29] with different focus

areas. (b) & (d) are our estimated maps.

5. Conclusion

In this paper we have addressed the challenging prob-

lem of blur detection from a single image without having

any information about the blur type or the camera settings.

We proposed an effective blur detection method based on a

high-frequency multiscale fusion and sort transform, which

makes use of high-frequency DCT coefficients of the gra-

dient magnitudes from multiple resolutions. Our algorithm

achieves state-of-the-art results on blurred images with dif-

ferent blur types and blur levels. To analyze the potential of

our method, we also evaluated it on images with different

types of blur as well as different levels and types of distor-

tions. Furthermore, we showed that the proposed method

can benefit different computer vision applications includ-

ing camera focus points map estimation, blur magnification,

depth of field estimation, depth from focus, and deblurring.
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