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Abstract

Motivated by recent work on studying massive imaging data in various neuroimaging studies, we 

propose a novel spatially varying coefficient model (SVCM) to capture the varying association 

between imaging measures in a three-dimensional (3D) volume (or 2D surface) with a set of 

covariates. Two stylized features of neuorimaging data are the presence of multiple piecewise 

smooth regions with unknown edges and jumps and substantial spatial correlations. To specifically 

account for these two features, SVCM includes a measurement model with multiple varying 

coefficient functions, a jumping surface model for each varying coefficient function, and a 

functional principal component model. We develop a three-stage estimation procedure to 

simultaneously estimate the varying coefficient functions and the spatial correlations. The 

estimation procedure includes a fast multiscale adaptive estimation and testing procedure to 

independently estimate each varying coefficient function, while preserving its edges among 

different piecewise-smooth regions. We systematically investigate the asymptotic properties (e.g., 

consistency and asymptotic normality) of the multiscale adaptive parameter estimates. We also 

establish the uniform convergence rate of the estimated spatial covariance function and its 

associated eigenvalues and eigenfunctions. Our Monte Carlo simulation and real data analysis 

have confirmed the excellent performance of SVCM.
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1 Introduction

The aims of this paper are to develop a spatially varying coefficient model (SVCM) to 

delineate association between massive imaging data and a set of covariates of interest, such 

as age, and to characterize the spatial variability of the imaging data. Examples of such 

imaging data include T1 weighted magnetic resonance imaging (MRI), functional MRI, and 
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diffusion tensor imaging, among many others (Friston, 2007; Thompson and Toga, 2002; 

Mori, 2002; Lazar, 2008). In neuroimaging studies, following spatial normalization, imaging 

data usually consists of data points from different subjects (or scans) at a large number of 

locations (called voxels) in a common 3D volume (without loss of generality), which is 

called a template. We assume that all imaging data have been registered to a template 

throughout the paper.

To analyze such massive imaging data, researchers face at least two main challenges. The 

first one is to characterize varying association between imaging data and covariates, while 

preserving important features, such as edges and jumps, and the shape and spatial extent of 

effect images. Due to the physical and biological reasons, imaging data are usually expected 

to contain spatially contiguous regions or effect regions with relatively sharp edges 

(Chumbley et al., 2009; Chan and Shen, 2005; Tabelow et al., 2008a, b). For instance, 

normal brain tissue can generally be classified into three broad tissue types including white 

matter, gray matter, and cerebrospinal fluid. These three tissues can be roughly separated by 

using MRI due to their imaging intensity differences and relatively intensity homogeneity 

within each tissue. The second challenge is to characterize spatial correlations among a large 

number of voxels, usually in the tens thousands to millions, for imaging data. Such spatial 

correlation structure and variability are important for achieving better prediction accuracy, 

for increasing the sensitivity of signal detection, and for characterizing the random 

variability of imaging data across subjects (Cressie and Wikle, 2011; Spence et al., 2007).

There are two major statistical methods including voxel-wise methods and multiscale 

adaptive methods for addressing the first challenge. Conventional voxel-wise approaches 

involve in Gaussian smoothing imaging data, independently fitting a statistical model to 

imaging data at each voxel, and generating statistical maps of test statistics and p-values 

(Lazar, 2008; Worsley et al., 2004). As shown in Chumbley et al. (2009) and Li et al. 

(2011), voxel-wise methods are generally not optimal in power since it ignores the spatial 

information of imaging data. Moreover, the use of Gaussian smoothing can blur the image 

data near the edges of the spatially contiguous regions and thus introduce substantial bias in 

statistical results (Yue et al., 2010).

There is a great interest in the development of multiscale adaptive methods to adaptively 

smooth neuroimaging data, which is often characterized by a high noise level and a low 

signal-to-noise ratio (Tabelow et al., 2008a, b; Polzehl et al., 2010; Li et al., 2011; Qiu, 

2005, 2007). Such multiscale adaptive methods not only increase signal-to-noise ratio, but 

also preserve important features (e.g., edge) of imaging data. For instance, in Polzehl and 

Spokoiny (2000, 2006), a novel propagation-separation approach was developed to 

adaptively and spatially smooth a single image without explicitly detecting edges. Recently, 

there are a few attempts to extend those adaptive smoothing methods to smoothing multiple 

images from a single subject (Tabelow et al., 2008a, b; Polzehl et al., 2010). In Li et al. 

(2011), a multiscale adaptive regression model, which integrates the propagation-separation 

approach and voxel-wise approach, was developed for a large class of parametric models.

There are two major statistical models, including Markov random fields and low rank 

models, for addressing the second challenge. The Markov random field models explicitly 
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use the Markov property of an undirected graph to characterize spatial dependence among 

spatially connected voxels (Besag, 1986; Li, 2009). However, it can be restrictive to assume 

a specific type of spatial correlation structure, such as Markov random fields, for very large 

spatial data sets besides its computational complexity (Cressie and Wikle, 2011). In spatial 

statistics, low rank models, also called spatial random effects models, use a linear 

combination of ‘known’ spatial basis functions to approximate spatial dependence structure 

in a single spatial map (Cressie and Wikle, 2011). The low rank models have a close 

connection with the functional principal component analysis model for characterizing spatial 

correlation structure in multiple images, in which spatial basis functions are directly 

estimated (Zipunnikov et al., 2011; Ramsay and Silverman, 2005; Hall et al., 2006).

The goal of this article is to develop SVCM and its estimation procedure to simultaneously 

address the two challenges discussed above. SVCM has three features: piecewise smooth, 

spatially correlated, and spatially adaptive, while its estimation procedure is fast, accurate 

and individually updated. Major contributions of the paper are as follows.

• Compared with the existing multiscale adaptive methods, SVCM first integrates a 

jumping surface model to delineate the piecewise smooth feature of raw and effect 

images and the functional principal component model to explicitly incorporate the 

spatial correlation structure of raw imaging data.

• A comprehensive three-stage estimation procedure is developed to adaptively and 

spatially improve estimation accuracy and capture spatial correlations.

• Compared with the existing methods, we use a fast and accurate estimation method 

to independently smooth each of effect images, while consistently estimating their 

standard deviation images.

• We systematically establish consistency and asymptotic distribution of the adaptive 

parameter estimators under two different scenarios including piecewise-smooth and 

piecewise-constant varying coefficient functions. In particular, we introduce 

several adaptive boundary conditions to delineate the relationship between the 

amount of jumps and the sample size. Our conditions and theoretical results differ 

substantially from those for the propagation-separation type methods (Polzehl and 

Spokoiny, 2000, 2006; Li et al., 2011).

The rest of this paper is organized as follows. In Section 2, we describe SVCM and its three-

stage estimation procedure and establish the theoretical properties. In Section 3, we present a 

set of simulation studies with the known ground truth to examine the finite sample 

performance of the three-stage estimation procedure for SVCM. In Section 4, we apply the 

proposed methods in a real imaging dataset on attention deficit hyper-activity disorder 

(ADHD). In Section 5, we conclude the paper with some discussions. Technical conditions 

are given in Section 6. Proofs and additional results are given in a supplementary document.

Zhu et al. Page 3

J Am Stat Assoc. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



2 Spatial Varying Coefficient Model with Jumping Discontinuities

2.1 Model Setup

We consider imaging measurements in a template and clinical variables (e.g., age, gender, 

and height) from n subjects. Let  represent a 3D volume and d and d0, respectively, denote 

a point and the center of a voxel in . Let  be the union of all centers d0 in  and ND 

equal the number of voxels in . Without loss of generality,  is assumed to be a compact 

set in R3. For the i-th subject, we observe an m × 1 vector of imaging measures yi(d0) at d0 

∈ , which leads to an mND × 1 vector of measurements across , denoted by  = 

{yi(d0) : d0 ∈ }. For notational simplicity, we set m = 1 and consider a 3D volume 

throughout the paper.

The proposed spatial varying coefficient model (SVCM) consists of three components: a 

measurement model, a jumping surface model, and a functional component analysis model. 

The measurement model characterizes the association between imaging measures and 

covariates and is given by

(1)

where xi = (xi1, …, xip)T is a p × 1 vector of covariates, β(d) = (β1(d), …, βp(d))T is a p × 1 

vector of coefficient functions of d, ηi(d) characterizes individual image variations from 

, and εi(d) are measurement errors. Moreover, {ηi(d) : d ∈ } is a stochastic process 

indexed by d ∈  that captures the within-image dependence. We assume that they are 

mutually independent and ηi(d) and εi(d) are independent and identical copies of SP(0, Ση) 

and SP(0, Σε), respectively, where SP(µ, Σ) denotes a stochastic process vector with mean 

function µ(d) and covariance function Σ(d, d′). Moreover, εi(d) and εi(d′) are independent 

for d ≠ d′ and thus Σε(d, d′) = 0 for d ≠ d′. Therefore, the covariance function of {yi(d) : d ∈ 

}, conditioned on xi, is given by

(2)

The second component of the SVCM is a jumping surface model for each of {βj(d) : d ∈ 

}j≤p. Imaging data {yi(d0) : d0 ∈ } can usually be regarded as a noisy version of a 

piecewise-smooth function of d ∈  with jumps or edges. In many neuroimaging data, those 

jumps or edges often reflect the functional and/or structural changes, such as white matter 

and gray matter, across the brain. Therefore, the varying function {βj(d) : d ∈ } in model 

(1) may inherit the piecewise-smooth feature from imaging data for j = 1, …, p, but allows 

to have different jumps and edges. Specially, we make the following assumptions.

• (i) (Disjoint Partition) There is a finite and disjoint partition {  : l = 1, ···, Lj} of 

such that each  is a connected region of  and its interior, denoted by , is 

nonempty, where Lj is a fixed, but unknown integer. See Figure 1 (a), (b), and (d) 

for an illustration.
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• (ii) (Piecewise Smoothness) βj(d) is a smooth function of d within each  for l = 

1, …, Lj, but βj(d) is discontinuous on , which is the union of 

the boundaries of all . See Figure 1 (b) for an illustration.

• (iii) (Local Patch) For any d0 ∈  and h > 0, let B(d0, h) be an open ball of d0 with 

radius h and Pj(d0, h) a maximal path-connected set in B(d0, h), in which βj(d) is a 

smooth function of d. Assume that Pj(d0, h), which will be called a local patch, 

contains an open set. See Figure 1 for a graphical illustration.

The jumping surface model can be regarded as a generalization of various models for 

delineating changes at unknown location (or time). See, for example, Khodadadi and 

Asgharian (2008) for an annotated bibliography of change point problem and regression. 

The disjoint partition and piecewise smoothness assumptions characterize the shape and 

smoothness of βj(d) in , whereas the local patch assumption primarily characterizes the 

local shape of βj(d) at each voxel d0 ∈  across different scales (or radii). For 

, there exists a radius h(d0) such that . In this 

case, for h ≤ h(d0), we have Pj(d0, h) = B(d0, h) and Pj(d0, h)c = ∅, whereas Pj(d0, h)c may 

not equal the empty set for large h since B(d0, h) may cross different . For d0 ∈ ∂ ∩ 

, Pj(d0, h)c ≠ ∅ for all h > 0. Since Pj(d0, h) contains an open set for any h > 0, it 

eliminates the case of d0 being an isolated point. See Figure 1 (a) and (d) for an illustration.

The last component of the SVCM is a functional principal component analysis model for 

ηi(d). Let λ1 ≥ λ2 ≥ …≥ 0 be ordered values of the eigenvalues of the linear operator 

determined by Ση with  and the ψl(d)s’ be the corresponding orthonormal 

eigenfunctions (or principal components) (Li and Hsing, 2010; Hall et al., 2006). Then, Ση 

admits the spectral decomposition:

(3)

The eigenfunctions ψl(d) form an orthonormal basis on the space of square-integrable 

functions on , and ηi(d) admits the Karhunen-Loeve expansion as follows:

(4)

where ξi,l =  ηi(s)ψl(s)d (s) is referred to as the l-th functional principal component score 

of the ith subject, in which d (s) denotes the Lebesgue measure. The ξi,l are uncorrelated 

random variables with E(ξi,l) = 0 and E(ξi,lξi,k) = λl1(l = k). If λl ≈ 0 for l ≥ LS + 1, then 

model (1) can be approximated by

(5)
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In (5), since ξi,l are random variables and ψl(d) are ‘unknown’ but fixed basis functions, it 

can be regarded as a varying coefficient spatial mixed effects model. Therefore, model (5) is 

a mixed effects representation of model (1).

Model (5) differs significantly from other models in the existing literature. Most varying 

coefficient models assume some degrees of smoothness on varying coefficient functions, 

while they do not model the within-curve dependence (Wu et al., 1998). See Fan and Zhang 

(2008) for a comprehensive review of varying coefficient models. Most spatial mixed effects 

models in spatial statistics assume that spatial basis functions are known and regression 

coefficients do not vary across d (Cressie and Wikle, 2011). Most functional principal 

component analysis models focus on characterizing spatial correlation among multiple 

observed functions when  ∈ R1 (Zipunnikov et al., 2011; Ramsay and Silverman, 2005; 

Hall et al., 2006).

2.2 Three-stage Estimation Procedure

We develop a three-stage estimation procedure as follows. See Figure 2 for a schematic 

overview of SVCM.

• Stage (I): Calculate the least squares estimate of β(d0), denoted by β̂(d0), across all 

voxels in , and estimate {Σε(d0, d0) : d0 ∈ }, {Ση(d, d′) : (d, d′) ∈ } and its 

eigenvalues and eigenfunctions.

• Stage (II): Use the propagation-seperation method to adaptively and spatially 

smooth each component of β̂(d0) across all d0 ∈ .

• Stage (III): Approximate the asymptotic covariance matrix of the final estimate of 

β(d0) and calculate test statistics across all voxels d0 ∈ .

This is more refined idea than the two-stage procedure proposed in Fan and Zhang (1999, 

2002).

2.2.1 Stage (I)—Stage (I) consists of four steps.

Step (I.1) is to calculate the least squares estimate of β(d0), which equals 

 across all voxels d0 ∈ , where , in which a⊗2 

= aaT for any vector a. See Figure 1 (c) for a graphical illustration of {β̂(d0) : d0 ∈ }.

Step (I.2) is to estimate ηi(d) for all d ∈ . We employ the local linear regression technique 

to estimate all individual functions ηi(d). Let ∂dηi(d) = ∂ηi(d)/∂d, Ci(d) = (ηi(d), 

h∂dηi(d)T)T, and zh(dm − d) = (1, (dm,1 − d1)/h, (dm,2 − d2)/h, (dm,3 − d3)/h)T, where d = (d1, 

d2, d3)T and dm = (dm,1, dm,2, dm,3)T ∈ . We use Taylor series expansion to expand ηi(dm) 

at d leading to
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We develop an algorithm to estimate Ci(d) as follows. Let Kloc(·) be a univariate kernel 

function and  be the rescaled kernel function 

with a bandwidth h. For each i, we estimate Ci(d) by minimizing the weighted least squares 

function given by

where . It can be shown that

(6)

Let R̂i = (ri(d0) : d0 ∈ ) be an ND × 1 vector of estimated residuals and notice that η̂
i(d) is 

the first component of Ci(d). Then, we have

(7)

where Si is an ND × ND smoothing matrix (Fan and Gijbels, 1996). We pool the data from all 

n subjects and select the optimal bandwidth h, denoted by h ̃, by minimizing the generalized 

cross-validation (GCV) score given by

(8)

where ID is an ND × ND identity matrix. Based on h̃, we can use (7) to estimate ηi(d) for all 

i.

Step (I.3) is to estimate Ση(d, d′) and Σε(d0, d0). Let  be 

estimated residuals for i = 1, …, n and d0 ∈ . We estimate Σε(d0, d0) by

(9)

and Ση(d, d′) by the sample covariance matrix:

(10)

Step (I.4) is to estimate the eigenvalue-eigenfunction pairs of Ση by using the singular value 

decomposition. Let V = [η̂
1, ···, η̂

n] be an ND × n matrix. Since n is much smaller than ND, 
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we can easily calculate the eigenvalue-eigenvector pairs of the n × n matrix VTV, denoted 

by {(λ̂ i, ξ̂
i) : i = 1, ···, n}. It can be shown that {(λ̂i, Vξ̂

i) : i = 1, ···, n} are the eigenvalue-

eigenvector pairs of the ND × ND matrix VVT. In applications, one usually considers large λl̂ 

values, while dropping small λ̂
ls. It is common to choose a value of LS so that the 

cumulative eigenvalue  is above a prefixed threshold, say 80% 

(Zipunnikov et al., 2011; Li and Hsing, 2010; Hall et al., 2006). Furthermore, the lth SPCA 

scores can be computed using

(11)

for l = 1, …, LS, where (dm) is the volume of voxel dm.

2.2.2 Stage (II)—Stage (II) is a multiscale adaptive and sequential smoothing (MASS) 

method. The key idea of MASS is to use the propagation-separation method (Polzehl and 

Spokoiny, 2000, 2006) to individually smooth each least squares estimate image {βĵ(d0) : d0 

∈ } for j = 1, …, p. MASS starts with building a sequence of nested spheres with 

increasing bandwidths 0 = h0 < h1 < ··· < hS = r0 ranging from the smallest bandwidth h1 to 

the largest bandwidth hS = r0 for each d0 ∈ . At bandwidth h1, based on the information 

contained in {β̂(d0) : d0 ∈ }, we sequentially calculate adaptive weights 

between voxels d0 and , which depends on the distance ||d0 −d0|| and spacial similarity |

β̂j(d0) − β̂
j(d0)|, and update β̂j(d0; h1) for all d0 ∈  for j = 1, ···, p. At bandwidth h2, we 

repeat the same process using {β̂(d0; h1) : d0 ∈ } to compute spatial similarities. In this 

way, we can sequentially determine  and βĵ(d0; hs) for each component of β(d0) 

as the bandwidth ranges from h1 to hS = r0. Moreover, as shown below, we have found a 

simple way of calculating the standard deviation of βĵ(d0; hs).

MASS consists of three steps including (II.1) an initialization step, (II.2) a sequentially 

adaptive estimation step, and (II.3) a stop checking step, each of which involves in the 

specification of several parameters. Since propagation-separation and the choice of their 

associated parameters have been discussed in details in Polzehl et al. (2010) and Li et al. 

(2011), we briefly mention them here for the completeness. In the initialization step (II.1), 

we take a geometric series { : s = 1, …, S} of radii with h0 = 0, where ch > 1, say ch = 

1.10. We suggest relatively small ch to prevent incorporating too many neighboring voxels.

In the sequentially adaptive estimation step (II.2), starting from s = 1 and h1 = ch, at step s, 

we compute spatial adaptive locally weighted average estimate β̂j(d0; hs) based on {β̂
j(d0) : 

d0 ∈ } and {β̂j(d0; hs−1) : d ∈ }, where βĵ(d0; h0) = β̂
j(d0). Specifically, for each j, we 

construct a weighted quadratic function

(12)
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where ωj(d0, dm; hs), which will be defined below, characterizes the similarity between 

β̂j(dm; hs−1) and β̂
j(d0; hs−1). We then calculate

(13)

where ω̃
j(d0, dm; hs) = ωj(d0, dm; hs)/  ωj(d0, dm′ ; hs).

Let Σn(β̂
j(d0; hs)) be the asymptotic variance of β̂j(d0; hs). For βj(d0), we compute the 

similarity between voxels d0 and , denoted by , and the adaptive weight 

, which are, respectively, defined as

(14)

where Kst(u) is a nonnegative kernel function with compact support, Cn is a tuning 

parameter depending on n, and || · ||2 denotes the Euclidean norm of a vector.

The weights  give less weight to the voxel  that is far from the voxel 

d0. The weights Kst(u) downweight the voxels  with large , which 

indicates a large difference between  and βĵ(d0; hs−1). In practice, we set Kloc(u) 

= (1 − u)+. Although different choices of Kst(·) have been suggested in the propagation-

separation method (Polzehl and Spokoiny, 2000, 2006; Polzehl et al., 2010; Li et al., 2011), 

we have tested these kernel functions and found that Kst(u) = exp(−u) performs reasonably 

well. Another good choice of Kst(u) is min(1, 2(1 − u))+. Moreover, theoretically, as shown 

in Scott (1992) and Fan (1993), they have examined the efficiency of different kernels for 

weighted least squares estimators, but extending their results to the propagation-separation 

method needs some further investigation.

The scale Cn is used to penalize the similarity between any two voxels d0 and  in a similar 

manner to bandwidth, and an appropriate choice of Cn is crucial for the behavior of the 

propagation-separation method. As discussed in (Polzehl and Spokoiny, 2000, 2006), a 

propagation condition independent of the observations at hand can be used to specify Cn. 

The basic idea of the propagation condition is that the impact of the statistical penalty in 

 should be negligible under a homogeneous model βj(d) ≡ 

constant yielding almost free smoothing within homogeneous regions. However, we take an 

alternative approach to choose Cn here. Specifically, a good choice of Cn should balance 

between the sensitivity and specificity of MASS. Theoretically, as shown in Section 2.3, Cn 

should satisfy Cn/n = o(1) and . We choose  based on our 

experiments, where  is the upper a-percentile of the -distribution.
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We now calculate Σn(βĵ(d0; hs)). By treating the weights ω̃
j(d0, dm; hs) as ‘fixed’ constants, 

we can approximate Σn(β̂j(d0; hs)) by

(15)

where Cov(β̂j(dm), β̂
j(dm′)) can be estimated by

(16)

in which ej,p is a p × 1 vector with the j-th element 1 and others 0. We will examine the 

consistency of approximation (15) later.

In the stop checking step (II.3), after the first iteration, we start to calculate a stopping 

criterion based on a normalized distance between β̂j(d0) and β̂j(d0; hs) given by

(17)

Then, we check whether βĵ(d0; hs) is in a confidence ellipsoid of β̂
j(d0) given by {βj(d0) : 

D(βĵ(d0), βj(d0)) ≤ Cs}, where Cs is taken as  in our implementation. If 

D(β̂j(d0), β̂
j(d0; hs)) is greater than Cs, then we set βĵ(d0, hS) = β̂j(d0, hs−1) and s = S for the j-

th component and voxel d0. If s = S for all components in all voxels, we stop. If D(β̂j(d0), 

β̂
j(d0; hs)) ≤ Cs, then we set hs+1 = chhs, increase s by 1 and continue with the step (II.1). It 

should be noted that different components of β̂(d0; h) may stop at different bandwidths.

We usually set the maximal step S to be relatively small, say between 10 and 20, and thus 

each B(d0, hS) only contains a relatively small number of voxels. As S increases, the number 

of neighboring voxels in B(d0, hS) increases exponentially. It increases the chance of 

oversmoothing βj(d0) when d0 is near the edge of distinct regions. Moreover, in order to 

prevent oversmoothing βj(d0), we compare β̂j(d0; hs) with the least squares estimate β̂
j(d0) 

and gradually decrease Cs with the number of iteration.

2.2.3 Stage (III)—Based on β̂(d0; hS), we can further construct test statistics to examine 

scientific questions associated with β(d0). For instance, such questions may compare brain 

structure across different groups (normal controls versus patients) or detect change in brain 

structure across time. These questions can be formulated as the linear hypotheses about 

β(d0) given by

(18)

where R1 is an r × k matrix of full row rank and b0 is an r × 1 specified vector. We use the 

Wald test statistic
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(19)

for problem (18), where Σn(β̂(d0; hS)) is the covariance matrix of β̂(d0; hS).

We propose an approximation of Σn(β̂(d0; hS)). According to (13), we know that

where a ∘ b denotes the Hadamard product of matrices a and b and ω̃(d0, dm; h) is a p × 1 

vector determined by the weights ωj̃(d0, dm; h) in Stage II. Let Jp be the p2 × p selection 

matrix (Liu, 1999). Therefore, Σn(β̂(d0; hS)) can be approximated by

2.3 Theoretical Results

We systematically investigate the asymptotic properties of all estimators obtained from the 

three-stage estimation procedure. Throughout the paper, we only consider a finite number of 

iterations and bounded r0 for MASS, since a brain volume is always bounded. Without 

otherwise stated, we assume that op(1) and Op(1) hold uniformly across all d in either  or 

 throughout the paper. Moreover, the sample size n and the number of voxels ND are 

allowed to diverge to infinity. We state the following theorems, whose detailed assumptions 

and proofs can be found in Section 6 and a supplementary document.

Let β*(d0) = (β1*(d0), …, βp*(d0))T be the true value of β(d0) at voxel d0. We first establish 

the uniform convergence rate of {β̂(d0) : d0 ∈ }.

Theorem 1: Under assumptions (C1)–(C4) in Section 6, as n → ∞, we have

•
(i)  for any d0 ∈ , where →L 

denotes convergence in distribution;

•
(ii) 

Remark 1: Theorem 1 (i) just restates a standard asymptotic normality of the least squares 

estimate of β(d0) at any given voxel d0 ∈ . Theorem 1 (ii) states that the maximum of ||β̂

(d0) − β*(d0)||2 across all d0 ∈  is at the order of . If log(1 + ND) is 

relatively small compared with n, then the estimation errors converge uniformly to zero in 

probability. In practice, ND is determined by imaging resolution and its value can be much 
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larger than the sample size. For instance, in most applications, ND can be as large as 1003 

and log(1 + ND) is around 15. In a study with several hundreds subjects, n−1 log(1 + ND) can 

be relatively small.

We next study the uniform convergence rate of Σ̂η and its associated eigenvalues and 

eigenfunctions. We also establish the uniform convergence of Σ̂ε(d0, d0).

Theorem 2: Under assumptions (C1)–(C8) in Section 6, we have the following results:

i.

;

ii. ∫ [ψl̂(d) − ψ̂l(d)]2 d  (d) = oP(1) and |λl̂ − λl| = op(1) for l = 1, …, E;

iii.

;

where E will be described in assumption (C8) and ψ̂l(d) is the estimated eigenvector, 

computed from ψ̂l = Vξl.

Remark 2: Theorem 2 (i) and (ii) characterize the uniform weak convergence of Σ̂η(·, ·) and 

the convergence of ψ̂l (·) and λl̂. These results can be regarded as an extension of Theorems 

3.3–3.6 in Li and Hsing (2010), which established the uniform strong convergence rates of 

these estimates under a simple model. Specifically, in Li and Hsing (2010), they considered 

yi(d) = µ(d) + ηi(d) + εi(d) and assumed that µ(d) is twice differentiable. Another key 

difference is that in Li and Hsing (2010), they employed all cross products yi(d)yi(d′) for d ≠ 

d′ and then used the local polynomial kernel to estimate Ση(d, d′). In contrast, our approach 

is computationally simple and Σ̂η(d, d′) is positive definite. Theorem 2 (iii) characterizes the 

uniform weak convergence of Σ̂ε(d0, d0) across all voxels d0 ∈ .

To investigate the asymptotic properties of βĵ(d0; hs), we need to characterize points close to 

and far from the boundary set ∂ . For a given bandwidth hs, we first define hs-boundary 

sets:

(20)

Thus, ∂ (hs) can be regarded as a band with radius hs covering the boundary set ∂ , 

while  contains all grid points within such band. It is easy to show that for a 

sequence of bandwidths h0 = 0 < h1 < ··· < hS, we have

(21)

Therefore, for a fixed bandwidth hs, any point d0 ∈  belongs to either  \ ∂ (hs) or ∂ 

(hs). For each d0 ∈  \ ∂ (hs), there exists one and only one  such that
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(22)

See Figure 1 (d) for an illustration.

We first investigate the asymptotic behavior of β̂j(d0; hs) when βj*(d) is piecewise constant. 

That is, βj*(d) is a constant in  and for any d′ ∈ ∂ , there exists a  such 

that βj*(d) = βj*(d′). Let β̃j*(d0; hs) =  ωj̃(d0, dm; hs)βj*(dm) be the pseudo-true value 

of βj(d0) at scale hs in voxel d0. For all d0 ∈  \ ∂ (hS), we have β̃j*(d0; hs) = βj*(d0) for 

all s ≤ S due to (22). In contrast, for d0 ∈ ∂ (hS), β̃j*(d0; hs) may vary from h0 to hS. In 

this case, we are able to establish several important theoretical results to characterize the 

asymptotic behavior of β̂(d0; hs) even when hS does not converge to zero. We need 

additional notation as follows:

(23)

Theorem 3: Under assumptions (C1)–(C10) in Section 6 for piecewise constant {βj*(d) : d 

∈ }, we have the following results for all 0 ≤ s ≤ S:

i.
;

ii.
;

iii.
;

iv.  converges in distribution to a normal distribution with 

mean zero and variance  as n → ∞.

Remark 3: Theorem 3 shows that MASS has several important features for a piecewise 

constant function βj*(d). For instance, Theorem 3 (i) quantifies the maximum absolute 

difference (or bias) between the true value βj*(d0) and the pseudo true value β̃j*(d0; hs) 

across all d0 ∈  for any s. Since β̃j*(d0; hs) − βj*(d0) = 0 for d0 ∈  \ ∂ (hs), this result 

delineates the potential bias for voxels d0 in ∂ (hs).

Theorem 3 (iv) ensures that  is asymptotically normally distributed. 

Moreover, as shown in the supplementary document,  is smaller than the 

asymptotic variance of the raw estimate β̂j(d0). As a result, MASS increases statistical power 

of testing H0(d0).
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We now consider a much complex scenario when βj*(d) is piecewise smooth. In this case, 

βj̃*(d0; hs) may vary from h0 to hS for all voxels d0 ∈  regardless whether d0 belongs to ∂ 

(hs) or not. We can establish important theoretical results to characterize the asymptotic 

behavior of β̂(d0; hs) only when  holds. We need some 

additional notation as follows:

(24)

Theorem 4: Suppose assumptions (C1)–(C9) and (C11) in Section 6 hold for piecewise 

continuous {βj*(d) : d ∈ }. For all 0 ≤ s ≤ S, we have the following results:

i.  |β̃j*(d0; hs) − βj*(d0)| = Op(hs);

ii.
;

iii.
.

iv.  converges in distribution to a normal distribution with 

mean zero and variance  as n → ∞.

Remark 4: Theorem 4 characterizes several key features of MASS for a piecewise 

continuous function βj*(d). These results differ significantly from those for the piecewise 

constant case, but under weaker assumptions. For instance, Theorem 4 (i) quantifies the bias 

of the pseudo true value β̃j*(d0; hs) relative to the true value βj*(d0) across all d0 ∈  for a 

fixed s. Even for voxels inside the smooth areas of βj*(d), the bias Op(hs) is still much higher 

than the standard bias at the rate of  due to the presence of 

(Fan and Gijbels, 1996; Wand and Jones, 1995). If we set Kst(u) = 1(u ∈ [0, 1]) and βj*(d) is 

twice differentiable, then the bias of β̃j*(d0; hs) relative to βj*(d0) may be reduced to . 

Theorem 4 (iv) ensures that  is asymptotically normally 

distributed. Moreover, as shown in the supplementary document,  is smaller 

than the asymptotic variance of the raw estimate βĵ(d0), and thus MASS can increase 

statistical power in testing H0(d0) even for the piecewise continuous case.

3 Simulation Studies

In this section, we conducted a set of Monte Carlo simulations to compare MASS with 

voxel-wise methods from three different aspects. Firstly, we examine the finite sample 

performance of β̂(d0; hs) at different signal-to-noise ratios. Secondly, we examine the 

accuracy of the estimated eigenfunctions of Ση(d, d′). Thirdly, we assess both Type I and II 
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error rates of the Wald test statistic. For the sake of space, we only present some selected 

results below and put additional simulation results in the supplementary document.

We simulated data at all 32,768 voxels on the 64 × 64 × 8 phantom image for n = 60 (or 80) 

subjects. At each d0 = (d0,1, d0,2, d0,3)T in , Yi(d0) was simulated according to

(25)

where xi = (xi1, xi2, xi3)T, β(d0) = (β1(d0), β2(d0), β3(d0))T, and ε(d0) ~ N(0, 1) or χ(3)2 − 3, 

in which χ2(3) − 3 is a very skewed distribution. Furthermore, we set 

, where ξil are independently generated according to ξi1 ~ N(0, 0.6), 

ξi2 ~ N(0, 0.3), and ξi3 ~ N(0, 0.1), ψ1(d0) = 0.5 sin(2πd0,1/64), ψ2(d0) = 0.5 cos(2πd0,2/64), 

and . The first eigenfunction ψ1(d0) changes only along 

d0,1 direction, while it keeps constant in the other two directions. The other two 

eigenfunctions, ψ2(d0) and ψ3(d0), were chosen in a similar way (Figure 3). We set xi1 = 1 

and generated xi2 independently from a Bernoulli distribution with success rate 0.5 and xi3 

independently from the uniform distribution on [1, 2]. The covariates xi2 and xi3 were 

chosen to represent group identity and scaled age, respectively.

We chose different pattens for different βj(d) images in order to examine the finite sample 

performance of our estimation method under different scenarios. We set all the 8 slices 

along the coronal axis to be identical for each of βj(d) images. As shown in Figure 4, each 

slice of the three different βj(d) images has four different blocks and 5 different regions of 

interest (ROIs) with varying patterns and shape. The true values of βj(d) were varied from 0 

to 0.8, respectively, and were displayed for all ROIs with navy blue, blue, green, orange and 

brown colors representing 0, 0.2, 0.4, 0.6, and 0.8, respectively.

We fitted the SVCM model (1) with the same set of covariates to a simulated data set, and 

then applied the three-stage estimation procedure described in Section 2.2 to calculate 

adaptive parameter estimates across all pixels at 11 different scales. In MASS, we set hs = 

1.1s for s = 0, …, S = 10. Figure 4 shows some selected slices of β̂(d0; hs) at s = 0 (middle 

panels) and s = 10 (lower panels). Inspecting Figure 4 reveals that all β̂
j(d0; h10) outperform 

their corresponding β̂j(d0) in terms of variance and detected ROI patterns. Following the 

method described in Section 2.2, we estimated ηi(d) based on the residuals 

by using the local linear smoothing method and then calculate η̂i(d). Figure 3 shows some 

selected slices of the first three estimated eigenfunctions. Inspecting Figure 3 reveals that 

ηî(d) are relatively close to the true eigenfunctions and can capture the main feature in the 

true eigenfunctions, which vary in one direction and are constant in the other two directions. 

However, we do observe some minor block effects, which may be caused by using the block 

smoothing method to estimate ηi(d).

Furthermore, for β̂(d0; hs), we calculated the bias, the empirical standard error (RMS), the 

mean of the estimated standard errors (SD), and the ratio of RMS over SD (RE) at each 

voxel of the five ROIs based on the results obtained from the 200 simulated data sets. For 
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the sake of space, we only presented some selected results based on β3̂(d0) and β̂
3(d0; h10) 

obtained from N(0, 1) distributed data with n = 60 in Table 1. The biases are slightly 

increased from h0 to h10 (Table 1), whereas RMS and SD at h5 and h10 are much smaller 

than those at h0 (Table 1). In addition, the RMS and its corresponding SD are relatively 

close to each other at all scales for both the normal and Chi-square distributed data (Table 

1). Moreover, SDs in these voxels of ROIs with β3(d0) > 0 are larger than SDs in those 

voxels of ROI with β3(d0) = 0, since the interior of ROI with β3(d0) = 0 contains more pixels 

(Figure 4 (c)). Moreover, the SDs at steps h0 and h10 show clear spatial patterns caused by 

spatial correlations. The RMSs also show some evidence of spatial patterns. The biases, 

SDs, and RMSs of β3(d0) are smaller in the normal distributed data than in the chi-square 

distributed data (Table 1), because the signal-to-noise ratios (SNRs) in the normal 

distributed data are bigger than those SNRs in the chi-square distributed data. Increasing 

sample size and signal-to-noise ratio decreases the bias, RMS and SD of parameter estimates 

(Table 1).

To assess both Type I and II error rates at the voxel level, we tested the hypotheses H0(d0): 

βj(d0) = 0 versus H1(d0): βj(d0) ≠ 0 for j = 1, 2, 3 across all d0 ∈ . We applied the same 

MASS procedure at scales h0 and h10. The −log10(p) values on some selected slices are 

shown in the supplementary document. The 200 replications were used to calculate the 

estimates (ES) and standard errors (SE) of rejection rates at α = 5% significance level. Due 

to space limit, we only report the results of testing β2(d0) = 0. The other two tests have 

similar results and are omitted here. For Wβ(d0; h), the Type I rejection rates in ROI with 

β2(d0) = 0 are relatively accurate for all scenarios, while the statistical power for rejecting 

the null hypothesis in ROIs with β2(d0) ≠ 0 significantly increases with radius hs and signal-

to-noise ratio (Table 2). As expected, increasing n improves the statistical power for 

detecting β2(d0) ≠ 0.

4 Real Data Analysis

We applied SVCM to the Attention Deficit Hyperactivity Disorder (ADHD) data from the 

New York University (NYU) site as a part of the ADHD-200 Sample Initiative (http://

fcon1000.projects.nitrc.org/indi/adhd200/). ADHD-200 Global Competition is a grassroots 

initiative event to accelerate the scientific community’s understanding of the neural basis of 

ADHD through the implementation of open data-sharing and discovery-based science. 

Attention deficit hyperactivity disorder (ADHD) is one of the most common childhood 

disorders and can continue through adolescence and adulthood (Polanczyk et al., 2007). 

Symptoms include difficulty staying focused and paying attention, difficulty controlling 

behavior, and hyperactivity (over-activity). It affects about 3 to 5 percent of children 

globally and diagnosed in about 2 to 16 percent of school aged children (Polanczyk et al., 

2007). ADHD has three subtypes, namely, predominantly hyperactive-impulsive type, 

predominantly inattentive type, and combined type.

The NYU data set consists of 174 subjects (99 Normal Controls (NC) and 75 ADHD 

subjects with combined hyperactive-impulsive). Among them, there are 112 males whose 

mean age is 11.4 years with standard deviation 7.4 years and 62 females whose mean age is 

11.9 years with standard deviation 10 years. Resting-state functional MRIs and T1-weighted 
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MRIs were acquired for each subject. We only use the T1-weighted MRIs here. We 

processed the T1-weighted MRIs by using a standard image processing pipeline detailed in 

the supplementary document. Such pipeline consists of AC (anterior commissure) and -PC 

(posterior commissure) correction, bias field correction, skull-stripping, intensity 

inhomogeneity correction, cerebellum removal, segmentation, and nonlinear registration. 

We segmented each brain into three different tissues including grey matter (GM), white 

matter (WM), and cerebrospinal fluid (CSF). We used the RAVENS maps to quantify the 

local volumetric group differences for the whole brain and each of the segmented tissue type 

(GM, WM, and CSF) respectively, using the deformation field that we obtained during 

registration (Davatzikos et al., 2001). RAVENS methodology is based on a volume-

preserving spatial transformation, which ensures that no volumetric information is lost 

during the process of spatial normalization, since this process changes an individuals brain 

morphology to conform it to the morphology of the Jacob template (Kabani et al., 1998).

We fitted model (1) to the RAVEN images calculated from the NYU data set. Specifically, 

we set β(d0) = (β1(d0), …, β8(d0))T and xi = (1, Gi, Ai, Di, WBVi, Ai × Di, Gi × Di, Ai × 

Gi)
T, where Gi, Ai, Di, and WBVi, respectively, represent gender, age, diagnosis (1 for NC 

and 0 for ADHD), and whole brain volume. We applied the three-stage estimation procedure 

described in Section 2.2. In MASS, we set hs = 1.1s for s = 1, …, 10. We are interested in 

assessing the age and diagnosis interaction and the gender and diagnosis interaction. 

Specifically, we tested H0(d0): β6(d0) = 0 against H1(d0): β6(d0) ≠ 0 for the age × diagnosis 

interaction across all voxels. Moreover, we also tested H0(d0): β7(d0) = 0 against H1(d0): 

β7(d0) ≠ 0 for the gender × diagnosis interaction, but we present the associated results in the 

supplementary document. Furthermore, as shown in the supplementary document, the 

largest estimated eigenvalue is much larger than all other estimated eigenvalues, which 

decrease very slowly to zero, and explains 22% of variation in data after accounting for xi. 

Inspecting Figure 5 reveals that the estimated eigenfunction corresponding to the largest 

estimated eigenvalue captures the dominant morphometric variation.

As s increases from 0 to 10, MASS shows an advantage in smoothing effective signals 

within relatively homogeneous ROIs, while preserving the edges of these ROIs (Fig. 6 (a)–

(d)). Inspecting Figure 6 (c) and (d) reveals that it is much easier to identify significant ROIs 

in the −log10(p) images at scale h10, which are much smoother than those at scale h0. To 

formally detect significant ROIs, we used a cluster-form of threshold of 5% with a minimum 

voxel clustering value of 50 voxels. We were able to detect 26 significant clusters across the 

brain. Then, we overlapped these clusters with the 96 predefined ROIs in the Jacob template 

and were able to detect several predefined ROIs for each cluster. As shown in the 

supplementary document, we were able to detect several major ROIs, such as the frontal 

lobes and the right parietal lobe. The anatomical disturbance in the frontal lobes and the 

right parietal lobe has been consistently revealed in the literature and may produce 

difficulties with inhibiting prepotent responses and decreased brain activity during inhibitory 

tasks in children with ADHD (Bush, 2011). These ROIs comprise the main components of 

the cingulo-frontal-parietal cognitive-attention network. These areas, along with striatum, 

premotor areas, thalamus and cerebellum have been identified as nodes within parallel 

networks of attention and cognition (Bush, 2011).
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To evaluate the prediction accuracy of SVCM, we randomly selected one subject with 

ADHD from the NYU data set and predicted his/her RAVENS image by using both model 

(1) and a standard linear model with normal noise. In both models, we used the same set of 

covariates, but different covariance structures. Specifically, in the standard linear model, an 

independent correlation structure was used and the least squares estimates of β(d0) were 

calculated. For SVCM, the functional principal component analysis model was used and β̂

(d0; h10) were calculated. After fitting both models to all subjects except the selected one, 

we used the fitted models to predict the RAVEN image of the selected subject and then 

calculated the prediction error based on the difference between the true and predicted 

RAVEN images. We repeated the prediction procedure 50 times and calculated the mean 

and standard deviation images of these prediction error images (Figure 7). Inspecting Figure 

7 reveals the advantage and accuracy of model (1) over the standard linear model for the 

ADHD data.

5 Discussion

This article studies the idea of using SVCM for the spatial and adaptive analysis of 

neuroimaging data with jump discontinuities, while explicitly modeling spatial dependence 

in neuroimaging data. We have developed a three-stage estimation procedure to carry out 

statistical inference under SVCM. MASS integrates three methods including propagation-

separation, functional principal component analysis, and jumping surface model for 

neuroimaging data from multiple subjects. We have developed a fast and accurate estimation 

method for independently updating each of effect images, while consistently estimating their 

standard deviation images. Moreover, we have derived the asymptotic properties of the 

estimated eigenvalues and eigenfunctions and the parameter estimates.

Many issues still merit further research. The basic setup of SVCM can be extended to more 

complex data structures (e.g., longitudinal, twin and family) and other parametric and 

semiparametric models. For instance, we may develop a spatial varying coefficient mixed 

effects model for longitudinal neuroimaging data. It is also feasible to include nonparametric 

components in SVCM. More research is needed for weakening regularity assumptions and 

for developing adaptive-neighborhood methods to determine multiscale neighborhoods that 

adapt to the pattern of imaging data at each voxel. It is also interesting to examine the 

efficiency of our adaptive estimators obtained from MASS for different kernel functions and 

coefficient functions. An important issue is that SVCM and other voxel-wise methods do not 

account for the errors caused by registration method. We may need to explicitly model the 

measurement errors caused by the registration method, and integrate them with smoothing 

method and SVCM into a unified framework.

6 Technical Conditions

6.1 Assumptions

Throughout the paper, the following assumptions are needed to facilitate the technical 

details, although they may not be the weakest conditions. We do not distinguish the 

differentiation and continuation at the boundary points from those in the interior of .
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Assumption C1. The number of parameters p is finite. Both ND and n increase to infinity 

such that .

Assumption C2. εi(d) are identical and independent copies of SP(0, Σε) and εi(d) and 

εi(d′) are independent for d ≠ d′ ∈ . Moreover, εi(d) are, uniformly in d, sub-Gaussian 

such that  for all d ∈  and some positive constants 

Kε and Cε.

Assumption C3. The covariate vectors xis are independently and identically distributed 

with Exi = µx and ||xi||∞ < ∞. Moreover,  is invertible. The xi, εi(d), and 

ηi(d) are mutually independent of each other.

Assumption C4. Each component of {η(d): d ∈ }, {η(d)η(d′)T: (d, d′) ∈ } and 

{xηT(d): d ∈ } are Donsker classes. Moreover,  Ση(d, d) > 0 and 

 for some r1 ∈ (2, ∞), where || · ||2 is the Euclidean norm. All 

components of Ση(d, d′) have continuous second-order partial derivatives with respect 

to (d, d′) ∈ .

Assumption C5. The grid points  = {dm, m = 1, …, ND} are independently and 

identically distributed with density function π(d), which has the bounded support . 

Moreover, π(d) > 0 for all d ∈  and π(d) has continuous second-order derivative.

Assumption C6. The kernel functions Kloc(t) and Kst(t) are Lipschitz continuous and 

symmetric density functions, while Kloc(t) has a compact support [−1, 1]. Moreover, 

they are continuously decreasing functions of t ≥ 0 such that Kst(0) = Kloc(0) > 0 and 

limt→∞ Kst(t) = 0.

Assumption C7. h converges to zero such that

where c > 0 is a fixed constant and min(q1, q2) > 2.

Assumption C8. There is a positive integer E < ∞ such that λ1 > … > λE ≥ 0.

Assumption C9. For each j, the three assumptions of the jumping surface model hold, 

each  is path-connected, and βj*(d) is a Lipschitz function of d with a common 

Lipschitz constant Kj > 0 in each  such that |βj*(d) − βj*(d′)| ≤ Kj||d − d′||2 for any d, 

. Moreover,  |βj*(d)| < ∞, and max(Kj, Lj) < ∞.

Assumption C10. For piecewise constant βj*(d),  and 

 holds uniformly for h0 = 0 < ··· 

< hS, where Sy =  Σy(d0, d0) and u(j)(hs) is the smallest absolute value of all 

possible jumps at scale hs and given by
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Assumption C11. For piecewise continuous βj*(d),  [Pj(d0, hS)c ∩ Ij(d0, δL, δU)] is 

an empty set and h0 = 0 < h1 < ··· < hS is a sequence of bandwidths such that 

, in which limn→∞ Mn = ∞, 

 and .

Remark 5: Assumption (C2) is needed to invoke Hoeffding inequality (Buhlmann and van 

de Geer, 2011; van der Vaar and Wellner, 1996) in order to establish the uniform bound for 

β̂(d0; hs). In practice, since most neuroimaging data are often bounded, the sub-Gaussian 

assumption is reasonable. The bound assumption on ||x||∞ in Assumption (C3) is not 

essential and can be removed if we put a restriction on the tail of the distribution x. 

Moreover, with some additional efforts, all results are valid even for the case with fixed 

design predictors. Assumption (C4) avoids smoothness conditions on the sample path η(d), 

which are commonly assumed in the literature (Hall et al., 2006). The assumption on the 

moment of  is similar to the conditions used in (Li and Hsing, 2010). 

Assumption (C5) on the stochastic grid points is not essential and can be modified to 

accommodate the case for fixed grid points with some additional complexities.

Remark 6: The bounded support restriction on Kloc(·) in Assumption (C6) can be weaken to 

a restriction on the tails of Kloc(·). Assumption (C9) requires smoothness and shape 

conditions on the image of βj*(d) for each j. For piecewise constant βj*(d), assumption (C10) 

requires conditions on the amount of changes at jumping points relative to n, ND, and hS. If 

Kst(t) has a compact support, then Kst(u(j)2/C) = 0 for relatively large u(j)2. In this case, hS 

can be very large. However, for piecewise continuous βj*(d), assumption (C11) requires the 

convergence rate of hS and the amount of changes at jumping points.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 

Illustration of a jumping surface model for β1(d) and boundary sets over a two-dimensional 

region D: (a) , , a disjoint partition of  as the union of four disjoint regions with white, 

yellow, blue green, and red representing , , , and , a representative voxel d0 ∈ , 

an open ball of d0, B(d0, h), a maximal path-connected set P1(d0, h), and P1(d0, h)c; (b) 

three-dimensional shaded surface of true {β1(d): d ∈ } map; (c) three-dimensional shaded 

surface of estimated {β̂1(d0): d0 ∈ } map; and (d) , , a disjoint partition of  =  ∪ 

, ∂D(1)(h0) ⊂ ∂D(1)(hs), two representative voxels d0 and  in , two open balls of 

, an open ball of d0 ∈ ∂D(1)(hs) ∩ , B(d0, hs), and P1(d0, hs)
c.
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Figure 2. 

A schematic overview of the three stages of SVCM: Stage (I) is the initialization step, Stage 

(II) is the Multiscale Adaptive and Sequential Smoothing (MASS) method, and Stage (III) is 

the hypothesis test.
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Figure 3. 

Simulation results: a selected slice of (a) true ψ1(d); (b) true ψ2(d); (c) true ψ3(d); (d) ψ̂1(d); 

(e) ψ̂
2(d); and (f) ψ̂3(d).
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Figure 4. 

Simulation results: a selected slice of (a) true β1(d); (b) true β2(d); (c) true β3(d); (d) β̂
1(d0); 

(e) β2̂(d0); (f) β̂
3(d0); (g) β1̂(d0; h10); (h) β̂

2(d0; h10); and (i) β̂3(d0; h10).
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Figure 5. 

Results from the ADHD 200 data: five selected slices of the four estimated eigenfunctions 

corresponding to the first four largest eigenvalues of Σ̂η(·, ·): (a) ψ̂1(d); (b) ψ2̂(d); (c) ψ̂
3(d); 

and (d) ψ̂4(d).

Zhu et al. Page 27

J Am Stat Assoc. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 6. 

Results from the ADHD 200 data: five selected slices of (a) β6̂(d0), (b) β̂
6(d0; h10), the 

−log10(p) images for testing H0: β6(d0) = 0 (c) at scale h0 and (d) at scale h10, where β6(d0) 

is the regression coefficient associated with the age×diagnostic interaction.
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Figure 7. 

Results from the ADHD 200 data: The raw RAVENS image for a selected subject with 

ADHD (a), mean ((b) GLM and (d) SVCM) and standard error ((c) GLM and (e) SVCM) of 

the errors to predict the RAVENS image in (a), where GLM denotes general linear model.
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