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Abstract

We investigate the implications of a unified spatio-chromatic basis for image compression

and reconstruction. Different adaptive and general methods (PCA, ICA, and DCT) are ap-

plied to generate bases. While typically such bases with spatial extent are investigated in

terms of their correspondence to human visual perception, we are interested in their appli-

cability to multimedia encoding. The performance of the extracted spatio-chromatic spatial

patch bases is evaluated in terms of quality of reconstruction with respect to their potential

for data compression. Since independent component analysis is not as widely used as it

should be, compared to the other decorrelation methods applied here in a new domain, we

also provide a review of ICA. The results discussed here are intended to provide another

path towards perceptually-based encoding of visual data. This leads to a deeper understand-

ing of the role played by chromatic features in data reduction.
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1 Introduction

Decorrelation for redundancy reduction has a long history in image processing. In particular, vari-

ants of the Principal Component Analysis (PCA) [1] for orthogonal decorrelation have been part
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of the arsenal of data reduction for many years. The main idea here is to account for most of the

variance in the data using the first several principal axes, and then reduce the influence of further

terms either by directly omitting these or by adopting a bit allocation scheme to deprecate their

influence.

PCA can tell us how Nature processes vision, if we consider natural images. In particular, we

expect to see color-opponent channels arise in a natural fashion, simply by automatic inspection of

the data. But as well, we hope to glean evidence of how spatial processing operates. And in fact,

in terms of human visual system quantum catches Ruderman et al. [2] found not only such color-

opponent structures but also spatial derivative-like filters, operating similarly and independently in

each opponent-color and luminance channel.

Ruderman analyzed hyperspectral image sequences of natural scenes, looking for a decorrelated

color-space basis. In part, Ruderman et al. built on the work of Webster et al. [3] in arguing for a

representation involving a log LMS (long-medium-short) space.

Their work was based on a very simple scheme: first, using natural images derived from measured

hyperspectral data and transformed to log space, Ruderman et al. formed small tiles, 3 pixels by 3

pixels, from an assembly of such images. Treating these 9 pixels as a vector, with each pixel con-

taining 3-vector color information, leads to 27-vector data for PCA analysis. Re-assembling the

color information, these color patches could also be reconstituted as 3× 3 color squares, for view-

ing. The Principal Component Analysis then produced 27 such 3× 3 color checkerboards, ranked

in order of singular values from most influential to least important. The answer that arose was that,

for the foliage data that was used, these color squares naturally grouped into gray luminance, a

blue-yellow axis, and a red-green axis, in that order.

In terms of spatial components, for each of the color channels the spatial structure of the bases

resembled the derivative-like and frequency-analysis-like structures arising in a Fourier analysis of

grayscale images.

The latter result was not surprising (although the decorrelation from color was): Olshausen and

Field’s seminal work on receptive field properties [4] implied that the receptive fields in mam-

malian primary visual cortex simple cells are spatially localized, oriented, and spatially bandpass

in the sense of being selective to structure at different spatial scales, for non-color luminance in-

puts. Visually, these fields resemble a 2-dimensional Discrete Cosine Transform (DCT) basis in an

N ×N checkerboard structure (see, e.g., [5], and below), but with diagonal as well as axis-aligned

basis images.

PCA has also been applied to non-interpolated, raw Color Filter Array (CFA) data [6], with the

result that the recovered basis finds only color information, not luminance information, so is not

appropriate for modeling spatial information.

Here we are interested in considering in detail how the use of Independent Component Analysis

(ICA) as opposed to PCA affects color still image compression based on such color checkerboard

basis image blocks. In the next section, we explicate the ICA approach.
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2 Related Work

2.1 ICA for Signal Separation

As opposed to an orthogonal PCA basis, some workers have also considered an Independent Com-

ponent Analysis (ICA) of natural images [7]. ICA proceeds by producing a minimally redundant

set of basis functions. To do so, a set of maximally statistically independent basis vectors is found.

To understand what this means let us consider two stochastic variables x1 and x2, and also the

coefficients s1, s2 of our data projected on two different axes. Their joint probability density is

p(x1, x2). The separate probability densities for x1 or x2, their marginal probability, can be com-

puted e.g. by p1(x1) =
∫

p(x1, x2)dx2. Then x1 and x2 are independent if and only if in the new

coordinate system, where the new variables are s1, s2,we have

p(s1, s2) = p1(s1)p2(s2) (1)

This leads to the condition

E{h1(s1)h2(s2)} = E{h1(s1)}E{h2(s2)}, (2)

where E means expectation and h1, h2 can be essentially any two integrable scalar functions of the

s; the above is therefore a very strong condition on the distributions of s1 and s2. It says that any

nonlinear transforms of the independent components are uncorrelated — the covariance between

different independent components is zero. In comparison, PCA decorrelates but does not guarantee

independence. That is, projecting the data to the decorrelated axes, the distribution of two resulting

coefficients s1 and s2 fulfill

cov(s1, s2) = E{(s1 − s̄1) · (s2 − s̄2)}

= E{s1 · s2} − E{s1}E{s2}

= 0

(3)

This corresponds to eq.(2) with h1, h2 being linear and therefore constitutes a much weaker state-

ment than does eq. (2). However, PCA (“whitening”) is still useful as a pre-processing step for

ICA, and we use it that way here. The vocabulary used for ICA is somewhat different than that

used for PCA. ICA is one way of solving the Blind Source Separation problem. Just as for PCA,

if we have a k-dimensional feature-vector x , then if there are k basis vectors we can approximate

x as

x ≃ A s (4)

where the k columns of A hold our ICA basis vectors, and s is the set of weights. In ICA, the

matrix A is called the mixing matrix and s is a multidimensional stochastic variable of independent

sources. E.g., in PCA, vector x could be a grayscale image, and A would consist of orthogonal

eigenimages (cf. [8]). However, for ICA the columns of A are not orthogonal. Therefore to find the

weights s we must use the Moore-Penrose pseudoinverse A
+ of A , applied to the target image.
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(a) (b)

(c) (d)

Fig. 1. (a): Mixed signals as measured. (b): Source signals as recovered. (c): Actual source signals. (d): PCA

basis.

The pseudoinverse is referred to as the set of ICA filters. Matrix A is called the mixing matrix

since it produces signals mixed from the sources; whereas W = A
+ is called the separating

matrix:

s = W x = A
+

x (5)

ICA has been used for multimedia data fusion as well [9,10] — in this case, ICA recovers common

latent subspaces for combined media. Typically, however, PCA is used [11,12], applied to much

smaller feature spaces than whole images.

The process of finding these independent ICA vectors is based on the Central Limit Theorem,

which states that a sum of non-Gaussian random variables is more like a Gaussian than are its

individual components. But the independent sources sought can be written as sums of the observed

data. Thus, we can move toward independent sources by trying to find a sum of the observed data

over vectors which have maximum non-Gaussianity. This property can be measured in terms of

higher order statistics, e.g. kurtosis or negentropy (see below).

ICA can be viewed as a linear generative model with non-Gaussian priors for the hidden variables.

To see the power of ICA, consider for the moment 1D signals (these could be audio signals, for

example, after [13]). Suppose two audio sources generate signals which are then measured by two

microphones placed at random locations near the sources: in a linear model, each microphone

generates a signal given by a linear combination of the two original source signals. Since the

sources do not in principle affect each other in any way, they are independent. Recovery of the

original sources is a classical problem in blind source separation; it is termed the “cocktail party

problem”.

Suppose the two signals x 1 and x 2 as measured are as shown in Fig. 1(a). Comparing the actual

(independent) sources, in Fig. 1(c), with the ICA recovered versions, in Fig. 1(b), we note that ICA
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does not necessarily produce the correct order or sign for the recovered sources — but this will

turn out not to matter.

Clearly, if we can indeed identify correct sources in a set of measured signals, then we can do

a better job in compression by allocating more bits to the actual sources, and fewer to vectors

deemed not truly independent. If we have k-dimensional data, and can obtain an expressive, sparse

set of underlying mechanisms for image generation, then coefficients in terms of this underlying

set will effectively be of reduced rank. Therefore we can describe the image data well with a small

basis, and can as well assign bits from a bit-budget as needed to the surviving coefficients. After

entropy-based coding, since the entropy is greatly reduced by focusing on the correct, underlying

features of the data, we arrive at a substantial compression.

PCA does do a good job of identifying the most-variance to least-variance set of orthogonal di-

rections from a measured dataset, but the underlying data may not indeed actually be orthogonal.

Using PCA, however, we are constrained to the orthogonality assumption, yielding results as in

Fig. 1(d) that may not be as useful as they could be if the correct, non-orthogonal sources were

determined using ICA.

Since the independent sources are modeled as a linear combination of the measured data, we look

for an ICA basis such that the nongaussianity of the combination of measured data is maximized.

Thus we seek local maxima of nongaussianity of a linear combination

si =
k∑

j=1

wjx ji , i = 1..N (6)

where xji is the observed data, j = 1..k, i = 1..N consisting of N observations of k-vectors, under

the constraint that the variance is constant. Each local maximum gives one independent component.

The idea in “sparse” coding is to represent data with components such that only a small number

of them are “active” at the same time. It turns out that this is equivalent, in most situations, to

finding components that are maximally nongaussian. The latter property can be characterized by

the kurtosis (the fourth-order cumulant), which is zero for a Gaussian. However, a more robust

measure is formed by the negentropy, the difference between the entropy for a Gaussian and that

for the current basis, using the observation that for a given standard deviation σ, a Gaussian Gσ

has maximum entropy compared to other probability distributions.

Thus one arrives at a gradient descent method for determining the ICA basis, and since this can be

phrased as a fixed-point problem, mechanisms similar to the Contraction Mapping Theorem can

be brought to bear for existence, uniqueness, and convergence rate. The method we use here is the

FastICA algorithm [14].

However, a simple explanation using the kurtosis is indeed illuminating: for a zero-mean variable

y, the kurtosis is defined as

κ(s) = E{s4} − 3
(
E{s2}

)2

(7)
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and if we re-scale the variance to unity, this reduces to just

κ(s) = E{s4} − 3 (8)

so that clearly we may use just the expectation of the fourth moment of the signal. However,

including the −3 means that κ may be negative, so we maximize |κ(s)|.

An algorithm for finding an independent source combination then proceeds by first “whitening”

the data using PCA; i.e., we diagonalize the signal’s product-matrix into an orthogonal matrix U

and a diagonal one D : for a k ×N matrix of signals x ,

x x
T = U D U

T , U and D are k × k (9)

Then in the new coordinate system, x̃ = x whitened,

x whitened = x̃ ≡
√

(x x T )−1 x = (U D
−1/2

U
T ) x ≡ M x (10)

so now x̃ x̃
T = I . Hence we only need to search for a new, orthogonal matrix Ã such that

x̃ = Ã s (11)

with Ã Ã
T

= I . Once Ã is determined, we can go back to a mixing matrix in terms of the

original, unwhitened x via W = Ã
+

M .

Thus we first whiten x , and then seek a column w̃ of an orthogonal matrix W̃ , with ‖w̃ ‖ = 1,

that maximizes the departure of the kurtosis from zero:

I =
max
w̃

∣∣∣∣∣
1

N

N∑

i=1

(
w̃

T
x̃ [i]

)4

− 3

∣∣∣∣∣ where x̃ [i] is the ith column of x̃ (12)

This leads to an Euler equation as follows:

∂I

∂w
=

4

N

N∑

i=1

[(
w̃

T
x [i]

)3

x̃ [i]
]

= 0 (13)

Sample code for such an algorithm is given in Appendix A. For a more detailed discussion of ICA

the interested reader is referred to [15].

2.2 ICA for Imagery

Data reduction for images using ICA has indeed been found useful for sparse coding, i.e., finding

underlying sources such that any given image is naturally represented in terms of just a small

number of these: ICA [7] in fact reproduces results for optimizing sparseness [4]. Typically, the

technique is used for the extraction of hidden sources generating observed data. For example,

consider the image in Fig. 2. The RGB values in this image form clusters, as in shown in the left of

6



Fig. 2. Basis vectors for a given color distribution from right image as found by PCA (red) and ICA (green).

Fig. 3. Spatio-chromatic basis obtained from PCA on 4× 4×RGB image patches of the example in Fig. 2.

Fig. 2, with orthogonal PCA axes shown in red. In contrast, the ICA axes (in green) show that the

image is actually comprised of just a few independent sources. It should be noted that ICA is data

adaptive: we would like to develop a set of basis vectors that is specific for a certain type of image

contents. We could also target at developing a universal basis from a training set, but an adaptive

model is bound to be more expressive since, as we see from Fig. 2, the hidden characteristics of

content are extracted.

For grayscale imagery [4,7], PCA indicates that a mutually orthogonal spatial basis for imagery

consists of bandpass filters similar to 2-dimensional DCT basis images, but with some non-rectangular

orientation present (cf. Fig. 3). For grayscale, how one creates such an image is by randomly se-

lecting N -pixel by N -pixel square patches from an image set, vectorizing these N2 values, and

identifying the basis as the eigenvectors of the mean-subtracted covariance matrix. In contrast,

ICA of grayscale imagery produces basis functions that are again bandpass, but are more obvi-

ously oriented and are similar to Gabor functions — Gaussian-windowed sine waves [4,7].

2.3 ICA basis functions for natural images

A survey of applications of ICA to the processing of different media (image/video, multimodal

brain data, audio, text, and combined data) is provided by [16]. However, while ICA has been

widely used for classification, implications of ICA for multimedia compression have not been

greatly studied, and usually have been discussed in simple terms of dimensional reduction. Studies

including a bit allocation scheme have so far considered only audio [17], and grayscale imagery

[18–21], with inclusion of color in still imagery only in our previous preliminary papers [22,23].
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Fig. 4. Basis patches for DCT decomposition of spatio-chromatic 4× 4×RGB patches. Sorted in order of

decreasing variance-accounted-for from left to right and top to bottom.

When color is included, our patch vectors become N × N × 3 structures, for RGB images. PCA

proceeds as stated above, but for these longer vectors, and the resulting structure can be visualized

as in Fig. 3 (shown for patch size N = 4). Note that the PCA basis is adaptive to the image (but in

fact does not change much, for natural imagery we have tried).

In [2], Ruderman et al. first extended color PCA, as in the red vectors in Fig. 2, to a spatial patch

domain by using 3 × 3 patches of 3-vector color data. In comparison, in a sense Fig. 2 shows

results for 1 × 1 spatial patches. Ruderman et al. conclude that for foliage images, PCA of log

long-medium-short visual color channel data tends to decorrelate spatial processes from chromatic

ones, leading to 9 spatial features times 3 color ones. The latter are, in order, luminance, blue-

yellow, and red-green. This result was extended by Wachtler et al. [24,25] by replacing PCA with

ICA, again for LMS data but now using 7× 7 patches.

Color images and stereo vision have also been investigated in [26], which states that the derived

independent components again yield a separation of basis vectors into luminance and opponent

colors. However, we find this separation is of lesser extent than for PCA (see Fig. 5).

Besides allowing for conclusions regarding human visual perception, these chromatic bases with

spatial extent are very interesting from an image compression point of view. In the following we

take a closer look at the implications of encoding visual data with respect to these bases.

3 Data specific basis functions

The goal of our analysis is to compare the suitability of different data-adaptive basis functions for

compressing color visual data. Therefore, a standard set of color images is chosen that spans a

variety of outdoor scenes containing plants, animals, humans and artificial objects. The perspec-

tives of the images range from detail shots to panoramas 2 . In the following we will consider three

different sets of bases — two data-adaptive methods, viz. PCA and ICA, and one general basis, the

discrete cosine transform DCT, moved here into a color domain such that it resembles the PCA.

The DCT basis is a descendant of the Fourier transform. To apply it to the spatio-chromatic setting

we simply treat the two spatial patch extents and the index of RGB color components as a three

dimensional rectangular prism, e.g., a 3×3×3 cube. Fig. 4 shows the resulting basis re-assembled

as a color picture. Note the similarity of this artificially generated basis to that obtained by PCA

2 We use the 23 publicly available stills from http://www.cipr.rpi.edu/
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Fig. 5. Basis patches for ICA of spatio-chromatic 4 × 4 × RGB patches. Sorted in order of decreasing

variance.

in Fig. 3. The most prominent difference is a slightly changed orientation of the directional fre-

quencies that in Fig. 4 are axis-aligned . A similar explanation applies to the fact that the main

color axes are chosen differently. Also note that the ordering by the variance-accounted-for is quite

different because of the different alignment of the basis. In the DCT case the pure color dimensions

appear later in the sequence after several luminance frequencies. In the PCA case all three of them

appear as the most significant vector. We note that indeed color seems to be fairly separated from

luminance, and also that the order is luminance, blue-yellow, and red-green.

Fig. 5 shows the result of ICA performed on the standard image set, for a particular patch size.

While the results of DCT and PCA can be interpreted as a frequency decomposition of the data,

the functions obtained by ICA exhibit a combined localization in space and frequency [26,22].

This basis seems to somewhat separate opponent color from luminance — but much less so than

already illustrated in Fig. 3 for the PCA case: ICA entangles color and luminance. The patterns are

not rectangular, but instead resemble Gabor functions.

Besides deciding on a method of basis generation, we have to make a choice about the size of

the patches we will operate on. To create a basis, the analysis is performed on square pixel neigh-

borhoods. We randomly sampled a total of 50000 patches over the images of the given set. The

resulting basis functions then reflect the statistical properties of the presented data.

As patch size increases, the sparse nature of the ICA basis patches becomes more evident. Fig. 6

shows the ICA basis sets for 5×5, 8×8, and 16×16 patches. We see that features captured by the

ICA basis are indeed localized in space.

To use the basis for reconstruction, the images are regularly tiled into an arrangement of non-

overlapping patches. As mentioned above in the discussion of eq. (4), the coefficients for each patch

of the image can be obtained by a linear transform using the filter patches. These are essentially

the inverse of the basis patches. Respectively, going back from the coefficients to the actual image

data is done by transforming the coefficients in a linear combination of the basis patches.

3.1 Quantization and entropy encoding of coefficients

After having projected the image data to the new basis the resulting coefficients have to be reduced

in some way. If no reduction takes place no compression will apply. The method we have im-

plemented performs a variance-based quantization. The discretized output can then be efficiently

compressed using entropy-based compression.
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(a)

(b)

(c)

Fig. 6. ICA generated spatio-chromatic basis functions for (a): 5×5; (b): 8×8; and (c): 16×16 patches. As

the patch size increases, there are N ×N × 3 patches in each sub-figure, meaning 75 patches, 192 patches,

and 768 patches respectively (To save space, just the top-importance basis patches are shown).

The coefficients are given as continuous (floating point) numbers. To apply entropy coding, we

have to quantize them first. In our tests we use the method of assigning each basis vector a number

of bits proportional to its standard deviation [27]. The proportionality factor is chosen to fulfill a

given overall contingent of bits. Given the number of bits, each channel of coefficients is uniformly

quantized from its minimum to its maximum occurring value.

Now, having expressed the coefficients as discrete numbers, we can apply an entropy-based encod-

ing, e.g. Huffman coding, or other variable length coding (VLC). The VLC compression indicated

in the graphs below is a theoretical limit that can be computed from the sum of entropies for all

channels by exponentiation to the base 2. The rate of compression, then, is the factor by which

the estimated encoded data is smaller than the original data, which has been stored with 8 bits per

channel.

3.2 Quality of reconstruction

Besides considering the size of the data after compression, we most importantly have to look at

the quality of the reconstruction obtained from the reduced representations. Here we assess this

quality using the peak signal to noise ratio (PSNR), in decibels (dB)

10



PSNR = 10 log10

(
G2

MSE

)
(14)

MSE =

∑N
i

∑M
j

∑
k∈RGB(pk(i, j)− ok(i, j))

2

3MN
(15)

where G is the maximum representable value (e.g. 255) and MSE is the mean squared error of

the reconstructed picture, pk(i, j), with respect to the original, ok(i, j). A drawback of the PSNR

is that it does not actually reflect the distortion as perceived by a human observer Nevertheless,

perception-based image quality metrics have been found to offer little advantage over PSNR as a

measure to evaluate the quality of reconstruction [28], and PSNR is used below for our subsequent

evaluation.

4 Evaluation of different bases

The efficiency of a basis is understood as the relation between image quality retained for an achiev-

able rate of compression (or vice versa). Thus, we have conducted a number of tests for different

sets of color image bases (ICA, PCA, and DCT). Each basis is generated and applied separately

over a range of squared patch sizes from 1 × 1 to 16 × 16, with each dimension × RGB. The

first case is similar to just interpreting the pixel colors, as in Fig. 2. As patch size increases, the

influence of neighbors is included more and more. Another variable in the comparison is the com-

pression parameter. This is the ratio to the overall maximum number of bits for the stream. Note

that the achievable compression entirely depends on the entropy of the data.

4.1 Compression vs. quality using spatio-chromatic bases

The importance of each basis function for representing the data can be determined by looking at the

variance of its coefficients. Mostly, these coefficients are centered around zero. The basis vectors

found by PCA and ICA each cover most of the variance in the first few basis patches, with a steep

falloff.

Fig. 7(a,b) provides a comparison of the entropy-based variable length coding of the spatio-chromatic

coefficients of ICA vs. PCA. Here the property of ICA to result in sparsely coded coefficients be-

comes apparent. The lower entropy of the quantized data results in significantly higher compression

rates. Nevertheless, as the error surface for ICA is more bent to the back we note that the PSNR for

the mid-range compression rates is lower than for PCA. Both plots show a significant improvement

of the compression/error tradeoff as the patch size increases.

DCT results are very similar to those for PCA. The DCT uses the N × N × 3 generalization of

that in the JPEG standard, which applies its algorithm to 3 color planes treated separately and must

therefore of necessity give poorer compression than the DCT here since it ignores color correlation.

Moreover, we consider a range of patch sizes, not just 8× 8.

11



(a) (b) (c)

Fig. 7. Entropy-based compression of a set of color images using (a): ICA and (b): PCA generated spa-

tio-chromatic basis functions: color indicates PSNR as per (c). Note that for about equal pseudocolors (equal

PSNR), ICA generally has a much better (higher) compression ratio.

(a) (b)

Fig. 8. Entropy-based compression of Fig. 9 a) specific ICA, b) specific PCA. Again, note that for about

equal PSNR, ICA has a better compression ratio.

The main result from Fig. 7 is that ICA is considerably better than PCA, particularly at high

compression rates, in that it exhibits higher compression for the same PSNR. And for equal com-

pression, quality is increased for increased patch sizes.

4.2 Performance of a specialized basis

The previous examples have shown the quality of reconstruction for general bases that were ob-

tained from the entire set of images using bases obtained from the entire set of images. The follow-

ing analysis considers just one image (e.g., we display the results for that in Fig. 9). This allows us

to tailor a specialized basis for a particular image.
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In the specific encoding test in Fig. 8, ICA performs significantly better than PCA for large patch

sizes. It achieves higher compression for the same quality of reconstruction. Also, a trend can be

noted that ICA tends toward increased quality with larger patch sizes while PCA roughly stays

constant. The DCT statistics for this image are not included here because they are very similar

to the outcome of the PCA for patch sizes larger than 4. These particular plots are for the image

in Fig. 9a. A visual comparison in Fig. 9(b,c) shows a detail of the top image. The lower half is

the same image compressed to the same projected file size (12:1 compression ratio not including

basis data size) using a DCT basis of the same block size (16× 16). DCT exhibits strong blocking

artifacts while these are hardly noticeable in the ICA version. This is borne out by a comparison

of the PSNR (for the same compression ratio in each) of 35.55 for ICA versus 31.97 for PCA. In

comparison, baseline sequential JPEG compression at the same compression ratio (quality factor

35) gives a PSNR of 31.94 (without chroma subsampling, the use of which would generate an

inappropriate comparison).

Another example is given in Fig. 10. Here, the compression ratio is 7:1. Again, ICA clearly out-

performs PCA: for the same compression ratio, ICA yields a PSNR of 39.69, while that for PCA

is only 31.40. Standard JPEG compression at the same compression ratio (quality factor 40 with

no chroma subsampling) yields a PSNR of only 29.32. The PCA-based compression and JPEG

yield blocky ringing around details, and a change in the pattern on the roof. So PSNR does indeed

capture image quality, and the plots capture a large amount of information relating compression to

quality. Other images we studied also had similar graphical results.

5 Summary

The computation of individual bases for restricted sets of images is interesting from both vision

and image processing points of view. While the first point has been subject of previous work

targeting analogies to human perception, we have tried to illuminate the latter. The results indicate

a significant difference comparing the compressibility of coefficients from ICA and PCA. The

sparse coding property of ICA bases has been shown to have a noticeable impact on the efficiency

of subsequent entropy compression.

In previous work, we showed that color produces more efficient compression than simply using

grayscale [22]. As well, we see here that ICA entangles color and luminance. Generally, ICA

bases certainly outperform DCT and PCA for large patch sizes and low rate encoding. We see that

the PSNR is a good indicator for the superior quality of the ICA basis in the chosen compression

configuration.

Since we found that the spatial and spectral dimensions are almost independent in a PCA basis,

we should ask what advantage in general the spatio-chromatic approach (i.e., the use of 3D basis

functions) has over using space and color basis functions that are actually independent. 3 The

combined encoding of the channels can in fact only improve compression of the coefficients. One

3 We are indebted to an anonymous referee who asked for this issue to be explicitly addressed.
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(a)

(b)

(c)

(d)

Fig. 9. (a): Original image. (b): Compression ratio 12:1 using an image specific ICA basis (PSNR 35.55),

and (c): Same compression ratio using DCT compression (PSNR 31.97). Both are for 16× 16 patches. (d):

JPEG compression result (no chroma subsampling) — PSNR 31.94.
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(a)

(b)

(c)

Fig. 10. (a): Original image. (b): Compression ratio 7:1, using ICA basis (PSNR 39.69), and detail of roof.

(c): Using PCA basis (PSNR 31.40), and detail. Both are for 12 × 12 patches. (d) Using JPEG (no chroma

subsampling) gives PSNR 29.32. Details are better preserved using ICA.
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can make a sphere packing argument to justify this: a Cartesian-lattice (corresponding to an inde-

pendent encoding) is increasingly inferior to the densest possible packing of vector quantization

sites as the dimension (number of jointly encoded channels) rises. While this argument is based on

signal processing alone, it is further the high correlation among the color channels that provides the

main reason for our approach. Our comparison with standard JPEG compression, which treats each

color plane separately, indeed shows the advantage of linking color and spatial dimensionality.

A problem inherent in the approach of adaptive bases is that they first have to be generated in a

computationally expensive preprocessing. Furthermore, a basis specific to one data set would have

to be stored along with the coefficients to allow for decoding. This would certainly add overhead to

the compressed data. Nevertheless, in a constrained domain it is possible to prepare basis functions

that can be re-used.

Because of the proximity of the outcome of independent component analysis to receptive fields

of simple cells in the V1 visual cortex, it could be possible to derive a more perceptually-based

error metric for evaluation of the quality of visual representations. Advances of research in the

human perceptual system may lead the way to an error metric that more closely corresponds to the

assessment by a human observer.

Another interesting property of the ICA basis is that it resembles expressive features of the data.

This property also hints at the relationship between ICA filters and wavelet analysis. Taking this

into account, it seems worthwhile to consider the compressed coefficients as a higher-level feature

description of the visual data. In terms of video analysis these features might be useful for object

tracking. The inclusion of motion results in a temporal spatio-chromatic basis [23]. As well as

revealing implications for video compression, this may indeed also bear relation to human percep-

tion.

Appendix A

Using eq. (13), the algorithm for ICA based on maximizing kurtosis may be phrased as follows:

(1) Initialize w randomly, with ‖w ‖ = 1
(2) Gradient ascent:

w ← w +
1

N

N∑

i=1

[(
w

T
x [i]

)3

x [i]
]

(3) Re-normalize: w ← w /‖w ‖
(4) Stop when w old ·w new ≃ 1

A simple matlab program for this procedure is as follows:

[k,N] = size(x); % N data observations of k-vectors.

[xmu, xcentered] = centering(x);
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% subtracts means from each of j=1..k components.

[x_tilde, M] = whitening(xcentered); % eq. (9)

% so now is Whitened: x_tilde*x_tilde’=eye(2);

% and Orthogonal: x_tilde(1,:)*x_tilde(2,:)’==0

% Now use kurtosis:

% For whitened data E(xˆ2)==1, the kurtosis is the fourth central moment - 3.

% initialize a column of W:

maxNumIterations = 50;

w = 1/sqrt(2)*ones(2,1);

st = 1/sqrt(N);

w = w/st;

epsilon = 1e-7;

alpha = 1.0;

itn = 1;

done = 0;

allkk = [];

while (itn <= maxNumIterations) && (˜done)

tempvec = zeros(n,1);

for i=1:N

tempvec = tempvec + (w’*x_tilde(:,i))ˆ3 * x_tilde(:,i);

end

tempvec = 4/N*tempvec;

wnew1 = w + alpha * tempvec;

wnew2 = w - alpha * tempvec;

wnew1 = wnew1/norm(wnew1)*(1/st);

wnew2 = wnew2/norm(wnew2)*(1/st);

kk1 = kurt(wnew1,x_tilde);

kk2 = kurt(wnew2,x_tilde);

if kk1>kk2 % gradient ascent

kk=kk1; wnew=wnew1;

else

kk=kk2; wnew=wnew2;

end

allkk = [allkk kk];

done = (abs((wnew’*w)-N)<=epsilon); % stopping criterion.

w = wnew;

itn = itn+1;

end

plot(allkk); disp(w);

% So first ICA component is s = w’*x_tilde.

% ============================

function kk=kurt(w,x_tilde)

% std(snew)==1 if make norm(w)=sqrt(N), since x_tilde*x_tilde’ == eye(k)
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w = w/norm(w)*sqrt(size(x_tilde,2));

snew = w’*x_tilde; % so that snew*snew’=1.0; also mean(snew)==0.0

kk = abs( mean( snew.ˆ4 )-3 );
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