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Abstract

The goal of this paper is to model cognitive control related activation among predefined regions of 

interest (ROIs) of the human brain while properly adjusting for the underlying spatio-temporal 

correlations. Standard approaches to fMRI analysis do not simultaneously take into account both 

the spatial and temporal correlations that are prevalent in fMRI data. This is primarily due to the 

computational complexity of estimating the spatio-temporal covariance matrix. More specifically, 

they do not take into account multi-scale spatial correlation (between-ROIs and within-ROI). To 

address these limitations, we propose a spatio-spectral mixed effects model. Working in the 

spectral domain simplifies the temporal covariance structure because the Fourier coefficients are 

approximately uncorrelated across frequencies. Additionally, by incorporating voxel-specific and 

ROI-specific random effects, the model is able to capture the multi-scale spatial covariance 

structure: distance-dependent local correlation (within an ROI), and distance-independent global 

correlation (between-ROIs). Building on existing theory on linear mixed effects models to conduct 

estimation and inference, we applied our model to fMRI data to study activation in pre-specified 

ROIs in the prefontal cortex and estimate the correlation structure in the network. Simulation 

studies demonstrate that ignoring the multi-scale correlation leads to higher false positives.
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1 Introduction

Functional magnetic resonance imaging (fMRI) is a powerful tool for investigating brain 

function. Typical fMRI data consists of a set of discrete times series measured on three-

dimensional volume elements, called voxels. We consider an fMRI data set from an 

experiment on frontal cortex function in the human brain, where the broader scientific 
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interest is to investigate if the rostro-caudal axis of the frontal lobes is organized 

hierarchically, i.e., if posterior regions are functionally subordinate to anterior regions. To 

this end, we take the important first step to examine how the mean activation level at pre-

specified regions of interest (ROIs) respond to tasks associated with one or two dimensional 

cues. Exploring patterns of activation, using both local (within-ROI) and global (between-

ROIs) correlations in the data, will contribute to understanding of the function of the frontal 

cortex in the human brain.

Typical analyses of fMRI data, using normal linear models (known as general linear models 

in the neuroscience literature), ignore spatial correlation in estimating model parameters but 

partially incorporate the correlation into inference procedure, e.g., through random field 

theory (Worsley et al. 1992). Ignoring intrinsic correlation may lead to misleading or 

erroneous conclusions. In particular, ignored spatial correlation will underestimate standard 

errors, leading to Type I errors in the presence of positive spatial correlation (Dubin 1988). 

In fMRI data, such positive spatial correlation in voxel-level analysis is expected because 

the response of a particular voxel is likely to be very similar to the responses of its 

neighboring voxels within same ROI. This is problematic because test statistics across 

voxels should not be independent of each other. In the case of analysis at pre-defined ROIs, 

the time series in each ROI are typically averaged and the standard analysis is applied (AV-

OLS), resulting in the same inferential problems as voxel-level analysis.

A significant amount of work has been done to model the temporal correlation in fMRI data; 

autoregressive order of q1 (AR(q1)) models by Bullmore et al. (1996), autoregressive 

moving average (ARMA) models by Locascio et al. (1997), and general linear models 

applied to smoothed time series data by Worsley and Friston (1995). Bullmore et al. (2001) 

proposed a wavelet approach for the purpose of resampling, but this approach could be 

extended to disentangle non-stationary temporal correlation in fMRI data analysis. However, 

much less work has been done to capture the spatial or spatio-temporal correlation. The most 

common approach to analyzing fMRI data is to fit a general linear model at each voxel after 

a series of pre-processing steps including scanner drift correction, motion correction, 

correction for cardiac and respiratory-related physiological noise, co-registration between 

the subject-specific anatomical and functional images, normalization to a common 

anatomical space (for multi-subject analysis) and spatial smoothing (Huettel et al. 2004). 

Recently, Zhu et al. (2009) proposed a new approach to characterize stochastic noise in 

magnetic resonance data, e.g., noise from physiological processes and rigid body motion by 

using the Rician distribution.

On the spatio-temporal front, Katanoda et al. (2002) addressed spatial dependency by 

borrowing information from the six nearest neighboring voxels in three orthogonal 

directions while working in the Fourier domain. This short physical distance approach is 

similar to the one proposed by Worsley et al. (1996), where data are spatially smoothed with 

a Gaussian kernel. Another type of smoothing technique proposed by Worsley et al. (2002) 

involves spatial smoothing of the sample autocorrelation. Bowman (2005) used a two-stage 

data-driven cluster analysis for spatio-temporal estimation and inference of localized brain 

activity. In related work, Bowman (2007) proposed a mixed effects spatio-temporal model 

to disentangle spatial and temporal correlation in Positron Emission Tomography scan data. 
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For the spatial correlation, a parametric structure was assumed and a functionally defined 

distance metric based on mean activity profiles was proposed. Ombao et al. (2008) used a 

spatio-spectral approach to take into account spatial and temporal correlations in brain signal 

data. The main idea of this approach was to employ location-dependent, i.e., spatially-

varying, temporal spectrum to understand the underlying spatio-temporal processes. Perhaps 

most closely related to the model we develop, Lange and Zeger (1997) proposed an 

approach working in the Fourier frequency domain to address the temporal correlation in 

fMRI data. Estimation of regression coefficients was based on least squares while allowing 

the hemodynamic response function (HRF) to be different from voxel to voxel. For 

inference purposes, they estimate spatial correlation of the coefficients based on generalized 

least squares estimation. However, intrinsic spatial correlation is not incorporated into 

parameter estimation nor is the global correlation structure modeled. A general complex 

fMRI activation model which characterized voxels based on task related magnitude and 

phase change in the complex-valued sampling space of MRI was proposed by Rowe (2005), 

which could be considered as another class of spatio-temporal model in the complex plane.

It should be noted that fully Bayesian approaches are also available to model spatial and 

temporal correlations in fMRI data. A Bayesian two-stage hierarchical model that captures 

only temporal correlation in the first stage and short- and long-range spatial correlation in 

the second stage was proposed by Bowman et al. (2008). Assuming equal correlation 

between all pairs of voxels within an anatomical region significantly reduces computational 

cost, however it can oversimplify the spatial correlation structure. Genovese (2000) used a 

nonlinear Bayesian hierarchical model, which allowed the HRF to be different from voxel-

to-voxel to indirectly accommodate spatial dependence. More generally, hierarchical 

multivariate conditionally autoregressive models have been the prevailing favorite for 

analyzing spatio-temporally correlated data (e.g., Carlin and Banerjee 2003). For fMRI data 

specifically, a Bayesian adaptive spatial smoothing approach was proposed by Yue et al. 

(2010) to capture nonstationary spatial correlation, where the Gaussian smoothing kernel 

varied across space and time. However smoothing approaches are known to add spatial 

correlation on top of the underlying spatial correlation, which can make it even more 

difficult to disentangle spatial dependency in data. Even though spatial smoothing can 

improve signal-to-noise ratio, spatial resolution will decline as a result, which is a major 

benefit of using fMRI data to begin with.

In this article, we develop a statistical model for estimating activation in specific regions of 

interest while taking into account spatial and temporal correlation. Although the global 

correlation can be interpreted as the functional connectivity between the ROIs, our primary 

goal is not estimating the global correlation but estimating task related activation patterns 

while properly adjusting for temporal, within-ROI, and between-ROIs correlations. To 

achieve these goals, we develop a model that includes both fixed and random terms. The 

fixed terms are used to estimate ROI-specific activation effects of stimuli. The random terms 

capture the temporal correlation (within a voxel), and the multi-scale spatial correlation: 

local spatial correlation and global correlation. It is noteworthy that the term multi-scale is 

used to indicate more than one scale. Modeling the global correlation structure allows for the 

possibility of a negative-valued correlation between ROIs and provides insight into the 
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functional connectivity structure. Common approaches employing any spatial covariance 

function, e.g., exponential, Gaussian, or Matérn family (Chilés and Delfiner 1999), to 

capture the global correlation cannot allow the correlation to be negative becasue spatial 

correlation is always assumed to be positive. We examine the validity of our model via two 

simulation studies and utilize it to investigate higher cognitive control function in the 

anterior premotor cortex (prePMD), the lateral prefrontal cortex (PFC), and the primary 

visual cortex. The latter is believed to be implicated in the task though not with the higher 

cognitive control function.

2 Methods

2.1 Overview of the Proposed Model

We now provide a brief overview of the elements in our proposed spatio-spectral mixed 

effects model. First, we analyze the fMRI time series data in the Fourier (spectral) domain 

because the Fourier coefficients are approximately uncorrelated across frequencies. This 

offers substantial simplification of the covariance structure of the data and thus significantly 

reduces computational burden (which is perhaps historically one of the main barriers to 

fitting spatio-temporal fMRI models). Moreover, the spectral approach can flexibly model 

the temporal correlation structure because it does not require any parametric assumption 

about temporal correlation, (e.g., autoregressive or moving average). In our analysis, 

following the general principles in Sun et al. (2004), we examined two bands within the 

range of (0, 0.2] Hz. Second, we introduce both fixed and random effects for proper 

estimation and inference. The activation effect of a stimulus on a particular ROI will be 

modeled as a fixed effect and will be estimated by pooling information across all voxels 

within that ROI. Additionally, each voxel in an ROI will have its own voxel-specific effect, 

decomposed into an ROI-specific fixed effect plus a voxel-specific random deviation. The 

latter is utilized to model the local spatial correlation which is essential for providing 

efficient and correct estimates of ROI-specific stimulus effects on activation. Finally, each 

ROI will have its own random intercept, independent of the stimulus, which will be 

employed to model the covariance between ROIs. These terms will be used to assess global 

correlation, a measure of functional connectivity of the brain network, which is defined as 

the coherence between two time series (Muller et al. 2001). Here, coherence is computed 

separately for the real and imaginary parts. We further clarify the concept of multi-scale 

spatial correlation in Figure 1: the local spatial correlation within each ROI is denoted by 

thin arrows and also global correlation among ROIs is denoted by thick arrows in the figure.

2.2 Spatio-Spectral Mixed Effects Model

We now develop our model in more detail. Suppose that there are P external stimuli, C 

many ROIs and Vc many voxels within the c-th ROI. We define ψb(·) and ψd(·) to be 

unspecified functions that generate valid covariance matrices, where only ψb(·) is a function 

of Euclidean distance. Define the time series at voxel υ in ROI c to be Ycυ(t), t = 1, …, T. 

This would be the data typically observed in an fMRI study. Using a time domain model, we 

would need to consider three types of correlation, namely: (i.) the local spatial correlation 

between voxels in the same ROI, (ii.) the correlation between different ROIs and (iii.) the 

temporal correlation within a voxel.
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Consider the following (time-domain) spatio-temporal mixed-effects model for the fMRI 

time series:

(1)

•  is the ROI-specific activation level fixed effect due to stimulus p;

•  is a zero-mean voxel-specific random deviation which accounts for the local 

spatial covariance between voxels within an ROI. Here, we specify the covariance 

structure to be

Note that when two voxels belong to different ROIs then their corresponding b's are 

uncorrelated.

• dc(t) is a zero-mean ROI-specific signal with a covariance structure ℂov(dc(t), 

dc′(t)) = ψd(c, c′) that will be utilized to model connectivity across ROIs; and

• εcυ(t) is the noise that takes into account temporal correlation within a voxel 

(conditional on ROI- and voxel-specific random effects) under the separability and 

additivity assumptions regarding spatio-temporal correlation.

Our primary goal with this model is to make inferences with activation level, i.e., linear 

combination of the β's, taking into account spatio-temporal correlation.

As might be obvious, the resulting correlation structure can be quite complex. However, the 

complexity in the spatio-temporal structure can be reduced by considering the analogue 

model in the frequency domain. The corresponding Fourier coefficient at the fundamental 

frequency ωk = k/T, where k = 0, …, T − 1, of the observed fMRI time series {Ycυ(t), t = 1, 

…, T} is

Here, Ycυ(ωk) is complex-valued with real and imaginary parts approximately uncorrelated 

under regularity conditions given in Shumway and Stoffer (2006). Although these 

conditions are difficult to confirm, they appear reasonable and have been employed in fMRI 

data analysis (e.g., Lange and Zeger 1997; Katanoda et al. 2002; Lazar 2008).

Define the Fourier coefficients of the other series {Xp(t)}, {dc(t)} and {εcυ(t)} to be, 

respectively, Xp(ωk), dc(ωk) and εcυ(ωk), which are also all complex-valued. Since the 
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Fourier transformation is a linear operator, the frequency-domain analogue of the model in 

Equation (1) is

(2)

Complexity of the covariance structure is reduced in the frequency domain because, under 

regularity conditions on the stationary error series {εcυ(t)}, the Fourier coefficients are 

approximately asymptotically uncorrelated across a pre-specified set of Fourier frequencies 

(Brockwell and Davis 1991).

In practical fMRI data analysis, scientists are typically interested in a frequency band rather 

than a single frequency. Define Ωℓ to be a particular frequency band consisting of the set of 

frequencies  and denote the number of frequencies at band Ωℓ to be Nℓ = 

2nℓ. Some studies define Ycυ(Ωℓ) to be the “response” vector for frequency band Ωℓ,

Let  denote the fixed effects of the stimuli in ROI c; let dc(Ωℓ) and 

 be the ROI-specific random intercept and voxel-specific random effects 

due to external stimuli, respectively. We assume that the ROI-specific random effect 

depends on the frequency band, while the voxel-specific random effect is invariant to 

frequency. The parallel interpretation of this assumption in the time domain is that from a 

multi-scale correlation perspective, i.e., local spatial correlation does not change over time 

but global correlation between ROIs can vary over time. Let εcυ(Ωℓ) be a measurement error 

term at a voxel υ in ROI c, which is parallel to the temporal correlation in the time domain. 

Then we can express the response Ycυ(Ωℓ) with a linear mixed effects model at a frequency 

band Ωℓ,

(3)

where c = 1, …, C is the index for the ROI and υ = 1, …, Vc is the index for the voxel within 

ROI c. The dimensions of Yc(Ωℓ) for ROI c, dc(Ωℓ), and εc(Ωℓ) are NℓVc × 1, X(Ωℓ) is NℓVc 

× (VcP), and βc and bc are VcP × 1. It is noteworthy that the elements of each vector βc and 

dc(Ωℓ) are constant within an ROI. Let dc(Ωℓ) denote the constant value of dc(Ωℓ).

Assumptions on the Spatio-Spectral mixed effects model (3).

(A1.) The spatial process in each ROI is weakly stationary and isotropic, that is, (Ycυ(Ωℓ)) 

is constant within ROI c, and the covariance between any two voxels only depends on the 

Euclidian distance between the two voxels (Cressie 1993). That is, this model assumes local 

stationarity, which allows each ROI to have localized underlying spatial process.
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(A2.) The three random terms, dc(Ωℓ), bcυ, and εcυ(Ωℓ) are independent of each other and 

normally distributed: d(Ωℓ) = dR(Ωℓ) + idI(Ωℓ) in which 

, j ∈ {R, I} where the superscripts R and 

I denote the real and imaginary part of complex number, respectively, and Nq(μ, Σ) denotes 

the q-dimensional normal density with mean μ and covariance matrix Σ. In ROI c, 

 for stimulus p. We denote the n × n identity matrix by 

n, then ε(Ωℓ) = εR(Ωℓ) + iεI (Ωℓ) in which εj(Ωℓ) ∼ NVtot(0, (1/2)f(Ωℓ) Vtot), j ∈ {R, I}, where 

f(Ωℓ) is the spectrum at frequency band Ωℓ. Moreover, , p = 1, …, P are assumed to be 

independent of each other, dR(Ωℓ) is independent of dI (Ωℓ), and 

 which is expected to hold when T is large 

(Shumway and Stoffer 2006).

(A3.) The covariance matrix Σbc for any external stimulus is assumed to encompass local 

spatial dependency between any pairs of voxels within ROI c:

(4)

where  is the variance for the pth stimulus at any voxel within an ROI c, g(·) is an 

unspecified function, and ‖υ − υ′‖ denotes Euclidian distance between two voxels υ and υ′. 

We estimate g(·) using the empirical variogram, which is a nonparametric method of 

estimating the spatial covariance matrix. Note that although we take a nonparametric 

approach to estimating g(·), one could use a parametric form such as exponential, Gaussian, 

or Matérn family (Chilés and Delfiner 1999). When looking at ROI c, it is assumed that 

 for c ≠ c′. Finally, we assume that

(5)

for c ≠ c′, where i and j indicate any voxels in clusters c and c′, respectively. When c = c′, 

the variance is expressed as follows. Let Zcυ(Ωℓ) denote Ycυ(Ωℓ) − X(Ωℓ)[βc + bcυ]. Then,

(6)

The first equality holds due to the assumption that dc(Ωℓ) is independent of εcυ(Ωℓ) and 

εcυ(Ωℓ) is independent of εcυ′(Ωℓ) for any voxels υ and υ′ in ROI c if υ ≠ υ′. The second 

equality is simply due to the definition of Zcυ(Ωℓ).

Employing the spectral approach simplifies the spatio-spectral covariance structure because 

the covariance matrix of a pre-specified number (independent of T) of the Fourier 

coefficients is approximately diagonal. As a consequence, it allows us to fit spatio-spectral 

models with much reduced computational complexity compared to a time domain approach. 
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Moreover, spectral analysis relaxes assumptions about the temporal correlation structure 

which are commonly required in time domain analysis, e.g., a parametric assumption such as 

AR. However, as pointed out in the discussion of Lange and Zeger (1997), the spectral 

approach may not be ideal for analyzing fMRI data resulting from an event-related design. 

We believe though that it could still work for short block designs.

3 Estimation and Inference

We first define some notations and operators. Define stc to be an operator that stacks two 

matrices by row or means horizontal concatenation. For example, stc(A, B) = [A, B], where 

the two matrices A(m × n1) and B(m × n2) should have the same dimension in row and the 

dimension of [A, B] in column is n1 + n2. For ease in exposition, model (3) is rewritten at a 

frequency ω instead of a frequency band Ωℓ by using matrix notation,

(7)

• Y(ω) = [Y11(ω), …, Y1V1 (ω), Y21 (ω), …, YCVC (ω)]T is a Vtot × 1 response vector 

at a frequency ω;

• X(ω) = stc( Vtot ⊗X1(ω), …, Vtot ⊗XP(ω)) in which Xp(ω) is the convolution 

between the p impulse function and the HRF;

• β = [β1, β2, …, βP]T is VtotP × 1 vector where 

for p ∈ {1, …, P};

• b = [b1, b2, …, bP]T is Vtot P × 1 vector where 

for p ∈ {1, …, P};

• K = K1 ⊕ K2 ⊕ ⋯ ⊕ KC , where ⊕ denotes direct sum and Kj is a vector of length 

Vj whose elements are all one, j = 1, …, C, and d(ω) = [d1(ω), …, dC(ω)]T;

• ε(ω) = [ε11(ω), …, ε1V1 (ω), ε21(ω), …, εCVC (ω)]T.

Due to the fact that Y(ω) is approximately uncorrelated with Y(ω′) where ω ≠ ω′, each Y(ω), 

 can be treated as an uncorrelated response vector.

3.1 Estimation of β, b, and ℂov(b)

Suppose that we have M many frequency bands and a band m ∈ {1, …, M} consists of nm 

Fourier frequencies. Define a voxel-specific random term  where 

. Then by following the matrix notation, γ = β + b. Conditioning on b and 

d(ω), (Y(ω)|b, d(ω)) = X(ω)γ + d(ω) and ar(Y(ω)|b, d(ω)) = f(ω) Vtot, which provides a 

theoretical justification for using an Ordinary Least Square (OLS) estimator for γ. The 

unconditional mean and variance are (Y(ω)) = X(ω)β and  ar(Y(ω)) = Γ(ω) = 

X(ω)ΣbXT(ω) + KΣd(ω)KT + f(ω) Vtot, where Σb is a block diagonal matrix that can be 

expressed as the direct sum of the spatial covariance matrices of b for each stimulus: 
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. Moreover, each  is also a block diagonal matrix because 

we assume that the voxel-specific random effect due to a stimulus p in ROI c is independent 

from that in ROI c′ when c ≠ c′. Therefore, can also be expressed as the direct sum of 

the spatial covariance matrices for the random effects in each ROI corresponding to external 

stimulus p, i.e., .

The OLS estimator of γ is

(8)

Then, by definition γ̃ = β + b in which γ̃ and β play the role of a response and independent 

variable, respectively, in a regression framework. We apply iterative generalized least 

squares as described below to estimate β and the spatial covariance for b, which is less 

computationally demanding than direct optimation of the likelihood function.

Step 1. Estimate β given Σb = ℂPVtot. Define a column vector with a length Vc, ξc= [1, 

…, 1]T where c = 1, …, C. Construct a matrix F* = ξ1 ⊕ξ2⊕ ⋯ ⊕ξC. Then, construct a 

block diagonal design matrix F, which is the Kronecker product of P and F*, F = P ⊗ 

F*. Now estimate β̃ = [FTF]−1 [FT γ̃].

Step 2. Using β̃ from Step 1, compute R̃ = γ̃ − β̃.

Step 3. Estimate Σˆb by estimating the empirical variogram of R̃.

Step 4. Update .

Steps 2 - 4 are repeated until convergence, i.e., the norm of the difference between 

current and updated values is less than 10−6. The resulting naive estimator of b is bˆ = γ̃ 

— βˆ.

3.2 Estimation of ℂov(d(ω)) and the spectrum f(ω)

As defined in equation (6), Zcυ(ω) = Ycυ(ω) − X(ω)[βc + bcυ]. Also, it can be seen that Zcυ 

(ω) can be expressed as dc(ω) + υcυ(ω). Using this relationship, it is possible to estimate the 

diagonal elements of the covariance matrix ℂov(d(ω)) as follows. Let  denote the 

sample covariance between two random variables A and B, and N(Vc) indicate the number of 

possible pairs of voxels in ROI c. For an ROI c, by the Weak Law of Large Number the 

estimator

(9)
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is unbiased for  in (6), i.e., the average of the covariances of the Zcυ's 

between any two voxels in ROI c is an unbiased estimator for .

The off-diagonal entries of ℂov(d(ω)) can be estimated by taking the average of the 

covariances of all possible pairs between two ROI's as discussed in (5). This results in an 

unbiased estimator for the off-diagonal elements of the covariance matrix ℂov(d(ω)). For 

example, for ROI's c and c′, when c ≠ c′,

(10)

where υ and υ′ indicate any voxels in ROI c and c′, respectively. Then the unbiased 

estimator for ℂov(Ycυ(ω), Yc′υ′(ω)) is

(11)

It is natural to estimate the spectrum f(ω) by using the residuals after estimating d(ω) in 

equation (7). However using the following relationship enables us to estimate the spectrum 

without estimating d(ω): for any voxels υ in ROI c,

(12)

Then, the spectrum at a frequency ω is . Using equation (9) 

and the sample variance of Z at a frequency ω, the spectrum for the real part is estimated:

(13)

where f*(ω) = (1/2)f(ω), using only the real parts of Zcυ(ω) and . However, using the 

imaginary parts also results in fˆ*(ω) because of the assumption [εR(ω), εI(ω)]T ∼ N2Vtot(0, 

(1/2)f (ω) 2Vtot). Therefore, in the end, we can utilize the mean of the two fˆ*(ω)'s (one 

calculated using the real parts and one calculated using the imaginary parts) as a more robust 

estimate for the spectrum f(ω). When considering a frequency band Ωℓ instead of a single 

frequency, we also need to average over all the frequencies that are elements of Ωℓ.

3.3 Estimation of ℂov(βˆ)

For performing any inference about a linear combination of β, it is necessary to estimate the 

covariance of βˆ in addition to the point estimates described above. The covariance of βˆ can 

Kang et al. Page 10

J Am Stat Assoc. Author manuscript; available in PMC 2014 November 14.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



be estimated by utilizing all the variance component estimates, Σb, Σd(ω), and f(ω). From 

Step 4 in Section 3.1,

(14)

where ℂov(γ̃) can be computed using equation (8). It is obvious that

(15)

where Γ(Ωi) = ar(Y(Ωi)) as defined before. By combining (14) with (15), the covariance 

matrix of βˆ is estimated as

(16)

where F is defined in Step 1 in Section 3.1.

3.4 Inference

To answer the scientific question, “Which region(s) of interest in the brain is (are) activated 

when a certain type of stimulus is presented to a subject?”, it is necessary to test hypotheses 

at each ROI while adjusting for multiple comparisons. For example, common hypotheses of 

interest that we are able to test are  at each ROI, where as before stimulus 

type ‘1’ indicates the baseline condition. Our model and estimation described above yield 

the point estimates and covariance of βˆ that enable us to compute t-statistics corresponding 

to the null hypothesis and perform inference about a linear combination of β. It is important 

to emphasize that our modeling approach takes into account local spatial correlation as well 

as global correlation between any pairs of ROI's, yielding more accurate standard error 

estimates and reducing the chance of Type I errors. Of course, when there is more than one 

ROI of interest, it is still necessary to adjust for the multiple testing problem by employing 

one of many possible methods, e.g., Bonferroni correction or False Discovery Rate 

(Benjamini and Hochberg 1995).

4 Simulations

We explored and validated our approach via simulation studies, where we generated 

spatially and temporally correlated time series with length 128 at each voxel. Then we 

computed the error rate at an ROI for each method used to analyze the data. More details 

about data generation, methods, and comparisons are described below.
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First, we assumed that there were five regions of interest which contain 100 voxels per ROI. 

At each voxel, we generated spatially and temporally correlated time series with length 128 

using autoregresive model with order one (AR(1)) and exponential spatial covariance 

function. For the sake of simplicity, only two boxcar external stimuli were used for the mean 

signal. For the first set of simulation, the five ROIs were all assumed to be null ROIs, i.e., 

, c = 1, …, 5. However, for the second set of simulation, ROIs 4 and 5 were 

assumed to be non-null ROIs, i.e., .

To analyze the simulated data, we fitted a common general linear model employing AV-

GLM. This approach only took into account the underlying temporal correlation using 

AR(1) model. In addition, three different models were employed to analyze the data: 1) our 

Spatio-Spectral model (SS), 2) the spatio-spectral model without taking into account the 

global correlation between ROIs (LSS), and 3) the spatio-spectral model without taking into 

account the local spatial correlation within a ROI (GSS). The hypothesis of interest was 

 and  at each ROI. We controlled the FDR at 0.05 to manage 

the multiple comparisons. For the first set of simulation, if any ROI was claimed to be 

significant, then it was counted as an error. For the second set of simulation, if any ROI 

among ROIs 1, 2, and 3 was claimed to be significant, or either ROI 4 or ROI 5 was not 

claimed to be significant, then it was counted as an error too. Tables 1 and 2 summarizes the 

results for 500 repetitions for each set of simulation.

Each row corresponds to each method, i.e., AV-GLM, SS, LSS, and GSS, and each column 

corresponds to each ROI in each table. The last column is for the average error rate for each 

method over ROIs. As shown in Table 1, when all the five ROIs are null, SS outperforms all 

the other approaches by showing the smallest error rate 0.07. This indicates that ignoring the 

underlying local and global correlations tends to inflate t-statistics and consequently makes 

more Type I errors. When there were two non-null ROIs, AV-GLM works better than the 

others due to its strong tendency to reject the null hypothesis as shown in the columns for 

ROIs 4 and 5 in Table 2. However, AV-GLM shows higher error rates for the null ROIs, i.e., 

higher false positives. The average error rate of SS is the smallest because its small loss in 

the error rates for ROIs 4 and 5 is well compensated by its ample savings in the error rates 

for ROIs 1 through 3. These two simulations empirically show that ignoring the underlying 

correlations in fMRI data results in much less reliable conclusions and our spatio-spectral 

model outperforms the other approaches which do not properly take into account the 

underlying correlations. We further fortify this claim by analyzing real fMRI data using both 

AV-GLM and SS models in Section 5.

5 Analysis of fMRI Data

To identify brain activation patterns in a study designed to test cognitive control related 

activation in the prefrontal cortex (PFC) of the human brain, we utilized our proposed 

spatio-spectral mixed effects model. Here, we describe the background, motivation, and 

description of these data that are relevant to the current analysis of detecting patterns of 

activation and correlation in the functioning of the rostro-caudal axis of the frontal lobes.
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Prior work (e.g., Long and Badre 2009; Badre and D'Esposito 2007) has demonstrated that 

the anterior premotor cortex (prePMd) is activated in an experimental situation where a 

subject selects one of two perceptual dimensions (i.e., shape or texture) of a stimulus that is 

relevant to then selecting a response. In the present experiment, participants were trained to 

associate four stimulus shapes with four keypress responses and four stimulus textures (e.g., 

webbed, streaked) with four keypress responses. Note that the response sets associated with 

shape and texture overlap and so making a correct response requires first selecting whether 

shape or texture is the relevant cue dimension. Thus, participants also learned to associate 

two colors with the shape dimension and two colors with the texture dimension. During the 

experiment, they would be presented a shape, shaded with a particular texture and 

surrounded by a colored box. Based on the color of the box, they would choose one of the 

four keypress responses based on either the associations they learned for shape or for 

texture.

Critically, for a given block of trials either one dimension would be cued throughout (D1) or 

two dimensions could be cued (D2). On D2 blocks, cognitive control is required in order to 

select the relevant dimension based on color. On D1 blocks, the same dimension is always 

relevant so minimal cognitive control is required. Based on prior work (Badre and 

D'Esposito 2007; Badre et al. 2009), the contrast of D2 > D1 should produce activation in 

prePMd. We term this region of interest ROI 1. Hierarchical theories of rostro-caudal frontal 

organization have suggested that regions rostral to prePMd (e.g., lateral frontal cortex, 

Brodmann area 9/46) are less likely to be activated by this specific control demand, but 

rather are involved in more abstract control (Koechlin et al. 2003; Badre 2008). Thus, we 

also tested a region rostral to prePMd in lateral PFC close to that previously been associated 

with higher order control (e.g., Badre and D'Esposito 2007); we term this ROI 2. 

Importantly, given the cortico-cortical connectivity of frontal cortex (Badre and D'Esposito 

2009), though we do not predict a strong D2 > D1 effect in ROI 2, we do expect ROI 1 and 

ROI 2 to demonstrate functional connectivity, as they are both members of a common 

network. Finally, D2 versus D1 contrast is not predicted to reflect differences in low-level 

perceptual demands. Thus, we also defined an ROI in primary visual cortex (ROI 3) as an 

internal marker in which the D2 > D1 contrast is not expected to produce activation.

In the experiment, there were 288 trials, 144 of each dimension condition (D1, D2). Each 

trial lasted 2 seconds, with a variable inter-trial interval of 0-8 seconds. The trials were 

grouped into six scanning runs, with 48 trials per run. Each run is 4 minutes long and there 

are 4 blocks per run, 12 trials each, which follow an ABBA format for dimension type (e.g., 

D1, D2, D2, D1). The order of dimension condition is counterbalanced across subjects.

Whole-brain imaging was performed using the Siemens 3T TIM Trio MRI system at the 

Brown University MRI Research Facility. Functional images were acquired using a 

gradient-echo echo-planar sequence (TR = 2 s; TE = 30 ms; flip angle = 90; 33 axial slices, 

3 × 3 × 3.5 mm). After the functional runs, high-resolution T1-weighted (MP-RAGE) 

anatomical images were collected for visualization (TR = 1900 ms; TE = 2.98 s; flip angle = 

9; 160 sagittal slices, 1 × 1 × 1 mm). Head motion was restricted using firm padding that 

surrounded the head. Visual stimuli were projected onto a screen and viewed through a 

mirror attached to a matrix eight-channel head coil.
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Preprocessing and data analysis were performed using SPM2 (http://www.fil.ion.ucl.ac.uk/

spm/) and MATLAB (MathWorks, Natick, MA). Following quality assurance procedures to 

assess outliers or artifacts in volume and slice-to-slice variance in the global signal, 

functional images were corrected for differences in slice acquisition timing by resampling 

all slices in time to match the first slice. Images were then motion corrected across all runs. 

Functional data were then normalized based on Montreal Neurological Institute stereotaxic 

space but were not spatially smoothed.

We utilized model (3) to the data collected from a single subject to see if we could find any 

activated ROI(s) among three given ROIs in which there are 20 voxels per ROI. The model 

contains only three covariates, which are for D1, D2, and the instruction period (IP). The 

three stimuli are convolved with the canonical HRF used in SPM2 and are denoted by Xd1, 

Xd2, and Xip, respectively. The corresponding regression coefficients are , , and 

in ROI c, where  is of main interest to test the hypothesis, , c ∈ {1, 

2, 3}. In this analysis, two frequency bands are used: lower frequency 0.07 − 0.12 and 

higher frequency 0.15 − 0.20 Hz. The approximate band segmentation was justified by the 

work of Curtis et al. (2005), although the band segmentation still depends on subjective 

decision. The local spatial covariance matrices within each ROI and global covariance 

matrix among ROIs were estimated following the procedures in Section 3.1 and 3.2. Given 

the point estimates and covariance of βD2 − βD1 at each ROI, p-values were computed based 

on t-statistics and ROIs were evaluated for their statistical significance while controlling the 

FDR at the level of 0.1.

The point estimates with their standard errors and corresponding p-values based on onesided 

test at ROIs are illustrated in Table 3. The difference in blood-oxygen-level dependence 

(BOLD) signals due to the two external stimuli is the most significant in the rostral sector of 

the dorsal premotor cortex (prePMd) area (ROI 1), while it is also significant in lateral PFC 

(ROI 2), after controlling FDR at 0.1. To investigate the differnce between our model and a 

standard approach, we also analyzed the data using AV-GLM. The p-values corresponding 

to ROIs 1, 2, and 3 are < 0.01, < 0.01, and 0.10, which are all claimed as active at FDR = 

0.1. Because D2 versus D1 contrast is not expected to reflect differences in ROI 3 as 

described before, it can be concluded that ignoring the local spatial correlation and global 

correlation in fMRI data results in misleading scientific findings. This result is consistent 

with our claim supported via simulation studies in Section 4, i.e., t-statistics are inflated with 

ignored underlying positive correlation.

The three ROIs are illustrated in Figure 2, where ROI 1, ROI 2, and ROI 3 are denoted by 

black dots in each axial slice of the brain image. Their xyz-coordinates in the brain are also 

included, where the origin is at the center of the brain.

In Figure 3, the global correlation among the three ROIs is summarized using heat maps, in 

which a lighter color indicates higher correlation and darker colors indicate lower 

correlation. Even though we do not formally test for statistical significance of the correlation 

between any two ROIs, within both the real and imaginary parts, it appears that the 

correlation between ROIs 1 and 2 is higher than any of the other pairwise correlations over 

all frequency bands. The suggested functional coupling between prePMd (ROI 1) and lateral 
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PFC (ROI 2) is consistent with the known neuroanatomy. More importantly, the results 

provide further empirical evidence supporting the novel hypothesis that these structures 

along the rostro-caudal axis are part of a functional network (Badre and D'Esposito 2009). 

Understanding the functional organization is fundamental to comprehending frontal lobe 

function, which can shed light on the association between focal brain damage in this region 

and impaired ability of making some action decision. Some of the behavior disorders 

include attention disorder, poor memory, diminution of spontaneous activity, and sensory 

inattention. Also, it is known that schizophrenia and dementia can result from frontal lobe 

abnormalities. Therefore, it is critical to understand frontal lobe function, frontal lobe 

abnormailities, and characteristics of the behavior disorders for diagnosis and prognosis of 

the mental disorders.

6 Conclusion

To overcome the main barrier of fitting spatio-temporal model in fMRI data analysis, we 

propose a spatio-spectral model which reveals the essential features of fMRI data. Our 

model consists of the fixed and random terms which capture ROI-specific fixed effects due 

to external stimuli, temporal correlations, and multi-scale spatial correlations. The 

covariance structure in the frequency domain is much simpler than that in time domain, 

which significantly reduces the computational burden of simultaneously estimating the 

temporal and spatial correlation typically present in fMRI data. In practice, when the 

scientists have predetermined regions of interest, computational cost in fitting spatio-spectral 

models is further minimized. Our model can be used to determine active ROI(s) not by 

looking at each voxel separately, but by pooling information from all the voxels in each ROI 

as well as taking into account global correlation between ROIs. In our model, although we 

assume that each voxel within an ROI shares the same mean response, i.e., functional 

homogeneity, it would be unrealistic to assume the homogeneity of the variance of the mean 

response estimator due to the spatio-temporal random effects. Therefore, declaring an ROI 

to be active does not necessarily imply that all voxels within the ROI are active. Conversely, 

it is possible that an ROI having a relatively small proportion of active voxels would not be 

declared active. Although this might be argued to be a limitation of our model, it is not 

obvious whether or not an ROI having only one or very few active voxels should be claimed 

active, and to our knowledge there are no practical guidelines on this issue.

Our model requires estimating spatial correlation, which is quite different from employing 

spatial smoothing. While the objective of both approaches is to take into account intrinsic 

spatial correlation among voxels, our model tries to estimate the correlation as opposed to 

using spatial smoothing which introduces another type of spatial correlation on top of 

underlying spatial correlation. Spatial smoothing may be more computationally efficient, 

however in terms of flexibility and inference, our approach is believed to outperform spatial 

smoothing methods. Specifically, when there is a negative-valued correlation between two 

ROIs, our model can capture it via an ROI-specific random term, while this would not be 

possible in other common approaches based on spatial smoothing. Consequently, we can 

argue that inference about regression coefficients based on our model tends to be less biased 

compared to spatial-smoothing approaches. Nonparametric estimation of the local spatial 

covariance matrix enables us to properly and naturally handle nonstationarity of spatial 
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correlation. Moreover, allowing ROI-specific random effects at different frequency bands 

disentangles the interaction between spatial and temporal correlations, which would not be 

easily dealt with in other approaches.

The model described in Bowman (2007) and our spatio-spectral model shares similarities 

and dissimilarities. The two models try to avoid spatial smoothing to capture spatial 

dependency in neuroimaging data, but rather to model the spatial dependency. The most 

distinct difference between the models is that our model operates in the frequency domain 

while the Bowman's model operates in the time domain. Moreover, the lack of appreciating 

the between-ROI global correlation in the Bowman's model makes it very different from our 

model. The LSS approach discussed in Section 4 would be similar to the Bowman's model 

in terms of not considering global correlation. However, it is not feasible to conclude that 

our model outperforms the Bowman's model only based on the simulation studies.

One limitation of our model is the isotropic assumption described in Section 2.2. If the size 

of an ROI is large, then it might be unrealistic that the underlying spatial process in the ROI 

is isotropic. However, we assessed the validity of the assumption by visual inspection of 

four different directional empirical variograms. Based on the similarity of the four 

variograms, we think that the isotropic assmuption in our data analysis is reasonable. 

Another potential limitation is the stationarity assumption of the noise εcυ(t). One potential 

extension of our model to properly handle non-stationary time series is to employ the 

wavelet transformation as described in Nason et al. (2000); Bullmore et al. (2001), where the 

stationarity assmuption is no longer required. Although we used non-parametric empirical 

variograms to capture the within-ROI spatial correlation, it may be advantageous to assume 

a parametric spatial correlation instead of using empirical variogram in terms of 

computational burden as the number of voxels in an ROI increases. For the between-ROI 

correlaion, it would be advantageous to impose a parametric covariance function to estimate 

the global correlation if there is relatively large number of ROIs. However, it will require 

more complex model to capture a negative-valued correlation, e.g., a linear combination of 

two valid covariance functions (Gregori et al. 2008).

Acknowledgments

This research was supported in part by grants from NSF DMS (Hernando Ombao and Crystal Linkletter), NSF SES 
(Hernando Ombao) and the NIH (David Badre). Ms.Long is now a doctoral student at University of Pennsylvania, 
Philadelphia, PA.

References

Badre D. Cognitive Control, Hierarchy, and the Rostro-caudal Axis of the Prefrontal Cortex. Trends in 
Cognitive Science. 2008; 12:193–200.

Badre D, D'Esposito M. FMRI Evidence for a Hierarchical Organization of the Prefrontal Cortex. 
Journal of Cognitive Neuroscience. 2007; 19:2082–2099. [PubMed: 17892391] 

Badre D, D'Esposito M. Is the rostro-caudal axis of the frontal lobe hierarchical? Nature Reviews 
Neuroscience. 2009; 10:659–669.

Badre D, Hoffman J, Cooney JW, D'Esposito M. Hierarchical Cognitive Control Deficits Following 
Damage to the Human Frontal Lobe. Nature Neuroscience. 2009; 12:515–522.

Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach 
to Multiple Testing. Journal of Royal Statistical Society, Series B. 1995; 57:289–300.

Kang et al. Page 16

J Am Stat Assoc. Author manuscript; available in PMC 2014 November 14.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Bowman FD. Spatio-temporal Modeling of Localized Brain Activity. Biostatistics. 2005; 6:558–575. 
[PubMed: 15843592] 

Bowman FD. Spatiotemporal Models for Region of Interest Analyses of Functional Neuroimaging 
Data. Journal of the American Statistical Association. 2007; 102:442–453.

Bowman FD, Caffo B, Bassett SS, Kilts C. A Bayesian Hierarchical Framework for Spatial Modeling 
of fMRI Data. NeuroImage. 2008; 39:146–156. [PubMed: 17936016] 

Brockwell, PJ.; Davis, RA. Time Series: Theory and Methods. 2nd. Vol. chap. 10. New York: 
Springer; 1991. 

Bullmore E, Brammer M, Williams SCR, Rabe-Hesketh S, Janot N, Daivd A, Mellers J, Howard R, 
Sham P. Statistical Methods of Estimation and Inference for Functional MR Image Analysis. 
Magnetic Resonance in Medicine. 1996; 35:261–277. [PubMed: 8622592] 

Bullmore E, Long C, Suckling J, Fadili J, Calvert G, Zelaya F, Carpenter TA, Brammer M. Colored 
Noise and Computational Inference in Neurophysiological (fMRI) Time Series Analysis: 
Resampling Methods in Time and Wavelet Domains. Human Brain Mapping. 2001; 12:61–78. 
[PubMed: 11169871] 

Carlin, BP.; Banerjee, S. Hierarchical Multivariate CAR Models for Spatiotemporally Correlated 
Survival Data. In: Bernado, JM.; Bayarri, MJ.; Berger, JO.; Dawid, AP.; Heckerman, D.; Smith, 
AFM.; West, M., editors. in Bayesian Statistic 7. Oxford: Oxford University Press; 2003. p. 45-63.

Chilés, JP.; Delfiner, P. Geostatistics Modeling Spatial Uncertainty. New York: Wiley; 1999. 

Cressie, N. Statistics for Spatial Data. New York: Wiley; 1993. 

Curtis CE, Sun FT, Miller LM, D'Esposito M. Coherence between fMRI Time-series Distinguishes 
Two Spatial Working Memory Networks. NeuroImage. 2005; 26:177–183. [PubMed: 15862217] 

Dubin RA. Estimation of Regression Coefficients in the Presence of Spatially Autocorrelated Error 
Terms. The Review of Economics and Statistics. 1988; 70:466–474.

Genovese CR. A Bayesian Time-Course Model for Functional Magnetic Resonance Imaging Data. 
Journal of the American Statistical Association. 2000; 95:691–703.

Gregori P, Porcu E, Mateu J, Sasvári Z. On Potentially Negative Space Time Covariances Obtained as 
Sum of Products of Marginal Ones. Annals of the Institute of Statistical Mathematics. 2008; 
60:865–882.

Huettel, SA.; Song, AW.; McCarthy, G. Functional Magnetic Resonance Imaging. Vol. chap. 10. 
Sunderland, MA: Sinauer Associates; 2004. 

Katanoda K, Matsuda Y, Sugishita M. A Spatio-temporal Regression Model for the Analysis of 
Functional MRI Data. NeuroImage. 2002; 17:1415–1428. [PubMed: 12414281] 

Koechlin E, Ody C, Kouneiher F. The Architecture of Cognitive Control in the Human Prefrontal 
Cortex. Science. 2003; 302:1181–1185. [PubMed: 14615530] 

Lange N, Zeger SL. Non-Linear Time Series Analysis for Human Brain Mapping by Functional 
Magnetic Resonance Imaging. Applied Statistics. 1997; 46:1–29.

Lazar, NA. The Statistical Analysis of Functional MRI Data. Vol. chap. 6. New York: Springer; 2008. 

Locascio JJ, Jennings PJ, Moore CI, Corkin S. Time Series Analysis in the Time Domain and 
Resampling Methods for Studies of Functional Magnetic Resonance Brain Imaging. Human Brain 
Mapping. 1997; 5:168–193. [PubMed: 20408214] 

Long, NM.; Badre, D. Testing Hierarchical Interactions in Frontal Cortex During Cognitive Control. 
Poster presented at the 16th Cognitive Neuroscience Society meeting; 2009. 

Muller K, Lohmann G, Bosch V, Von Cramon D. On Multivariate Spectral Analysis of fMRI Time 
Series. NeuroImage. 2001; 14:347–356. [PubMed: 11467908] 

Nason GP, von Sachs R, Kroisandt G. Wavelet Processes and Adaptive Estimation of the Evolutionary 
Wavelet Spectrum. The Journal of the Royal Statistical Society, Series B. 2000; 62:271–292.

Ombao H, Shao X, Rykhlevskaia E, Fabiani M, Gratton G. Spatio-Spectral Analysis of Brain Signals. 
Statistica Sinica. 2008; 18:1465–1482.

Rowe D. Modeling both the Magnitude and Phase of Complex-valued fMRI Data. NeuroImage. 2005; 
25:1310–1324. [PubMed: 15850748] 

Shumway, RH.; Stoffer, DS. Time Series Analysis and Its Application with R Examples. 2nd. New 
York: Springer; 2006. p. 543-544.

Kang et al. Page 17

J Am Stat Assoc. Author manuscript; available in PMC 2014 November 14.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Sun FT, Miller LM, D'Esposito M. Measuring Interregional Functional Connectivity using Coherence 
and Partial Coherence Analysis of fMRI Data. NeuroImage. 2004; 21:647–658. [PubMed: 
14980567] 

Worsley K, Friston K. Analysis of fMRI Time Series Revisited-Again. NeuroImage. 1995; 2:173–181. 
[PubMed: 9343600] 

Worsley KJ, Evans AC, Marrett S, Neelin P. A Three-dimensional Statistical Analysis for rCBF 
Activation Studies in the Human Brain. Journal of Cerebral Blood Flow and Metabolism. 1992; 
12:900–918. [PubMed: 1400644] 

Worsley KJ, Liao CH, Aston J, Petre V, Duncan GH, Morales F, Evans AC. A General Statistical 
Analysis for fMRI Data. NeuroImage. 2002; 15:1–15. [PubMed: 11771969] 

Worsley KJ, Marrett S, Neelin P, Vandal AC, Friston KJ, Evans AC. A Unified Statistical Approach 
for Detecting Significant Signals in Images of Cerebral Activation. Human Brain Mapping. 1996; 
4:58–73. [PubMed: 20408186] 

Yue Y, Loh JM, Lindquist MA. Adaptive Spatial Smoothing of fMRI Images. Statistics and Its 
Interface. 2010; 3:3–13.

Zhu H, Li Y, Ibrahim JG, Shi X, An H, Chen Y, Gao W, Lin W, Rowe DB, Peterson BS. Regression 
Models for Identifying Noise Sources in Magnetic Resonance Images. Journal of the American 
Statistical Association. 2009; 104:623–637. [PubMed: 19890478] 

Kang et al. Page 18

J Am Stat Assoc. Author manuscript; available in PMC 2014 November 14.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1. 
A schematic picture using three ROIs and four voxels per ROI illustrates the concept of 

multi-scale correlations, i.e., local correlation among voxels in an ROI denoted by thin 

arrows and global correlation among ROIs denoted by thick arrows.
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Figure 2. 
Black dots on the axial slices of the brain illustrate the three ROIs and their coordinates are 

included : (a) ROI 1 (-40, 4, 30) (b) ROI 2 (-42, 28, 24) (c) ROI 3 (14, -100, 0)
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Figure 3. 
Heat map for the absolute values of correlations among the three ROIs. The two maps on the 

first column are for real part at low and high frequency bands, while those on the second 

column are for imaginary part at low and high frequency bands. Negative correlation is 

denoted by **.
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Table 3

Point estimates of  and estimated standard errors of point estimates, and p-values associated with 

one-sided test at ROIs.

Point Estimate Std. Error p-value

ROI 1 0.98 0.61 0.05

ROI 2 0.63 0.40 0.06

ROI 3 −0.35 0.26 0.91
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