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Abstract

Events defined by the interaction of objects in a scene

are often of critical importance; yet important events may

have insufficient labeled examples to train a conventional

deep model to generalize to future object appearance. Ac-

tivity recognition models that represent object interactions

explicitly have the potential to learn in a more efficient

manner than those that represent scenes with global de-

scriptors. We propose a novel inter-object graph repre-

sentation for activity recognition based on a disentangled

graph embedding with direct observation of edge appear-

ance. In contrast to prior efforts, our approach uses explicit

appearance for high order relations derived from object-

object interaction, formed over regions that are the union

of the spatial extent of the constituent objects. We employ a

novel factored embedding of the graph structure, disentan-

gling a representation hierarchy formed over spatial dimen-

sions from that found over temporal variation. We demon-

strate the effectiveness of our model on the Charades ac-

tivity recognition benchmark, as well as a new dataset of

driving activities focusing on multi-object interactions with

near-collision events. Our model offers significantly im-

proved performance compared to baseline approaches with-

out object-graph representations, or with previous graph-

based models.

1. Introduction

Recognition of events in natural scenes poses a challenge

for deep learning approaches to activity recognition, since

an insufficient number of training examples are typically

available to learn to generalize to all required observation

conditions and variations in appearance. For example, in

driving scenarios critical events are often a function of the

spatial relationship of prominent objects, yet available event

training data may not exhibit variation across a sufficiently

wide range of appearances. E.g., if a conventional deep

model has only seen red pickup trucks rear-end blue sedans,

and green trucks always drive safely in the training set, it
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Figure 1: Our Spatio-Temporal Action Graph (STAG) approach

models inter-object relations per frame. Each frame representation

contains objects (a) and their relations (b). Our model contains

two hierarchies: a spatial hierarchy to model all possible object

interactions in a frame and a temporal hierarchy to aggregate the

temporal context for the whole video.

may perform poorly in a test condition when observing a

green pickup truck that is actually about to hit a red sedan.

It is thus important to develop activity recognition models

that can generalize effectively across object appearance and

inter-object interactions.

Early deep learning approaches to activity recognition

were limited to scene-level image representations, directly

applying convolutional filters to full video frames, and

thus not modeling objects or their interactions explicitly

[7, 41, 37]. Although networks are growing deeper and

wider, the method for extracting features from network

backbones is often still a basic pooling operation, with or

without a pixel-wise attention step. These conventional

deep learning approaches are unable to directly attend to

objects or their spatial relationships explicitly.

A natural approach to the above problem is to build mod-



els that can capture relations between objects across time.

This object-centric approach can decouple the object detec-

tion problem (for which more data is typically available.

e.g., images of cars) and the problem of activity recogni-

tion. Many classic approaches to activity recognition ex-

plored object-based representations [12, 47, 26, 28, 4, 14];

yet with conventional learning methods such approaches

did not show significant improvements in real-world eval-

uation settings. Several deep models have been recently in-

troduced that directly represent objects in video in activity

recognition tasks. For example [1] uses a relation network

followed by an RNN, and [45] uses a spatio-temporal graph

constructed whose nodes are detected objects. These mod-

els showed that a deep model with a dense graph defined

over scene elements can lead to increased performance, but

were limited in that only unary object appearance was con-

sidered, with a fully-connected spatio-temporal graph with-

out taking object relations into account.

In this paper we propose a novel Spatio-Temporal Action

Graph (STAG), which offers improved activity recognition.

Our model design is motivated by the following two points.

First, we observe that relations between objects are captured

in the bounding box containing both objects more effec-

tively than in the object boxes individually. Our graph uti-

lizes explicit appearance terms for edges in the graph, form-

ing a type of “visual phrase” term for each edge [32]: edge

weights in our graph are formed using a descriptor pooled

over the spatial extent of the union of boxes of each ob-

ject pairs. Our experiments prove that modeling the visual

appearance between objects outperforms other techniques

(e.g. similarity and concatenation) for object-object inter-

actions.

Second, the object interactions in one video are more

concentrated in certain times which requires more struc-

tured spatial-temporal hierarchical feature representation.

We propose a spatio-temporal disentangled feature embed-

ding in our graph, factoring spatial and temporal connec-

tions into two hierarchies which first refine the edges con-

sidering all possible relations in a frame over space, and

then over time. In our spatial hierarchy, the relations are

refined by considering all possible relations within a frame

and then aggregated to form per-frame descriptor. Next, we

use the temporal hierarchy to aggregate the temporal con-

text for the whole video and use it as input to the video clas-

sifier. We argue that this architecture is ideally structured

for capturing relations that underlie typical actions in video.

Indeed our empirical results show that it outperforms other

spatio-temporal approaches without explicit hierarchy, in-

cluding LSTM based ones.

Another key contribution of our work is a new dataset1

for collision activity detection in driving scenario. Activ-

1The publicly available dataset can be found at:

https://github.com/roeiherz/STAG-Nets.

ity recognition is of key importance in the domain of au-

tonomous driving, in particular detecting collisions or near-

collisions is of utmost importance. Most of the research on

this topic is in simulation mode, and we introduce the first

attempt to studying it in real world data. Additionally, this is

the first dataset containing object-object interactions, while

the current activity recognition datasets [13, 35] mostly con-

tain limited are human-object interactions that have small

number of objects per scene. Thus, they cannot contain rich

relation information. Here we provide a new dataset which

will allow researchers to study recognition of such rare and

complex events. Our Collision dataset was collected from

real-world dashcam data consisting of 803 videos contain-

ing collisions or near-collisions from more than ten million

rides.2 In Fig. 1, we demonstrate our approach on a driving

scene for collision event detection.

We evaluate our STAG model on both the Collision

dataset as well the Charades [36] activity recognition bench-

mark, demonstrating improvement over previous baselines.

Our results confirm that the use of explicit object represen-

tations in spatial-temporal hierarchy can offer better gener-

alization performance for deep activity recognition in real-

istic conditions with limited training data.

2. Related Work

Video Activity Recognition. Early deep learning ac-

tivity recognition systems were essentially “bag of words

models”, where per-frame features are pooled over an

entire video sequence [19]. Later work used recurrent

models (e.g., LSTM), to temporally aggregate frame fea-

tures [7, 50]. Another line of activity classifiers use 3D

spatio-temporal filters to create hierarchical representations

of the whole input video sequence [16, 40, 41, 42]. While

spatio-temporal filters can benefit from large video datasets,

they cannot be pretrained on images. Two-stream networks

were proposed to leverage image pretraining in RGB as well

as capturing fine low-level motion in another optical flow

stream [37, 9]. I3D [5] was designed to inflate 2D kernels

to 3D to learn spatio-temporal feature extractors from video

while leveraging image pre-trained weights. In all these

models, whole frame video features are extracted without

using object and inter-object details as our model does.

Object interactions have been utilized for tackling vari-

ous activity recognition tasks [23, 49, 39, 10, 27, 14], e.g.

by using spatio-temporal tubes [12, 47], spatially-aware

embeddings [26], and spatio-temporal graphical models

[28, 4, 14, 11]. Probabilistic models have also been used

in this context [31, 8, 48]. But with conventional learn-

ing methods the addition of explicit object detection models

often did not show significant improvements in real-world

evaluations. Recently, object interactions in adjacent frames

were modeled in [25, 1] followed by RNNs for capturing

2There are only relatively few collision videos, since naturally, such

events are rare.



Figure 2: STAG Network Architecture. Our STAG network architecture is comprised of: (1) A backbone of ResNet50 and

RPN produces a set of bounding boxes proposals for each frame. (2) An RoIAlign Single layer extracts zt
i features from the

backbone for the boxes. In parallel, every pair of box proposals is used for computing a union box, and pairwise features zt
i,j

are extracted similar to the z
t
i features. (3) The z

t
i and z

t
i,j are used as inputs to an Spatio-Temporal Action Graph Module

(see Fig. 3) which outputs a d dimensional feature representing the entire sequence.

temporal structure. Also, Wang [46] proposes to represent

videos as space-time region graphs and perform reasoning

on this graph representation via Graph Convolutional Net-

works. In [46] objects in one video are allowed to inter-

act with each other without constraints while we enforce

more structured spatial-temporal feature hierarchy for bet-

ter video feature encoding.

Graph Neural Networks and Self-attention. Re-

cently graph neural networks have been successfully ap-

plied in many computer vision applications: visual rela-

tional reasoning [2, 51, 1, 29, 22], image generation [17]

and robotics [33]. Message passing algorithms have been

redefined as various graph convolution operations [15, 21].

The graph convolutional operation is essentially equivalent

to “non-local operation” [44] derived from the self-attention

concept [43]. In this paper, we take “non-local operation”

as our graph convolutional operation.

Autonomous Driving. Deep learning has recently been

applied to learn autonomous-driving policies [6, 3]. Col-

lision avoidance is an important goal for self-driving sys-

tems [18]. Collision vision data is difficult to collect in the

real world since these are unexpected rare events. [20] tack-

les the collision data scarcity by simulation. However syn-

thetic data is still very different from real data, and hence

training on simulation is not always sufficient. In this pa-

per, we introduce a challenging collision dataset based on

real-world dashcam data. At the same time, we propose a

model suitable for classifying rare events by modeling the

key object interactions with limited training examples.

3. Spatio-Temporal Action Graphs

In this section we describe our proposed Spatio-

Temporal Action Graph Network (STAG). The overall ar-

chitecture is shown in Fig. 2 and the STAG module is further

described in Fig. 3.

We begin with some definitions. The following constants

are used: T is the number of frames, N is the maximum

number of objects (i.e., bounding boxes) per frame, and d is

the feature dimensionality (i.e., the dimension of bounding

boxes descriptors). We also use [T ] to denote the set of in-

put frames {1, . . . , T} and [B] to denote the set of bounding

boxes in each frame {1, . . . , N}. At a high level the model

proceeds in the following stages:

Detection Stage - The image is pre-processed with a detec-

tor to obtain features for each bounding box (i.e., objects)

and each pair of boxes (i.e., relations).

Spatial Context Hierarchy Stage - Each relation feature is

refined using context from other relations, and all relation

features are summarized in a single feature per frame.

Temporal Context Hierarchy Stage - Each frame feature

is refined using context from other frames, and all frame

features are summarized in a single feature, which is then

used for classification.

3.1. Detection Stage

Before applying the two disentangled spatial and tem-

poral context aggregations, we construct one initial graph

representation encoding objects and their relations. As a

first step, we detect region proposal boxes and extract cor-

responding box features through an RoIAlign layer of a

Faster R-CNN [30]. Instead of only using object features

with their bounding boxes, we believe that the spatial rela-

tion of each pair of bounding box should be important and

encoded into the initial graph representation for subsequent

spatial and temporal context aggregation. Specifically, for

each pair of boxes, we consider its union (see Fig. 2) and

use an RoIAlign layer to extract the union box features as



Figure 3: STAG Module: (a) First, the initial node features z
t
i and union box relation features z

t
i,j are embedded into a feature space

with dimension d. (b) The pair of node features and their relation features are concatenated to create an aggregated representation with

objects and their interactions. These are then embedded into dimension d using a fully-connected network. (c) The Spatial Context

Hierarchy Stage uses a Non-Local block to obtain improved relation features and then pools over the spatial dimension to obtain per-

frame features. (d) Then, the Temporal Context Hierarchy Stage uses a Non-Local block to calculate improved frame features and pools

over the temporal dimension. The final output is a video-level feature containing the entire scene information and video dynamics.

initial relation features with the union boxes capturing the

spatial appearance of each pair of objects. This results in

two sets of tensors shown in Fig. 3a:

• Single-object features: For each time step t ∈ [T ] and

box i ∈ [B] we have a feature vector zt
i ∈ R

d for the

corresponding box. The feature contains the output of

the RoIAlign layer.

• Object-pair features: For each time step t ∈ [T ] and

box-pair i ∈ [B], j ∈ [B] we have a feature vector

z
t
i,j ∈ R

d for the corresponding pair of boxes. The

feature contains the output of the RoIAlign layer.

We thus have a tensor of size T × N × d for single object

features, and a tensor of size T × N × N × d for object-

pair features. Then (Fig. 3b) we concatenate each relation

(object-pair) feature with the two corresponding node fea-

tures and embed the result into dimension d (using an FC

layer) to form one aggregated representation with objects

and their interactions. The resulting tensor is thus of size

T ×N ×N × d.

3.2. The STAG Module

The output of the Detection Stage is a tensor of size

T × N × N × d with features for each object interaction

in each frame. In what follows, we describe how these are

refined and reduced in the two complementary hierarchies

of space and time. Before we introduce these stages, we

first recap the non-local operation from [44]. These are an

efficient, simple and generic component for capturing long

range dependencies. Formally, given a set V of vectors

v1, . . . ,vk, the non-local operator transforms these into a

new set V ′ of vectors v′
1
, . . . ,v′

k via the function:

v
′

i =
1

C(V)

∑

∀j

f(vi,vj)g(vj) (1)

where C(V) is a normalization factor and f and g are

learned pairwise and singleton functions. We next describe

the final two stages of the STAG model.

Spatial Context Hierarchy Stage. The goal of this

stage is twofold. First, it refines the relation features so that

each feature incorporates information from all the other re-

lations. This is done by applying a non-local operation to

all the N2 feature vectors (each of dimension d) that are

the output of the Detection Stage. The outcome is another

tensor of size T × N × N × d. Next, it generates a single

feature representing the relation information in the frame,

by average pooling the above tensor, resulting in a tensor of

size T × d. See Fig. 3c. We visualize some of the object

proposals and their relations in Fig. 5.

Temporal Context Hierarchy Stage. At this stage, in-

formation from all frames is integrated into a single vector.

This is done by applying a Non-Local block to the T vec-

tors (each of dimension d) that are the output of the Spatial

Context Hierarchy Stage. The final output is a single d di-

mensional feature vector capturing whole video information

obtained by average pooling the above tensor. See Fig. 3d.

We visualize some of the frames and their relations in Fig. 6.

4. The Collision Dataset

We introduce the Collision dataset comprised of real-

world driving videos. Such a dataset is valuable for de-

veloping autonomous driving models. Using videos, and

specifically visual information, is important for accurate

and timely prediction of collisions. The dataset contains

rare collision events from diverse driving scenes, including

urban and highway areas in several large cities in the US.

These events encompass collision scenarios (i.e., scenarios

involving the contact of the dashcam vehicle with a fixed or

moving object) and the near-collision scenarios (i.e., scenar-



Figure 4: Example visualization from the collision dataset: (a) extreme weather conditions such as snow and heavy raining.

(b) near-collision with a truck/a bicycle rider. (c) day and night collisions.

Party type dist.

Vehicle 85%

Bike 6%

Pedestrian 6%

Road object 1%

Motorcycle 1%

Weather dist.

Clear 93%

Rain 5.3%

Snow 1.7%

Lighting dist.

Day 62%

Night 38%

Table 1: Collision dataset statistics: involved party, weather,

and lighting conditions.

ios requiring an evasive maneuver to avoid a crash). Such

driving scenarios most often contain interactions between

two vehicles, or between a vehicle and a bike or pedestrian.

Classifying such events therefore naturally requires model-

ing object interactions, which was our motivation for devel-

oping the STAG model. We will release a publicly available

challenge based on this dataset upon acceptance of paper.

Data collection. The data was collected from a large-

scale deployment of connected dashcams. Each vehicle is

equipped with a dashacam and a companion smartphone

app that continuously captures and uploads sensor data such

as IMU and gyroscope readings. Overall, the vehicles col-

lected more than 10 million rides, and rare collision events

were automatically detected using a triggering algorithm

based on the IMU and gyroscope sensor data.3 The events

were then manually validated by human annotators based on

visual inspection to identify edge case events of collisions

and near-collisions, as well as non-risky driving events. Of

all the detected triggers, our subset contains 743 collisions

3The algorithm is tuned to capture driving maneuvers such harsh brak-

ing, acceleration, and sharp cornering.

and 60 near-collisions from different drivers. Each video

clip contains one such event typically occurring in the mid-

dle of the video clip. The clip duration is approximately 40

seconds on average and the frame resolution is 1280× 720.

The full and few-shot datasets. We created two data

versions. The full dataset contains a total of 803 videos with

732 videos as training data (44 of them are near collision)

and 71 videos as test data (6 of them are near-collision).

We use a relatively low frame rate of 5 fps to convert

video clips to frames, in order to avoid using near-duplicate

frames. Each clip is broken into three segments to train our

model. Specifically, we split each video into three segments

of 20 frames each: two negative segments (non-risky driv-

ing scenes) and one positive segment (a collision scene) for

each collision event. The positive segment is sampled at the

time of collision, and the two non-overlapping negative seg-

ments are sampled before the time of collision, since after

collision the scene is already in a collision state. For the

near-collision event, we sample three negatives since there

is no positive segment in the video clip. After this process-

ing, we have a total 2409 video segments, out of which 1656

are negative examples and 753 are positives. The few-shot

dataset is purposely designed to motivate the development

of few-shot recognition algorithms. It contains 125 videos,

with 25 training videos and 100 testing videos. Data pro-

cessing is the same as the full-version. The positive to neg-

ative ratio in both versions of dataset is approximately 1 : 3.

Diversity. Our dataset is collected for recognizing col-

lisions in natural driving scenes. To get an intuitive feeling



(a) Object Proposals (b) Relations (c) Relation Attentions

object relation attention

0.05

0.15
0.04

0.09

0.14

0.10

0.08

Figure 5: Spatial context hierarchy processing. Our model first extracts object proposals (see Fig. 3b) and then composes

them into relations by taking the union of each possible object-pair proposal pair. Our model then infers the per-frame relation

interactions via an attention step. (c) illustrates the attention on the top-3 relation-to-relation interactions and their scores for

the relation box colored by orange.

for our collision dataset, we visualize several video exam-

ples in Fig. 4. The coverage of the dataset includes various

types of weather conditions (Fig. 4a), the parties involved

(Fig. 4b) and lighting conditions (Fig. 4c). We use visual

inspection to analyze the identity of parties involved in the

collisions in Tab. 1. We find that most of the data (85%)

consists of crashes involving two vehicles, and collisions in-

volving pedestrians and cyclists takes up to 6% each. Tab. 1

also shows the distribution of weather conditions and light-

ing conditions. With a majority of clear weather (93%), the

extreme rain and snow video clips take 5.3% and 1.7% each.

Day-time takes 62% with the rest of 38% being night-time.

5. Experiments on the Collision Dataset

Our method is designed to address rich inter-object in-

teractions. The only dataset that captures these as Charades,

whereas other datasets contain limited human-object inter-

actions. It was thus natural to evaluate it on Charades and

Collision. We next describe the application of our STAG

model to those datasets.

5.1. Implementation Details

Model Details. We use Faster R-CNN with ResNet50 as a

backbone, taking a sequence of T = 20 frames, and gen-

erating bounding box proposals for each of the T frames.

Specifically, the strides in FPN are set as the same as [24].

The input frames are resized to the maximum dimen-

sion of 256 with padding. Considering the training time

and memory limit, we take the top N = 12 region propos-

als on each frame after non-maximum suppression with IoU

threshold 0.7, which are sufficient for capturing the seman-

tic information on the Collision dataset. Features for the

N = 12 objects and N · N object interaction relations are

extracted following Sec. 3, resulting in feature representa-

tions zi for objects and zi,j for relations.

Training and Inference. We train STAG using SGD with

momentum 0.9 and an initial learning rate 0.01. The learn-

ing rate is decayed by a factor of 0.5 each epoch, and gra-

dient is clipped at norm 5. Each batch includes a video

segment of T frames. Two kinds of ground truth data are

utilized during training: the ground truth bounding box an-

notations on each frame and the collision label per segment.

The loss for the STAG model contains two components:

the bounding box localization related losses used in the

Faster-RCNN detector and the multi-class activity classifi-

cation loss, as is standard with two stage detectors. To train

our STAG model for collision prediction, we apply a binary

cross entropy loss between the binary collision prediction

logit and the ground-truth collision label.

5.2. Model Variants

The STAG model progressively processes the box fea-

tures and the spatial appearance features of pairwise boxes

z
t
i, z

t
i,j into a single vector for final activity recognition. To

explore the importance of the spatial and temporal aspects

of STAG, we consider the following variants:

(1) LSTM Spatial Graph - We study the effect of the



Accuracy

Full Dataset Few-shot Dataset

I3D 82.4 76

C3D 79.9 72

LSTM Spatial Graph 77.5 67

LSTM boxes 69.5 69

STAG 84.5 76.3

Table 2: Classification accuracy on the Collisions dataset

for the STAG model and its variants, and the C3D & I3D

model.

Accuracy

Full Dataset Few-shot Dataset

LSTM spatial Graph 83.56 73.1

LSTM boxes 81.2 72.3

STAG 85.5 76.7

Table 3: Classification accuracy on the Collisions dataset

for STAG model and variants, when averaged with the C3D

model.

STAG “Temporal Context Hierarchy” stage, as compared

to a recurrent neural network based solution. To do so,

we replace the “Temporal Context Hierarchy” stage with

an LSTM that processes the same tensor of size T × d.

(2) LSTM Boxes - We study the effect of the “Spatial Con-

text Hierarchy” stage by replacing it with average pooling

of the node features, to obtain a tensor of size T × d. We

also train two other popular activity recognition models on

Collision dataset: the C3D model [41] and I3D model [5].

We used pretrained weights for C3D and I3D. The C3D was

pretrained on Sports-1M while the I3D was pretrained on

Kinetics.

5.3. Results

We first compare the STAG results on the full dataset to

the model variants described in Sec. 5.2. Tab. 2 reports

classification accuracy. Firstly, STAG outperforms all the

other models including C3D and I3D. Replacing the tem-

poral processing in STAG with an LSTM as in LSTM SPA-

TIAL GRAPH, we get 7% accuracy decrease, showing the

superiority of our temporal modeling over LSTM. Further

removing the pairwise object modeling, we see accuracy

further decrease by 8% in LSTM BOXES.

Finally, we consider a simple ensemble model of STAG

and C3D by simply averaging their output scores. Results

of this combination are shown in Tab. 3. We can see the

combination improves the original C3D accuracy, showing

the benefits of object interaction modeling. Among all the

ensemble results, the STAG model still maintains the high-

est accuracy result 85.5%.

We also show the results on the few-shot dataset in Tab. 2

and Tab. 3. It can be seen that the two LSTM model vari-

ants almost fail on this challenging dataset. Although our

STAG model achieves marginal improvement compared to

Edge Hierarchy Accuracy

STAG Cat Node concat. Space & Time 83.1

STAG Sim Cosine sim. Space & Time 83.5

STAG Time Node interactions Time only 78.8

STAG Space Node interactions Space only 82.6

STAG Node interactions Space & Time 84.5

Table 4: Hierarchy & Edge features Ablations on the Col-

lision dataset. “Node Interactions” refers to using relations

features for the edge features.

the C3D and I3D, the relative low accuracy numbers high-

light the challenges of this setting.4 We encourage the com-

munity to further develop few-shot based activity recogni-

tion models to tackle this challenging few-shot dataset.

5.4. Ablation Studies

We also design some direct ablation studies for the com-

ponents in our STAG model. To validate the effectiveness

of our disentangled spatio-temporal hierarchies, we design

two ablation studies for the two attention hierarchies: (1)

STAG Space - Replacing the spatial hierarchy by directly

pooling. (2) STAG Time - Replacing the temporal hierar-

chy by directly pooling.

The results are shown in Tab. 4. It can be seen that both

ablations decrease accuracy, but that the temporal hierarchy

has a larger effect on performance.

In addition to our visual appearance relation features, we

explore the use of different relation features in Tab. 4: (1)

STAG Cat - Set edge feature to be just the concatenation

of the corresponding node features (i.e., union box is not

used). (2) STAG Sim - Set edge feature to be cosine simi-

larity of the two corresponding node features (see [46]).

Both methods result in approximately one point accuracy

decrease, indicating the superiority of using spatial appear-

ance features of union boxes as edge features in our hierar-

chical STAG models.

6. Experiments on the Charades Dataset

To further validate the effectiveness of our model on pub-

licly available action recognition benchmarks, we also eval-

uate it on the Charades dataset [36]. We follow the official

split (8K training and 1.8K validation videos) to train and

test our model. The average video duration is around 30

seconds with 157 multiple action classes and we report our

results by the metric of mean Average Precision (mAP).

We follow the same experiment setup as described in

STRG (Spatio-Temporal Region Graph) [46] and use a

backbone network of ResNet-50 Inflated 3D ConvNet (I3D)

[44] for all of our experiments.

4We note however, that all these models are not specifically designed

for the few-shot setting.
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Figure 6: Our Temporal Context Hierarchy. After aggregating spatial features to represent each frame separately (see Fig. 3c),

our model learns relations across the frames (see Fig. 3d). In each row, we show eight consecutive frames in a video in which

two frames are highlighted in red or blue. We use arrows to represent the temporal attention across frames which started from

either of highlighted frames. The attention score associated with them are noted beside arrows.

Training and Inference. Our network takes 32 video

frames as inputs which are sampled at 6fps, resulting in

maximum input duration of about 5 seconds. We use a spa-

tial resolution of 224 × 224. Data augmentation is as in

[38]. The top N = 15 object proposals are selected.

To train our model, we follow the same training schedule

as specified in STRG using a mini-batch of 8 videos for each

iteration and repeat it with 100K iterations in total. The

training objective is a simple cross entropy loss. During

inference, we apply multi-crop testing [44, 46] for better

performance and the final recognition results are based on

late fusion of classification scores.

Results. Tab. 5 compares STAG to various baselines on

Charades. It can be seen that it compares favorably with

prior works that used the same ResNet-50 I3D backbone:

STAG improves 5.4% over the I3D model, and 1.0% over

STRG.

Ablations. Next, we run the same ablation studies (STAG

Space, STAG Time, STAG Cat) as in Sec. 5.4. Results

are shown in Tab. 6. It can be seen that as with the Colli-

sions data, all STAG ablations result in decreased accuracy.

STRG Sim refers to the STRG model which uses cosine

similarity between the nodes as the edge features, while ei-

ther not discriminating the nodes from different frames at

all or only applying heuristic backward-forward node asso-

ciation as space-time hierarchy. We compare STRG Sim to

STAG Relation, a model that uses the same relation fea-

tures as STRG, and thus it is a direct comparison between

the similarity from [46] and our relation features approach.

Our design of relations feature as the edge feature captures

object interactions and brings a 0.6% performance gain over

STRG Sim.

7. Conclusion

The interaction of objects over time is often a critical

cue for understanding activity in videos. We presented a

Backbone Modality mAP

2-Steam [37] VGG-16 RGB w/ Flow 18.6

2-Steam w/ LSTM [37] VGG-16 RGB w/ Flow 18.6

Async-TF [34] VGG-16 RGB w/ Flow 22.4

a Multiscale TRN [52] Inception RGB 32.9

I3D [5] Inception RGB 32.9

I3D [46] R50-I3D RGB 31.8

STRG [46] R50-I3D RGB 36.2

STAG (ours) [44] R50-I3D RGB 37.2

Table 5: Classification mAP in the Charades dataset. [36]

Edge Hierarchy mAP

I3D - - 31.8

STRG Sim [46] Cosine sim. No hierarchy 35.0

STRG [46] Cosine sim. Space-Time Heuristic 36.2

STAG Relation Node interactions No hierarchy 35.6

STAG Cat Node concat. No hierarchy 34.5

STAG Space Node interactions Space only 34.7

STAG Time Node interactions Time only 36.6

STAG Node interactions Space & Time 37.2

Table 6: Hierarchy & Edge features Ablations on the Cha-

rades dataset.

novel inter-object graph representation which included ex-

plicit appearance models for edge-terms in the graph as well

as a novel factored embedding of the graph structure into

spatial and temporal representation hierarchies. We demon-

strated the effectiveness of our model on the Charades activ-

ity recognition dataset as well as on a new dataset of driving

near-collision events; our model significantly improved per-

formance compared to baseline approaches without object-

graph representations or with previous graph-based models.
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