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ABSTRACT 

Data about movements of various objects are collected in growing 
amounts by means of current tracking technologies. Traditional 
approaches to visualization and interactive exploration of 
movement data cannot cope with data of such sizes. In this 
research paper we investigate the ways of using aggregation for 
visual analysis of movement data. We define aggregation methods 
suitable for movement data and find visualization and interaction 
techniques to represent results of aggregations and enable 
comprehensive exploration of the data. We consider two possible 
views of movement, traffic-oriented and trajectory-oriented. Each 
view requires different methods of analysis and of data 
aggregation. We illustrate our argument with example data 
resulting from tracking multiple cars in Milan and example 
analysis tasks from the domain of city traffic management.  

 
CR Categories and Subject Descriptors: H.1.2 [User/Machine 

Systems]: Human information processing – Visual Analytics; 
I.6.9 [Visualization]: information visualization. 

Additional Keywords: Movement data, spatio-temporal data, 
aggregation, scalable visualization, geovisualization. 

1 INTRODUCTION 

One of the strengths of information visualization as an amplifier 
of human cognition and ideation lies in supporting abstraction and 
generalization [14]. Thus, appropriate positioning and/or 
appearance of graphical elements representing data items can 
stimulate holistic perception of multiple data items as a unit. 
However, when the size and complexity of data increases, purely 
visual approaches become insufficient and need to be combined 
with computational generalization, which includes, among other 
techniques (e.g. smoothing, filtering), data aggregation. 
Aggregation is not only a tool to reduce the size of data but also a 
way to distill general features out of fine-detail “noise”.  

This paper considers the use of aggregation for visual analysis 
of movement data, more specifically, data about multiple discrete 
entities changing their spatial positions over time while preserving 
their integrity and identity (i.e. the entities do not split or merge). 
In our earlier papers we considered the structure and essential 
properties of movement data and defined the possible general 
analysis tasks [1] as well as the types of tools that could support 
these tasks [3]. Among others, we discussed the use of data 
aggregation and the possible ways of aggregating movement data. 
In [2] we described a set of complementary tools for analysis of 
movement data including database transformations, visualization, 
interactive dynamic filtering, and clustering. We mentioned one 
particular aggregation method, which was used for visualization 
of clustering results. Unlike the previous publications, the current 
paper primarily focuses on various possible ways of aggregating 

movement data. The work has been done within an ongoing EU-
funded project GeoPKDD (http://www.geopkdd.eu). 

In [1] and [3] we introduced a formal model of collective 
movement of multiple entities as a function μ: E × T → S where E 
is the set of moving entities, T (time) is the continuous set of time 
moments and S (space) is the set of all possible positions. As a 
function of two independent variables, μ can be viewed in two 
complementary ways: 
− as a set of trajectories of all entities: {μe: T → S | e ∈ E}, where 

the function μe: T → S, called trajectory, describes the 
movement of a single entity; 

− as a temporal sequence of traffic situations: {μt: E → S | t ∈ T}, 
where the function μt: E → S, called traffic situation, describes 
the spatial positions of all entities at a time moment t. 

The first way will be further called trajectory-oriented view and 
the second one will be called traffic-oriented view (we use the 
term “traffic” in an abstract sense to denote collective movement 
of any kind of entities). The view to take depends on the analysis 
goals, as will be further demonstrated by examples. Each view 
requires different analysis methods and, in particular, different 
ways of aggregating movement data. In this paper, we investigate 
what aggregation methods can be used for each of the views. For 
the presentation purposes, we use an example dataset and example 
analysis tasks from the domain of city traffic management. 
However, our work is not specifically oriented to this domain and 
these tasks; this is a more general research work on the use of 
aggregation in analyzing massive movement data. 

Before presenting the example dataset and discussing the 
possible methods of aggregation, we shall briefly overview the 
relevant works concerning aggregation of movement data. 

2 RELATED  WORK 

Most software tools designed to support visual examination of 
large sets of movement data involve data aggregation. There are 
three basic types of aggregation, spatial (S), temporal (T), and 
attributive (A), also called categorical [7]. These basic types are 
used in various combinations. 

 Several aggregation techniques are described in a series of 
papers written by D. Mountain and his colleagues (e.g. [6][10]). 
T-aggregation appears in the form of temporal histogram where 
the bars correspond to time intervals and their heights are 
proportional e.g. to the number of locations visited or the distance 
traveled. S-aggregation is done by imposing a regular grid over 
the territory and counting trajectory points fitting in each cell. The 
resulting density counts are represented by coloring or shading of 
the grid cells on a map display. In S×T-aggregation the densities 
are computed for consecutive time intervals and shown on an 
animated map display. Similar to densities, other aggregated 
characteristics can be computed and visualized. Thus, in [8] the 
total number of person/minutes spent in each cell is computed. A 
sophisticated S×T×A-aggregation is suggested in [17]: position 
records are grouped spatially by cells of a regular grid and then 
temporal (e.g. by days of the week) and attributive (e.g. by vehicle 
types) aggregation is applied to each group. The results are 
represented by multiple treemaps [13] placed inside each cell. 

Essentially, all these aggregations do not differ from what was 
suggested in [7] for aggregating spatially distributed discrete 
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events: each record from the movement data is, in fact, treated as 
an independent event. Hence, these ways of aggregation do not 
capture the specific nature of movement data. The results of the 
aggregation show the presence of entities in different places at 
different times but not the movement of the entities from place to 
place. S×T- and S×T×A-aggregations can be helpful where the 
traffic-oriented view of movement data is required but do not 
support the trajectory-oriented view. 

A different way of aggregating movement data is counting for 
each pair of places in space how many entities moved from the 
first to the second place between two time moments. This kind of 
aggregation may be represented by the formula S×S×T×T (start 
place, end place, start time, and end time). The resulting counts 
may be visualized as a transition matrix where the rows and 
columns correspond to the places and symbols in the cells or cell 
coloring or shading encode the counts [9]. For more than one pair 
of time moments, one would need to build several transition 
matrices, which could then be compared. However, the limitations 
of this approach with respect to the length of the time series of 
movement data are evident. Another problem is that such 
visualization lacks the spatial context. Tobler [15][16] visualizes 
aggregated moves on a map by bands or arrows connecting pairs 
of locations with the widths proportional to the volumes moved 
between these locations. Unfortunately, such a map may be 
illegible because of intersecting and overlapping symbols. 
Therefore, Tobler suggest a specific method for spatial smoothing 
of aggregated moves and generation of continuous flow maps. 
Intersections and overlaps between movement symbols may be 
reduced by involving the third spatial dimension, as in the 
visualization of the movement of tourists in New Zealand [5] 
(discussed in [3]). Irrespective of the visualization, S×S×T×T-
aggregation does not fully support the trajectory-oriented view 
since it hides essential information about the routes of the entities. 

In all aggregations discussed so far the results are numeric 
values such as counts, sums, statistical means, etc. In [4] a kind of 
geometric summary of several trajectories is derived. The authors 
use functions of ArcGIS to build a convex hull containing the 
trajectories, compute the central tendency and dispersion of the 
paths, and represent the results on a map as the averaged path. 
Such geometric summarization works well only when the 
trajectories are similar in shape and close in space. It can be 
applied, for example, to groups of similar trajectories resulting 
from clustering. Grouping of trajectories by similarity and/or 
closeness of the routes followed by geometric and/or numeric 
summarization may be called R- (route-based) aggregation. 

Our earlier paper [2] contains examples of combining route-
based grouping of trajectories with S×S×T×T-aggregation; all 
together may be called R×S×S×T×T-aggregation. It can support 
the trajectory-oriented view of movement, as will be shown later. 

3 EXAMPLE DATA AND ANALYSIS TASKS 

To present our work, we shall use an example dataset collected by 
GPS-tracking of 17,241 cars in Milan (Italy) during one week 
from Sunday to Saturday. Figure 1 shows the variation of the 
numbers of simultaneously moving cars from the tracked sample 
over the period of the observation. The numbers have been 
counted by hourly intervals and range between 80 and 3173. The 
vertical lines on the graph correspond to 0 o’clock. 

The dataset consists of more than 2 million records each 
including car identifier, time stamp (date and time of the day), 
geographical coordinates, and speed. The time intervals between 
the records of the same car are irregular, mostly ranging from 30 
to 45 seconds while there are also larger intervals ranging from 
several minutes to several days. The data have been kindly 
provided by Comune di Milano (Municipality of Milan) for the 
use within the project GeoPKDD. 

 

Figure 1. Variation of the number of simultaneously moving cars. 

In [2] we have described how we preprocess raw movement 
data in the database and integrate individual position records into 
trajectories. There is no unique way of combining position records 
into trajectories. In [2] we discuss several possible methods. In 
this paper we shall use trajectories obtained by one of the 
methods; the details are irrelevant to the topic of the paper. The 
number of the trajectories is about 176,000. 

It should be noted that the whole dataset is too big for loading 
and processing in the computer’s main memory and for interactive 
exploration with the use of dynamic querying, brushing, and other 
techniques addressing individual objects, i.e. points or trajectories. 
Therefore, it is necessary either to aggregate the data inside the 
database and explore the resulting aggregates or to divide the data 
into manageable subsets and explore them separately. The results 
then need to be compared and somehow integrated. 

Example analysis tasks related to city traffic management come 
from the interviews with specialists from mobility agencies and 
traffic departments of several Italian cities. The interviews have 
been conducted by our GeoPKDD partners from the Italian 
telecommunication company WIND and its business school. 

According to the interviews, city traffic managers need to cope 
with the following tasks: (1) estimate the average flows (number 
of people) between regions of interest and their variation in 
different time periods and in presence of extraordinary events 
such as football games, concerts, strikes, etc.; (2) estimate the 
average travel times between regions and their variation; (3) 
estimate the “impedance” of a street (obstruction to movement) 
and its variation; (4) estimate the proportions of the cars leaving a 
main road on different exits; (5) understand the actual paths used 
by people to get from one point or region of interest to another. 

At the present time, traffic managers do not use data resulting 
from tracking the movement of vehicles or people. Although such 
data become widely available, there are no appropriate tools for 
their analysis. A common practice is to use results of public 
surveys and traffic monitoring data coming from stationary video 
cameras or other sensors. Such data are not well suited to the 
tasks. While methods for reconstructing traffic flows from 
stationary sensor data are devised in data mining [11], analysis of 
tracking data could significantly help in coping with the tasks as 
well as in verifying traffic models built on the basis of data from 
stationary sensors. 

Assuming that the tasks of traffic managers are to be carried out 
with the use of car tracking data like in our example dataset, we 
can say that tasks 1, 2, and 5 require the trajectory-oriented view 
and task 3 requires the traffic-oriented view of the car movement. 
We shall discuss later which view is more appropriate for task 4. 

In the following sections we investigate what aggregation 
methods can support the two different views of movement data 
and what visualization techniques are suitable for viewing and 
exploring the outcomes of the aggregation. We would like to 
stress that the data and tasks described in this section serve only as 
examples for illustrating the suggested general framework for 
analysis of massive movement data with the use of aggregation. 

4 SUPPORTING THE TRAFFIC-ORIENTED VIEW 

We use the term “traffic situation” to denote the spatial positions 
of all moving entities and the values of the movement-related 
attributes including speed, direction, acceleration (change of 
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speed) and turn (change of direction) at some time moment. In the 
traffic-oriented view, an analyst looks at traffic situations at 
different time moments and considers the evolution of the traffic 
situation over time. For practical reasons, the analyst cannot 
analyze the traffic situation of each second. On the one hand, this 
would require too much time and effort; on the other hand, the 
available data may not allow this because of larger time intervals 
between the measurements. A reasonable approach is to aggregate 
the data by time intervals of appropriate lengths. Thus, in 
analyzing city traffic it may be sufficient to use time intervals of 
the length of one hour or, if this is too coarse, half an hour or 
quarter of an hour. 

S×T-aggregation can adequately support the consideration of 
aggregate traffic situations on time intervals. Besides dividing the 
time into intervals, the space (i.e. the territory where the entities 
move) is divided into appropriate compartments. In our 
experimental implementation, compartments are defined by 
building a regular rectangular grid of a desired resolution, but it is 
possible, in principle, to use other divisions. Then, various 
aggregates are computed for each pair of space compartment and 
time interval from the track records fitting in this compartment 
and this interval: number of different entities, number of visits, 
total time spent, statistics of the movement-related attributes 
(minimum, maximum, average, median, etc.). The aggregation 
can be done in the database. The results are loaded in the main 
memory and can be visualized in various ways including static 
and animated maps and non-cartographic displays. 

 

Figure 2. Temporal variation of the median speeds in different 

places of Milan (grid cells) computed by hourly time intervals. 

For example, Figure 2 shows the variation of the frequency 
distribution of the median speeds throughout the territory of Milan 
(divided into compartments by a regular grid) over the whole 
period of the observation from Sunday to Saturday. The data have 
been aggregated by hourly intervals; the segmented bars represent 
these intervals. The colors of the bar segments correspond to 
intervals of the values of the aggregate attribute “median speed”. 
The breaks are 15, 30, 45, 60, 80, and 100 km/h. Yellow is 
assigned to the interval from 45 to 60, the shades of red represent 
median speeds below 45, and the shades of green are used for 
median speeds over 60 km/h (the color legend can be seen on the 
left of Figure 3). The heights of the bar segments are proportional 
to the numbers of the compartments where the median speeds 
fitted in the respective intervals. Gray segments show the numbers 
of the compartments with no occurrences of tracked cars during 
the corresponding time intervals. 

   

Figure 3. The mosaic diagrams show the variation of the median speeds in spatial compartments by days of the week (columns of the 

diagrams) and hours of the day (rows of the diagrams). The cells are colored according to the speeds. The breaks and colors for the 

speed intervals are the same as in Figure 2. Slow speeds are shown in shades of red and fast speeds in shades of green. 
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Figure 4. Focusing on selected spatial compartments along a particular road. 

 

Figure 5. The directional bar diagrams show movement data aggregated by compass directions. The lengths of the bars are proportional to 

the numbers of the cars that moved in the respective directions during a selected time interval. The radii of the circles are proportional to 

the numbers of the cars with the speeds below a selected threshold (here 5km/h). On the right, only dominant directions are shown, 

specifically, where values are at least 25% higher than the next highest value (25% is a selected threshold).  

Since time is not only a linearly ordered sequence of moments 
but also has a cyclical organization, it is possible to aggregate 
time-related data by dividing their time span according to one or 
more temporal cycles. Thus, Figure 3 represents aggregates 
obtained with the use of two temporal divisions: according to the 
days of the week and according to the hours of the day. The first 
division groups together data referring to the same day of the 
week irrespective of the date. The second division groups together 
data from different days referring to the same hour of the day. As 
a result, aggregated values have been computed for each 
combination of space compartment, day of the week, and hour of 
the day. Each “mosaic” diagram summarizes the daily and weekly 
patterns of the traffic in a particular place. 

A traffic analyst can use this aggregation to explore the 
impedance of a street (task 3). For this purpose, the analyst can 
select the space compartments covering the street and look only at 
the data in these compartments (Figure 4). It should be noted that 

regular rectangular compartments may not ideally suit the 
geometry of a particular street. In this case arbitrarily specified 
compartments are preferable. 

The aggregation discussed so far is not specific to movement 
but can be applied to other kinds of spatio-temporal data, e.g. 
point events. In fact, this is the same type of aggregation as used 
for traffic incidents in [7]. To capture the specifics of movement 
data, we suggest another aggregation method where the data are 
aggregated not only by space and time but also by the direction 
(course) of movement. This aggregation can be denoted by the 
formula S×T×D, where D stands for “direction”. Movement 
directions are often indicated in the original track records. If this 
is not the case, they can be computed from pairs of consecutive 
positions of the same entity. 

The directions are specified in movement data as numeric 
values typically representing angular degrees from 0 to 359. For 
S×T×D-aggregation we suggest to divide this range into intervals 
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corresponding either to four main compass directions (north, east, 
south, and west) or to four main and four intermediate directions. 
Track records fitting in the same spatial compartment and 
temporal partition are additionally grouped by the movement 
directions. A separate group is made from records where the 
speed is below a chosen threshold. This is treated as the absence 
of movement. Then, various counts and statistics of attribute 
values are computed for the groups. 

To visualize the resulting aggregate data, we suggest a special 
technique in which the data are represented on a map by 
directional bar diagrams. Analogously to the wind rose used in 
meteorology, the bars are oriented in four or eight compass 
directions and their lengths are proportional to the values of the 
currently selected aggregate attribute corresponding to the 
respective directions. Thus, the diagrams in Figure 5 (left) portray 
the numbers of the cars that moved in different directions on 
Monday between 7 and 8 AM. The bars are colored depending on 
their orientation; a particular color is assigned to each direction. 
This helps in gaining an overall view of the prevailing movement 
directions throughout the whole territory. Besides the directional 
bars, some diagrams include gray circles representing the groups 
of records with the speeds below the chosen threshold. The radii 
of the circles are proportional to the values of the currently 
selected aggregate attribute computed for these groups of records. 
The radii can be easily compared with the lengths of the bars. In 
Figure 5 the circles represent the numbers of the distinct cars that 
had the speeds below the chosen threshold of 5km/h. Such speeds 
occur predominantly in the central part of the city but also on the 
northeast, where the circles located on a segment of a motorway 
may indicate its congestion. 

Visual exploration of traffic with the use of this kind of display 
can be supported by a number of interactive facilities:  
− switch from one aggregate attribute to another, e.g. from the 

number of entities to the average or median speed;  
− select another temporal partition, i.e. another interval, day of 

the week, time of the day, etc., depending on how the data have 
been aggregated;  
− hide some directions in order to focus on the remaining 

direction(s), e.g. to see where northward movement occurs;  
− choose presenting only the dominant direction(s) in each 

spatial compartment. A direction is treated as dominant when the 
corresponding value of the current aggregate attribute exceeds the 
highest value among the remaining directions by a chosen 
threshold, which may be either absolute (i.e. minimum difference 
between the values) or relative (i.e. minimum ratio).  

The screenshot on the right of Figure 5 shows the dominant 
movement directions defined by the relative threshold of 25%. It 
may be seen that movements towards the center prevail on most 
radial streets and that movements to the east (green bars) 
dominate on the motorway on the south. In some compartments 
there are two or more dominant directions. This means that the 
respective attribute values differ by less than 25%. 

The S×T×D-aggregation together with the visualization can 
support a more refined exploration of street impedance than it is 
possible with the S×T-aggregation. An example is shown in 
Figure 6. To explore the traffic on a particular road, only the space 
compartments (grid cells) covering this road have been selected. 
The data have been aggregated according to the four main 
compass directions. The bar diagrams represent the median speeds 
in the eastern (green) and western (purple) directions. The 
diagrams are substantially asymmetric, meaning different speeds 
of the movement in the eastern and in the western directions. 
Lower speeds, in turn, signify higher obstruction to the 
movement. In this way, the impedance of a street to the movement 
in the different directions can be explored. 

 

Figure 6. The bars represent the median speeds of the movement 

toward the east (green) and west (purple) between 11 and 12 

AM on Wednesday along a motorway on the north of Milan. 

It may seem that the S×T×D-aggregation and directional bar 
diagrams can also support task 4 – estimation of the proportions 
of cars leaving a road on its exits. Indeed, some diagrams in 
Figure 5 (left) show the proportions of the movements in different 
directions on road exits and crossings. However, these data are not 
very reliable. The course of the movement in a particular point is 
determined using the next measured position of the same car. 
Depending on the temporal spacing between the measurements 
and the speed of the movement, the next measurement may be 
taken on another road, somewhere on a curved exit, or on another 
lane of the same road just in a few meters from the previous 
measurement. The computed course of a car leaving the road may 
occasionally coincide with the direction of this road, and on the 
opposite, the course of a car staying on the road but changing the 
lane may significantly differ from the road direction. For a more 
reliable estimation of the proportion of the cars leaving the road, 
the further routes of the cars need to be taken into account. This 
means that task 4 requires the trajectory-oriented view of the car 
movement, like tasks 1, 2, and 5. 

5 SUPPORTING THE TRAJECTORY-ORIENTED VIEW 

In the trajectory-oriented view, collective movement of multiple 
entities is considered as a set of trajectories of the entities. In 
practical tasks, the entire trajectory of each entity made during the 
whole period of the observation is usually divided into parts 
representing different trips of this entity; the term “trajectory” is 
also applied to such a part. 

In analyzing trajectories, one may be interested in the origins 
and destinations of the trips, routes, start and end times, durations, 
distances, variation of the speeds along the routes, intermediate 
stops, etc. When trajectories are numerous, it is impracticable to 
examine each of them in detail. They need to be aggregated in 
such a way that the distribution of the relevant properties over the 
set of trajectories could be seen. For certain properties, the 
aggregation may be quite traditional. Thus, a frequency histogram 
can appropriately represent the distribution of the trip durations or 
distances. More specific aggregation and visualization techniques 
are required for the spatial properties (origins, destinations, and 
routes) and for the spatio-temporal properties (speed variation and 
intermediate stops).  

The general approach is to group the trajectories by similarity in 
terms of the properties relevant to the goals of the analysis. Then, 
the groups need to be represented in a summarized way, which 
appropriately conveys the relevant properties. The easiest case is 
when the analyst is interested only in the origins and destinations 
of the trips but not in the routes and spatio-temporal properties. 
This is the case in tasks 1 and 2. To support such tasks, the 
trajectories need to be grouped by the origins and destinations. 

5.1 Aggregation by origins and destinations 

In this method, which may be called S×S-aggregation, two 
approaches are possible. One is to refer the starts and ends of the 
trajectories to predefined areas of interest, for example, city 
districts. Then, for each pair of areas, the trajectories starting in 
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the first area and ending in the second area are grouped together. 
This applies also to the pairs where the first element coincides 
with the second one. The other approach is to define areas on the 
basis of spatial clustering of the start and end points of the 
trajectories. It is reasonable to assign meaningful names to the 
resulting clusters so that they could also be used as the names of 
the origins and destinations of the trips. 

For each group of trajectories with a common origin and a 
common destination, the group size and the statistics (minimum, 
maximum, mean, median, etc.) of the numeric properties of the 
trajectories such as trip durations and distances are computed. The 
results may be displayed in the form of origin-destination matrix 
where the rows correspond to the origins, columns to the 
destinations, and the cells contain the values of the computed 
aggregates. The values in the cells may be represented visually by 
graduated symbols or diagrams. In our experimental software, the 
matrix display is linked to a map: clicking on a row, column, or 
cell highlights the corresponding areas on the map. 

Another possibility for the aggregation is to account not only 
for the areas where a trajectory starts and ends but also for all 
intermediate areas visited by the trajectory. This means that each 
trajectory is generalized into a sequence of moves between areas. 
A move is a spatio-temporal object defined by the place and time 
of the start and the place and time of the end. An aggregate move 
combines moves with the same place of the start and the same 
place of the end. It is characterized by the number of the 
elementary moves it combines and various statistics of the 
duration, distance, speed, time, etc. computed from the respective 
trajectory fragments. These characteristics can be visualized in a 
matrix display like in the case of complete trajectories (Figure 7 
right). The aggregate moves can also be shown on a map display 
as directed lines (vectors) between areas (Figure 7 left). The 
widths of the lines may represent the values of a selected 
aggregate attribute. 

  

Figure 7. Summarization of trajectories into aggregate moves. 

To investigate and compare the trips made in different time 
periods, the S×S×T×T-aggregation is used. The time is partitioned 
into linearly ordered intervals or according to temporal cycles. 
The S×S-aggregation, as described above, is then applied 
separately to the trajectories or fragments of trajectories made 
during each of the temporal partitions. Thus, the screenshots in 
Figure 7 correspond to the time from 5 to 6 AM on Wednesday. 

To support task 2 of the traffic managers, the matrix display 
needs to show the average or median travel times (trip durations) 
for the pairs of the areas. It may seem that task 1 is adequately 
supported by the matrix display showing the numbers of the trips 
between the areas. However, the available dataset does not 
contain data about all cars moving in Milan but only data about a 
limited number of cars. The true numbers of the trips between the 
areas cannot be derived from these data. A realistic estimation 
might be achieved by means of traffic simulation, which takes 

into account available movement data about a sample of cars 
together with measurements from static traffic sensors. 

Generally, data about a sample of cars may be sufficient for 
various analysis tasks where the analyst considers movement 
speeds, travel times, distances, or routes but not numbers or 
densities of cars or numbers of trips. The reason is that the cars 
from the sample mostly use the same roads and streets as the other 
cars and their speeds cannot differ much from the speeds of their 
neighbors in the city traffic. 

Task 4 (estimate the proportions of the cars leaving a road on its 
exits) can be supported by the S×S×T×T-aggregation in a case 
when a representative set of trajectories going through this road is 
available (it may result from tracking a sufficiently big number of 
cars or from a realistic simulation). For this purpose, appropriate 
areas are built for the road exits and crossings and for the two 
sides of the road, and the trajectories are summarized into 
aggregate moves between these areas. Using dynamic filtering, it 
is possible to focus on outgoing (Figure 8) or ingoing moves, on 
moves starting or ending on a particular crossing, etc. 

 

Figure 8.  The aggregate moves represent the cars leaving a road 

on different exits between 7 and 9 AM on Wednesday. 

The S×S×T×T-aggregation described in this subsection does not 
give an idea about the routes used for getting from place to place. 
For analysis tasks where routes are relevant, such as task 5 of the 
traffic managers, it is necessary to have methods for grouping 
trajectories according to the routes and for presenting the routes in 
a summarized way. 

5.2 Aggregation by routes 

In all aggregations discussed so far it is possible to specify in 
advance the groups to be produced in terms of the properties of 
their members. Thus, in S×T-aggregation of track records, the 
groups are defined in terms of the spatial positions (which must fit 
in predefined space compartments) and time references (which 
must fit in predefined temporal partitions). In S×T×D-aggregation, 
the intervals for the values of movement direction are additionally 
specified. In S×S-aggregation of trajectories, the groups are 
defined through pairs of areas in which the origins and 
destinations of the trajectories or their fragments must fit. In 
S×S×T×T-aggregation, predefined temporal partitions for the start 
and end times of the trajectories or fragments are added. 

In grouping by routes, it may not be possible to pre-specify a 
finite number of “model” routes for putting trajectories into 
groups based on their similarity to this or that route. In such a 
case, the trajectories may be grouped by means of clustering. In 
[2] we have described our clustering tool capable of using 
different measures of similarity between trajectories, also called 
distance functions. One of the available distance functions, which 
computes the average distance between corresponding points of 
two trajectories (the algorithm is given in [2]), can be used for 
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clustering trajectories by similarity of their routes. The resulting 
clusters need to be visualized to enable their interpretation. 

One of the problems that need to be tackled is that trajectories 
included in the same cluster are not necessarily very similar and 
close (Figure 9 left); this depends on the parameter settings for the 
clustering. In case of high variability, summarizing trajectories by 
building an envelope around them or deriving an “average 
trajectory” may yield unclear or misleading results. We suggest 
representing groups of trajectories by aggregate moves between 
small areas. This is similar to what is described in the previous 
subsection except that the areas are not pre-specified but defined 
automatically using characteristic points of the trajectories, i.e. 
starts, ends, turns, and stops. The areas are built as circles around 
clusters of characteristic points from multiple trajectories and 
around isolated points. The radii vary within a user-specified 
range. Note that the areas so produced play an auxiliary role and 
do not need to be visualized (usually they are numerous and 
clutter the display). 

  

Figure 9. Left: an example of a cluster of trajectories grouped by 

the routes. Right: Aggregate moves summarizing the cluster. 

The immediate result of aggregating a group of trajectories with 
high internal variability may not look clear enough. Thus, the 
screenshot on the right of Figure 9 shows all aggregate moves 
irrespectively of the number of the elementary moves they 
include. Many of the aggregate moves stand for just one or two 
elementary moves. By hiding minor aggregate moves through 
dynamic filtering one can see more clearly what is in common 
between the trajectories in the group. Furthermore, one can 
reconstruct one or more prototypical routes followed by the 
trajectories. This is demonstrated in Figure 10. 

    

Figure 10. Revealing the commonality between the trajectories in 

a group and reconstructing the prototypical routes through 

dynamic filtering of aggregate moves. 

The images from left to right correspond to the lower limits 20, 
15, 10, and 5, respectively, for showing the aggregate moves on 
the map. The first two images expose the principal route of the 
cluster of trajectories. The third image shows branching of the 
principal route and a shorter secondary route parallel to it. The 
fourth image reveals further branching and small common 
segments appearing in at least 5 trajectories. 

In an arbitrary set of trajectories, like in the Milan dataset, there 
may be multitudes of different routes. Clustering by routes will 
necessarily produce numerous groups of trajectories. There is no 
possibility to see them all together. In fact, even a few clusters 
may be hard to explore together if there are intersections and/or 
overlaps between their trajectories. It does not seem realistic that 
an analyst considers hundreds of clusters one by one. A more 
reasonable scenario is that the analyst has a certain focus of 
interest, for example, typical routes towards the centre of Milan or 
between two city districts, as in task 5 of the traffic managers. The 
analyst applies clustering only to the trajectories corresponding to 
his/her focus and then explores only the biggest clusters. 

 

Figure 11. The biggest clusters of trajectories to the center. 

For example, in Figure 11 we can see (in an aggregated form) 
the biggest clusters of trajectories going to the center of Milan. 
Each cluster is shown in a particular color. We observe the most 
typical routes towards the center and see how they mix inside the 
central area of the city; this is indicated by gray-colored lines. 

We have demonstrated how groups of trajectories with similar 
routes can be explored with the help of the S×S-aggregation: the 
trajectories are transformed into aggregate moves between pairs of 
automatically defined areas. This can be extended to the 
S×S×T×T-aggregation, which allows an analyst to explore how 
the use of the typical routes changes over time. Furthermore, the 
vectors representing the aggregate moves on a map can be 
combined with visualization of various statistics related either to 
the moves or to the areas. For instance, the analyst can explore the 
temporal variation of the average speeds on different segments of 
the routes or of the average times spent in different places. The 
values of selected aggregate attributes can be represented on the 
map display by graduated symbols or diagrams drawn on top of 
the vectors. This gives a possibility to explore not only the spatial 
but also spatio-temporal characteristics of the trajectories. 

6 POSSIBLE IMPLEMENTATION 

The main goal of the paper is to introduce a general framework 
for analysis of massive movement data with the use of 
aggregation. Accordingly, we have tried to avoid discussing any 
implementation specifics. Here we would like to make just a 
couple of general notes concerning the possible implementation of 
the suggested methods. 

The aggregations supporting the traffic-oriented view (§4) can 
all be done in a database by means of standard database functions. 
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Spatial OLAP operations can also be used for this purpose. The 
S×S×T×T-aggregation with predefined areas (§5.1) can be 
fulfilled in a database supporting spatial queries. The route-based 
aggregation (§5.2) is achieved with the help of clustering. Current 
clustering techniques work in the main memory. This limits the 
size of the data that can be analyzed. Our partners in the 
GeoPKDD project are now developing a scalable clustering tool 
with a substantial part of analysis performed inside the database. 

On the other hand, having (a part of) movement data in the 
main memory gives very interesting possibilities for interactive 
analysis. Thus, in our experimental system we have implemented 
the aggregate moves and generalized places (areas) in the 
S×S×T×T-aggregation as dynamic aggregators. A dynamic 
aggregator keeps references to its members (i.e. the objects it 
aggregates) and reacts to various interactive operations on the set 
of the objects such as filtering and classification. In response, it 
adjusts the values of aggregate attributes and, as a consequence, 
alters its appearance in visualizations. Aggregate moves and 
places keep references to trajectories or fragments of trajectories. 
They react to the temporal filter (selection of a time interval), 
attribute filter (selection of trajectories by attributes such as 
duration and length), cluster filter (selection of clusters), and 
assignment of colors to groups of trajectories resulting from 
clustering or classification. Being represented on a map as vector 
symbols, aggregate moves can change their thickness or color and 
hide from the view when all their members are filtered out. 
Aggregate moves and places also control the appearance of 
symbols or diagrams representing values of aggregate attributes 
on a map or in a matrix display. More details about dynamic 
aggregators are given in [12]. 

7 CONCLUSION 

Current positioning and tracking technologies enable collection of 
huge amounts of movement data. To make sense and use of such 
data, scalable analysis and visualization tools are very much 
needed. Visual exploration of massive movement data cannot be 
done without aggregation and summarization of the data. 

We have undertaken an investigation into the aggregation 
methods suitable for movement data. We have considered known 
methods, specifically, S×T-aggregation (space × time) and 
S×S×T×T-aggregation (start place × end place × start time × end 
time), and introduced new methods: S×T×D-aggregation (S×T× 
direction) and R×S×S×T×T-aggregation (route × S×S×T×T). We 
have systemized these methods according to a framework based 
on an abstract model of movement data as a function of two 
variables. This model substantiates the possibility of considering 
movement data from two different perspectives, which we call 
traffic-oriented view and trajectory-oriented view. Each view 
requires different methods for analysis and visualization and, in 
particular, for data aggregation. The S×T- and S×T×D-
aggregation support the traffic-oriented view while S×S×T×T- and 
R×S×S×T×T-aggregation are appropriate for the trajectory-
oriented view. 

We have also investigated what visualization and interaction 
techniques can support the exploration of massive movement data 
in combination with aggregation. We have pointed to known 
techniques suitable for this purpose and suggested new interactive 
visual techniques. In particular, the visualization with directional 
diagrams can be applied to results of the S×T×D-aggregation. The 
results of the R×S×S×T×T-aggregation can be visualized on a 
map by vectors varying in thickness and color. 

In presenting the aggregation and visualization methods, we 
have used a real example dataset about movement of cars in a big 
city. We have demonstrated how the methods can support the 
analysis tasks of traffic managers. However, the methods are not 
specific for this type of movement data and these tasks. They can 

be effective in various domains and for various kinds of data 
describing both constrained (e.g. by roads) and free movements of 
vehicles, people, animals, and other entities. Still, we are far from 
claiming that the aggregations and visualizations we have 
presented can solve all problems and fully satisfy the needs of all 
analysts. We are working on combining these techniques with 
other methods for analysis of movement data. 
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