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ABSTRACT

Context. Our knowledge of the heating mechanisms that are at work in the chromosphere of plage regions remains highly uncon-
strained from observational studies. While many heating candidates have been proposed in theoretical studies, the exact contribution
from each of them is still unknown. The problem is rather difficult because there is no direct way of estimating the heating terms from
chromospheric observations.
Aims. The purpose of our study is to estimate the chromospheric heating terms from a multi-line high-spatial-resolution plage dataset,
characterize their spatio-temporal distribution and set constraints on the heating processes that are at work in the chromosphere.
Methods. We used nonlocal thermodynamical equilibrium inversions in order to infer a model of the photosphere and chromosphere
of a plage dataset acquired with the Swedish 1-m Solar Telescope (SST). We used this model atmosphere to calculate the chro-
mospheric radiative losses from the main chromospheric cooler from H i, Ca ii, and Mg ii atoms. In this study, we approximate the
chromospheric heating terms by the net radiative losses predicted by the inverted model. In order to make the analysis of time-series
over a large field of view computationally tractable, we made use of a neural network which is trained from the inverted models of
two non-consecutive time-steps. We have divided the chromosphere in three regions (lower, middle, and upper) and analyzed how the
distribution of the radiative losses is correlated with the physical parameters of the model.
Results. In the lower chromosphere, the contribution from the Ca ii lines is dominant and predominantly located in the surroundings
of the photospheric footpoints. In the upper chromosphere, the H i contribution is dominant. Radiative losses in the upper chromo-
sphere form a relatively homogeneous patch that covers the entire plage region. The Mg ii also peaks in the upper chromosphere.
Our time analysis shows that in all pixels, the net radiative losses can be split in a periodic component with an average amplitude
of ampQ = 7.6 kW m−2 and a static (or very slowly evolving) component with a mean value of −26.1 kW m−2. The period of the
modulation present in the net radiative losses matches that of the line-of-sight velocity of the model.
Conclusions. Our interpretation is that in the lower chromosphere, the radiative losses are tracing the sharp lower edge of the hot
magnetic canopy that is formed above the photosphere, where the electric current is expected to be large. Therefore, Ohmic current
dissipation could explain the observed distribution. In the upper chromosphere, both the magnetic field and the distribution of net
radiative losses are room-filling and relatively smooth, whereas the amplitude of the periodic component is largest. Our results sug-
gest that acoustic wave heating may be responsible for one-third of the energy deposition in the upper chromosphere, whereas other
heating mechanisms must be responsible for the rest: turbulent Alfvén wave dissipation or ambipolar diffusion could be among them.
Given the smooth nature of the magnetic field in the upper chromosphere, we are inclined to rule out Ohmic dissipation of current
sheets in the upper chromosphere.
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1. Introduction

The heating of the solar chromosphere and corona remains
one of the foremost questions in solar and stellar physics. The
chromosphere is on average radiating 4 kW m−2 in the quiet
Sun and 20 kW m−2 in active regions (Vernazza et al. 1981;
Withbroe & Noyes 1977). That energy must be transported and
deposited into the chromosphere at any time by heating mech-
anisms. Although we cannot measure chromospheric heating
terms directly, we can estimate them by assuming that they are
equal to the radiative losses in the main chromospheric coolers,
typically strong chromospheric lines and continua from the H i,
Ca ii, and Mg ii atoms.

The physics and heating of plage regions have puzzled the
solar physics community since the 1970. Three recent inde-
pendent studies attempted to infer the strength and stratifica-
tion of the magnetic field in plage targets (Morosin et al. 2020;

Pietrow et al. 2020; Ishikawa et al. 2021). The authors found
amplitudes of approximately |B‖| ∼ 300−400 G, depending
on the spectral line and target under analysis. In particular,
Morosin et al. (2020) reconstructed the canopy effect of the mag-
netic field in the chromosphere. The magnetic field is very
concentrated in the intergranular lanes in the photosphere and
expands horizontally as we move up in the atmosphere, form-
ing a hot magnetic canopy over the photosphere. Because of the
sharp lower boundary of the canopy, the authors speculated that
current sheets should be present in this boundary, purely from the
application of j = ∇ × B/µ. Those currents could lead to Ohmic
dissipation at the lower boundary of plage, causing heating at the
base of the chromosphere.

Furthermore, modeling chromospheric lines from plage
observations typically requires very large values for micro-
turbulence of up to 10 km s−1 (e.g., Shine & Linsky 1974;
Carlsson et al. 2015, 2019; De Pontieu et al. 2015). A more
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Table 1. Observed line positions of the lines used in this study, relative to line center.

Spectral line Wavelength positions [mÅ]

Ca iiK −1331, −704, −626, −548, −470, −391, −313, −235, −157, −78, 0, 78, 157, 235, 313, 391, 470, 548, 626, 704, 1331
Fe i 6301 Å −1180, −1120, −1070, −1030, −990, −950, −910, −860, −800
Fe i 6302 Å −290, −120, −80, −40, 0, 40, 80
Ca ii 8542 Å −1700, −765, −680, −595, −510, −425, −340, −255, −170, −85, 0, 85, 170, 255, 340, 425, 510, 595, 680, 765, 1700

recent study using ALMA and IRIS observations led to
further constraint of this value to an average of 5 km s−1

(da Silva Santos et al. 2020). Whether these large values of micro-
turbulence are related to turbulent velocity fields or sharp gradi-
ents along the line-of-sight induced by a hot magnetic canopy
above the photosphere (Sanchez Almeida & Martinez Pillet
1994; de la Cruz Rodríguez et al. 2013; Buehler et al. 2015;
Morosin et al. 2020), answering this question is entangled with
the enhanced values of radiative losses that have been reported
in plage in comparison with the quiet Sun.

In the chromosphere, magnetic forces are equal to those from
pressure gradients, leading to a complex and very dynamic force
balance. Therefore magnetoacoustic waves, turbulent Alfvén
wave dissipation, magnetic reconnection, Ohmic current dissipa-
tion, viscous heating, and ambipolar diffusion can all contribute to
the heating of the chromosphere (see, Hasan & van Ballegooijen
2008; van Ballegooijen et al. 2011; Khomenko & Collados 2012;
Priest 2014; Martínez-Sykora et al. 2017; Priest et al. 2018;
Brandenburg & Rempel 2019; Yadav et al. 2020; Díaz Baso et al.
2021a; da Silva Santos et al. 2022, and references therein). The
exact set of processes that are at work in plage and their contri-
bution to the energy budget remains highly unconstrained from
observations. A thorough discussion and exhaustive review about
the potential contribution of different heating mechanisms in
plage is presented by Anan et al. (2021). These authors also ana-
lyzed the correlations of the radiative flux in the Mg ii h and k lines
and with the magnetic field strength that was inferred from obser-
vations in the He i 10830 Å line. Their conclusion was that Alfvén
waves or ion–neutral collisions could be heating plage regions.
They could not find a clear correlation with the electric current in
their results.

Inversion methods allow for the inference of a model atmo-
sphere of the photosphere and chromosphere by iteratively
modifying the physical parameters of a model atmosphere
to reproduce the observed full-Stokes spectra. These can be
used for a variety of spectral lines and it is also possible
to include nonlocal thermodynamical equilibrium (NLTE)
effects (Asensio Ramos et al. 2008; Socas-Navarro et al. 2015;
Milić & van Noort 2018; de la Cruz Rodríguez et al. 2019;
Ruiz Cobo et al. 2022). NLTE inversions are computationally
expensive and time consuming, and so studying the evolution of
the atmosphere parameters of an entire time-series observation
could become prohibitive. The great advantage of inversions is
that we can use the inferred model atmosphere to calculate radia-
tive losses in the chromosphere (see e.g., Abbasvand et al. 2020;
Díaz Baso et al. 2021a) and thereby obtain a lower-limit estimate
of the chromospheric heating terms. To our knowledge, there
is no other way to estimate radiative losses from observational
data.

In this study, we made use of a subset of a long time-series
to calculate plage models from NLTE inversions. We used the
resulting model atmospheres to train a neural network (NN)
that can quickly predict the model atmosphere for the rest of

the dataset, in a similar way to Asensio Ramos & Díaz Baso
(2019) or Kianfar et al. (2020). The underlying assumption for
this approach to work is that the training set is statistically rep-
resentative of the entire time-series. The quantities included in
a model atmosphere are the gas temperature T , the line-of-sight
velocity vLOS, the turbulence velocity vturb, and the parallel and
perpendicular components of the magnetic field, respectively B||
and B⊥.

We calculated the net chromospheric radiative losses for all
time-steps of the series in order to better understand the distri-
bution of radiative losses in a plage target, as well as the time
evolution. In our analysis, we study some correlations with other
physical parameters in order to decipher which heating mecha-
nisms could be at work.

2. Observations and data reduction

The target of interest is NOAA 2591, which was observed
with the Swedish 1-m Solar Telescope (SST; Scharmer et al.
2003) on 14 September 2016 at 08:26 UT. It is a plage
region located at (X,Y) = (424′′,−16′′), which corresponds to
a viewing angle of µ = 0.90. The CRisp Imaging Spectro-
Polarimeter (CRISP; Scharmer et al. 2008) and the CHROMo-
spheric Imaging Spectrometer (CHROMIS; Scharmer 2017)
were used in order to obtain observations in Ca ii 8542 Å (full-
Stokes), Fe i 6301/6302 Å (full-Stokes), Ca iiH and K (intensity
only), and a continuum point at 400 nm. Table 1 summarizes the
observed line positions for each spectral region, in mÅ relative
to line center. The data recorded with CRISP have a cadence of
∆t = 37 s and span a period of ∼22 min.

The CHROMIS dataset has a cadence of ∆t = 16 s. In order
to match the observations with the two instruments, for each
CRISP snapshot, we selected the closest CHROMIS scan.

After the acquisition, the data were reduced using
the SSTRED pipeline (de la Cruz Rodríguez et al. 2015;
Löfdahl et al. 2021). In order to take into account atmospheric
effects, the data were also processed using the Multi-Object
Multi-Frame Blind Deconvolution method (MOMFBD)
described in van Noort et al. (2005). Then the dataset was
properly aligned because the two instruments have a different
pixel scale. We also used the Python package ISPy to handle the
data and metadata of the data cubes (Díaz Baso et al. 2021b).

An overview of the observed active region is presented
in Fig. 1. The panels depict the observations in Ca ii 8542 Å,
Fe i 6302 Å and Ca iiK. Stokes I and V/I of Ca ii 8542 Å are
shown at ∆λ = 85 mÅ from line center. The upper left panel of
Fig. 1 illustrates the plage region in the chromosphere, with typi-
cal features being fibrils, extending from the center of the region
towards the outside. There are two different polarity patches in
the field of view (FOV). The Ca iiK wing image in the lower-
right panel shows low-lying bright structures connecting both
polarities.

A8, page 2 of 15



R. Morosin et al.: Spatio-temporal analysis of chromospheric heating in a plage region

0

5

10

15

20

25

30

35

y 
[a

rc
se

c]

0 10 20 30 40
x [arcsec]

0

5

10

15

20

25

30

35

y 
[a

rc
se

c]

0 10 20 30 40
x [arcsec]

Fig. 1. Overview of the observation in Ca ii 8542 Å, Fe i 6302 Å and Ca iiK. Top row: from the left Stokes I at ∆λ = 85 mÅ and V/I at ∆λ = 170 mÅ
from line center. Bottom row: from the left Stokes V/I of Fe i 6302 Å at ∆λ = 40 mÅ from line center and Stokes I of Ca iiK at ∆λ = 470 mÅ. The
red box indicates the area used in our study.

3. Data analysis

3.1. Inversions

To estimate the thermodynamic and magnetic properties of the
region NOAA 2591, we performed NLTE inversions using the
STockholm inversion Code (STiC; de la Cruz Rodríguez et al.
2016, 2019). This latter is a modified version of the radiative-
transfer RH code (Uitenbroek 2001) and includes a fast
approximation to calculate the effects of partial redistribu-
tion (PRD, see Leenaarts et al. 2012). The inversion engine of
STiC includes an equation of state extracted from the Spec-
troscopy Made Easy (SME, Piskunov & Valenti 2017). The
radiative transport equation is solved using a cubic Bezier solver
(de la Cruz Rodríguez & Piskunov 2013) of the polarized trans-
fer equation.

The spectra in the Ca ii spectral lines were calculated in
NLTE by assuming statistical equilibrium and plane-parallel
geometry. Furthermore, PRD effects were explicitly included in
the calculations of the H and K lines. The Fe i lines were syn-
thesized assuming LTE. We chose to perform the inversions in
a column-mass scale. In comparison to optical depth, column
mass allows the gas pressure scale to be computed directly, with-
out involving the equation of state or background opacities. We

show below that this feature is important when using the NN to
predict models from observations.

We inverted a training set for a NN. The training set consisted
of the full FOV for two non consecutive time-steps of the series,
but we only inverted every seventh pixel of the FOV in order
to speed up the calculations. Furthermore, in order to efficiently
train the NN it is more convenient to have a statistical picture of
the FOV, with many pixels spread across the region and many
different observed spectra, rather than many pixels in a small
area that could all present similar observed spectra.

We initialized the magnetic field vector of the initial input
model using the spatially-regularized weak-field approximation
proposed in Morosin et al. (2020). The presence of strong veloc-
ity gradients as a function of depth can greatly distort the line
profile of very strong lines. In our tests, this was one of the main
sources of degeneracy in the output models. In order to better
sample the parameter space in line-of-sight velocity, we pre-
scribed five initializations of the stratification that were added
to the FAL-C model (Fontenla et al. 1993): three with constant
values at 0, ±5 km s−1, and two with strong upflowing and down-
flowing gradients (see Fig. 2). The number of nodes used to run
the inversion are the same for all five models. We used ten nodes
in temperature, four in vLOS, four in vturb, three in B||, two in B⊥,
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Fig. 2. Example of the line-of-sight velocity stratifications as a function
of the logarithm of the column mass (ξ), which were used to create the
models for the inversions with STiC.

and one node in the azimuth φ. For each pixel, we selected the
model that yielded the best χ2 value and then applied a mild
horizontal smoothing. The inversions were re-started with an
increased number of 11 nodes in temperature and 4 nodes in
B‖. Once all cycles were finished, we switched on the NLTE
equation of state and re-ran the final cycle, which essentially
accounts for the ionization of hydrogen in NLTE and the ioniza-
tion of the rest of elements is calculated in LTE. The last cycle
essentially affects the temperature stratification and the derived
electron densities.

The first two rows in Fig. 3 present respectively the T and
vLOS for three different depths in the atmosphere, which corre-
spond to lower photosphere, upper photosphere, and upper chro-
mosphere. For B||, B⊥, and vturb, just two depths were chosen:
these are represented in each column of the two bottom rows.

The inversion results reproduce many features of the solar
atmosphere that are well known from previous research. In the
photospheric temperature map, for example, the granulation pat-
tern is visible, while moving upwards in the atmosphere, the hot-
ter and elongated fibrillar structures extend toward the outside.
Moreover, the magnetic field presents the typical plage struc-
ture with strong concentrations of field and field-free gaps in
the photosphere, while in the chromosphere it is more extended
and less strong (Buehler et al. 2015; Díaz Baso et al. 2019a;
Morosin et al. 2020). We note that the Q and U signals in the
chromosphere are very noisy and the inversion code struggles to
reconstruct clean maps for the |B⊥| and the azimuthal compo-
nents of the magnetic field.

Due to the signal-to-noise ratio (S/N) of the observation and
the differences in sensitivity of the emerging intensities to the
different parameters of the model, the depth resolution of the
model is greatest in temperature and line-of-sight velocity, and
is much more limited in microturbulence and B‖. Therefore, the
magnetic canopy does not appear as sharply in the reconstructed
magnetic field stratification as in the temperature reconstruction
and in both cases it is much smoother than it probably is in reality
because of the limitations of a node-based inversion.

3.2. Neural network application

As it would be extremely time consuming and very computation-
ally expensive to invert all the 35 time-frames of the observa-

tion with STiC, we suggest instead an easier and faster approach
using NNs. These have shown a good performance in terms
of accuracy and speed and have been used to perform a large
range of different tasks; for example, to identify and predict solar
flares (Panos et al. 2018), to denoise solar observational images
(Díaz Baso et al. 2019b), and to learn the mapping between
spectral lines and the solar atmosphere (Socas-Navarro 2005;
Centeno et al. 2022). In the present case, we used the resulting
model atmospheres from the inversion to train a NN that can
quickly predict the model atmosphere for the rest of the dataset.
We refer the reader to Appendix A for a detailed explanation of
the architecture, training process, and validation of the NN.

Results of the NN. The results obtained with the training of
the NN are shown in Fig. 4 in a format similar to that of Fig. 3.
The represented time-step is the same as in Fig. 3.

The temperature and line-of-sight velocity prediction from
the NN are very well correlated with the results from the inver-
sions (see 2D density plots in Fig. 5). Both components of the
magnetic field vector are predicted to be smoother compared to
those obtained with the inversions. The latter occurs because the
noise from Stokes Q and U was dominating the inversion results
and STiC was not able to fully reconstruct the signal. The intro-
duction of an additional random noise component in the training
helps the NN to better generalize the mapping and to obtain a
more robust estimation of the values.

The NN seems to overestimate vturb very deep in the pho-
tosphere, while in the chromosphere this behavior disappears.
The NN incorrectly correlates areas of strong photospheric B||
with higher values of the microturbulence. We investigated ways
of removing this degeneracy, but we could not find a solution.
We decided to move forward regardless because the values of
the microturbulence close to the continuum formation layer in
the photosphere have no influence on the prediction of radiative
losses through strong chromospheric lines.

4. Radiative cooling rates

The heating terms in the chromosphere can be approximately
estimated by calculating the integrated radiative losses, because
the energy required to sustain radiative losses must be sustained
by chromospheric heating terms. To calculate the radiative cool-
ing rates from the predicted model atmosphere from the NN, we
first imposed hydrostatic equilibrium in order to derive a z-scale
and the gas-pressure scale. Most inversion codes operate in an
optical-depth scale and therefore the gas pressure has to be cal-
culated iteratively with the consequent re-calculation of the con-
tinuum opacity (see, e.g., Mihalas 1970). However, working in a
column mass scale simplifies the calculations and no iterations
are needed (Hubeny & Mihalas 2014):

pgas = g�ξ (1)

where ξ is the column mass, known from the inversions, g� is
the solar gravity and pgas is the gas pressure.

We calculated the electron densities in each depth point using
a simple equation of state1 proposed by Mihalas (1970) which
includes hydrogen atoms bound in H− and H2 molecules. Once
the electron densities were known, we estimated the total number
of atoms for a given temperature assuming an ideal gas:

pgas = (Na + Ne)KB T, (2)

where Na is the atoms number density, Ne is the electron density,
KB is the Boltzmann constant, and T the temperature. In this

1 https://github.com/jaimedelacruz/pTau
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Fig. 3. Horizontal cuts from the final model atmosphere obtained from the inversions. The depth in the atmosphere is given in column mass. The
T and the vLOS are shown for three different depths, corresponding to lower photosphere, upper photosphere, and chromosphere. B||, B⊥, and vturb
are shown for two depths corresponding to lower photosphere and chromosphere.

way, it is possible to obtain the total number of atoms Na and,
by multiplying this by the mean particle mass, we can obtain the
density ρ at a certain depth in the atmosphere:

ρ = 〈m〉Na, (3)

where the mean particle mass 〈m〉 is given by:

〈m〉 =

Nelem∑
i

(ai mi). (4)

In this case, ai is the solar abundance of the ith element and mi
is its atomic mass.

Finally, we obtained the z-scale from the definition of col-
umn mass:

ξ =

∫
ρdz. (5)

Therefore, in a discrete grid, we can write:

dzi =
ξi − ξi−1

(ρi + ρi−1)/2
· (6)
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Fig. 4. Final model atmosphere of the FOV obtained from the training of the NN. Format as for Fig. 3.
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This hydrostatic z-scale is used to calculate the integrated radia-
tive losses in the chromosphere. The latter are calculated inte-
grating over a height interval selected from the z-scale. Our final
model contains all the quantities calculated under the assump-
tion of hydrostatic equilibrium and the ones previously obtained
after the inversion process.

We used a modified version of STiC that directly evaluates
Eq. (7) and also outputs the net radiative rates for all transi-
tions and the atom population densities. In our case, we con-
sidered Lyα, Ly continuum, Hα, the Ca iiH and K and the IR
triplet lines, and the Mg ii h and k and the UV triplet lines. Our
inversion setup includes lines that sample the solar atmosphere
from the upper chromosphere to the photosphere. Although the
Ca iiK line may be sensitive to the very lower part of the
transition region, it is not sufficient to properly constrain its
exact location and gradient. Therefore, the reconstructed tran-
sition region is very cold and extended in comparison to mod-
els from inversions including transition region diagnostics (see
e.g., de la Cruz Rodríguez et al. 2016). The latter seem to have a
large impact on the prediction of the Balmer continuum, which
is unrealistically large in our calculations. We could not find
an obvious solution to this problem, and therefore we did not
include the Balmer continuum contribution in our study. The
effect of this exclusion is that our radiative losses will potentially
be even lower than the heating terms that we are approximating
with them.

The inversions were calculated including the effect of
NLTE hydrogen ionization in statistical equilibrium by imposing
charge conservation (Leenaarts et al. 2007). Our NN does not
predict the electron density because the latter is not a parameter
of the inversion and STiC can calculate it as a post-processing
step. In that way, the electron density is fully consistent with the
model atmosphere obtained with the NN and we avoid another
potential source of error compared to a computation through the
NN. Therefore, we first calculated a forward synthesis with the
H atom, recovering not only the radiative losses but also the
electron densities in NLTE. We then replaced the electron densi-
ties in the original model with the new ones in the input model.
The synthesis was done for the Ca ii and Mg ii atoms with the
updated electron densities.

The radiative cooling rates are calculated automatically
inside the code by computing the divergence of the radiative flux
(see e.g., Uitenbroek 2002; Rutten 2003):

Q = ∇ · F =

∫ ∞
0

αν(z) [Sν(z) − Jν(z)] dν, (7)

where αν is the total absorption coefficient, Sν is the total source
function, and Jν is the mean intensity over solid angle. For
bound-bound transitions, Eq. (7) can be transformed into an
expression that only depends on the net radiative rates and the
level population densities:

Q = hν0(nuRul − nlRlu), (8)

where h is the Planck’s constant, ν0 is the central frequency of the
transition, nu/l are the population of the upper and lower level,
respectively, and Rul/lu are the radiative rate coefficient from the
upper to the lower level or vice versa.

In order to obtain the integrated radiative losses, Q has to
be integrated over the range of geometrical heights of the region
of interest. In our case, the integration limits are set in order to
take into account only the chromosphere, that is, from the depth
point after the temperature minimum to the depth point at which
the temperature reaches T ∼ 10 000 K. We note that moving the

5 4 3 2 1 0 1
cmass

6

8

10

12

T 
[k

K]

Fig. 6. Average temperature for the plage region as a function of cmass.
The red dots and the dashed lines represent the total integration interval
for the radiative losses, while the green dots and the dotted lines show
the division between lower, middle, and upper integration intervals used
in Figs. 7 and 8.

integration limits can change the derived losses, and therefore
some deviations can be expected when comparing numbers from
different studies.

5. Results

5.1. Single time-step

In order to study the spatial distribution of radiative losses, we
calculated the radiative losses for the initial time-step of the
observations. We chose this frame because it is one of those with
better seeing conditions. We divided our integration interval (in
height) into three subregions (lower, middle, and upper chromo-
sphere) to understand how the energy deposition is taking place;
these are shown in Fig. 6. The lower extreme of the interval was
chosen after the temperature minimum, that defines the end of
the photosphere and the beginning of the chromosphere. The
upper extreme was chosen in order not to include the transition
region in the calculations. As our inversions did not include lines
that are strongly sensitive to the transition region, the steep tem-
perature gradient and its exact location are not well constrained
in our models.

The derived radiative losses integrated over the entire inter-
val and over the three subregions of the chromosphere are shown
in the top row of Fig. 7. The average integrated radiative losses
over the whole plage region are ∼−28 kW m−2. The FOV shows
very small-scale regions with peak values of ∼−90 kW m−2. In
order to obtain greater insight into the calculated radiative losses,
we plot in Fig. 8 the contributions of each atom in the three sub-
layers of the chromosphere. The Ca ii contribution dominates
in the lower and middle chromosphere while the contributions
from H i and Mg ii lines are negligible in this region. The mid-
dle chromosphere is the sub-layer that presents the lowest values
associated with the radiative losses. In the upper chromosphere,
hydrogen is the main contributor to the radiative losses. The con-
tribution from the Mg ii atom is approximately one half of that
from hydrogen.

The comparison of the integrated radiative losses with the
line-of-sight component of the magnetic field provides signifi-
cant insight into the overall heating process (see Fig. 7). From
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Fig. 7. Maps of the radiative losses, temperature, and parallel magnetic field for different heights in the solar atmosphere. Top row: derived radiative
losses for the entire FOV for the first time-step. The first panel from the left represents the total radiative losses integrated over the chromosphere.
The other three panels show the radiative losses integrated over the lower, middle, and upper chromosphere, respectively. Middle row: maps of the
temperature for four different heights in the solar atmosphere. The height increases from left to right. Bottom row: maps of the parallel magnetic
field for four different heights in the solar atmosphere. The height is increasing from left to right. The first panels in the middle and bottom rows
represent the T and B|| in the photosphere, respectively. The green contours indicate the area where Q < const ∗ Q̃layer kW m−2 in the corresponding
atmosphere layer, where Q̃layer is the median value of Q in the corresponding layer. Const = 1.6 for the lower and middle chromosphere, and
const = 0.7 for the upper layer.

left to right, the contours plotted in three of the four panels cor-
respond to a fraction of the median value of the radiative losses
(Q < const∗ Q̃layer kW m−2, where Q̃layer is the average net radia-
tive loss in that layer) in the lower chromosphere, in the middle
chromosphere, and in the upper chromosphere. In the lower and
middle chromosphere, the bulk of the radiative losses is concen-
trated in the areas surrounding the strongest photospheric mag-
netic field concentrations but not inside the latter. The distribu-
tion of the largest temperatures is also greatly correlated with
the magnetic canopy. The photospheric temperature panel shows
that our FOV contains a number of small pores. We discuss the
effect of pores in Sect. 5.2. In the lower chromosphere, the peak
values of the radiative losses reach ∼−20 kW m−2. The lower-
left panel in Fig. 8 shows that the Ca ii contribution dominates in
the lower chromosphere, and the canopy shape is already visible
there.

In the middle chromosphere, the magnetic field becomes
smoother and the magnetic canopy is clearly visible in the B‖

image, suggesting that at this depth we are already sampling
above the lower edge of the canopy. The Qmiddle shows a sim-
ilar picture with slightly smaller radiative losses. The tempera-
ture image shows a nearly homogeneous value of approximately
6.5 kK, while most pores appear as cold holes in the canopy.

In the upper chromosphere, the integrated radiative losses
are dominated by the H i contribution. In this layer, the radia-
tive losses, the enhanced chromospheric temperature and the
magnetic field form a patch above the plage target with rela-
tively constant values of 〈Q〉 ≈ −22 kW m−2, 〈T 〉 ≈ 8.5 kK and
〈|B‖|〉 ≈ 370 G. In this layer only the strongest pores are visible
in the temperature map and in the radiative losses map.

5.2. The effect of pores

The presence of pores in plage seem to have a clear imprint
in the statistics of the derived physical parameters (see e.g.,
Chintzoglou et al. 2021). Our target contains several pores,
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Fig. 8. Maps of the contributions to the obtained radiative losses in the lower, middle, and upper layers in the chromosphere per atom. Top row:
integrated radiative losses for hydrogen. Middle row: integrated radiative losses for magnesium. Bottom row: integrated radiative losses for calcium.

which appear as colder and larger footpoints of the magnetic
canopy than in the rest of the magnetic elements. Otherwise,
the magnetic field is still strongly vertical. The imprint of pores
is clear. Because they are much colder than the smaller bright
flux tubes, the radiative losses are insignificant in comparison
with the surroundings, until we reach the upper chromosphere.
Figure 9 shows a vertical reconstruction, marked with the white
slit in Fig. 7. This slice cuts through two pores embedded in the
plage region (at Y ∼ 8 arcsec and 8 < X < 22 arcsec), illustrating
this effect. The figure also suggests that eventually, the imprint of
pores is much smoother and weaker in the upper chromosphere.

In summary, having pores in the FOV does affect the derived
radiative losses, especially in the lower chromosphere, because

the atmosphere is much colder than in regular flux tubes. In addi-
tion, having spatially resolved maps greatly helps to separate
their influence from the rest of the FOV.

5.3. Time-series analysis

The NN makes it possible to obtain the model atmosphere for
all the time-steps of the observation, and therefore allows us to
estimate a time-series of integrated radiative losses in the chro-
mosphere over the entire FOV. We focus on the red region high-
lighted in the top left panel of Fig. 7 and we calculated the
radiative energy balance for 21 time-steps of the whole obser-
vations. Given the cadence of the CRISP instrument, the latter
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Fig. 9. Vertical cut corresponding to the white dashed line of Fig. 7.
The total integrated radiative losses have been divided by the model
densities ρ and are represented using a symmetrical logarithmic scale.
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Fig. 10. Time-evolution of the radiative losses and of vLOS for two
selected pixels and a region in the FOV. The two chosen pixels are indi-
cated with green crosses in Fig. 7. Left: time-evolution of Q (top panel)
and vLOS (bottom panel) for the first random pixel. Right: time-evolution
of Q (top panel) and vLOS (bottom panel) for the second random pixel.

cover a total time of ∆t = 12.19 min. In Sect. 1 we mention that
magnetoacoustic waves and shocks can contribute significantly
to the heating of plage, and their imprint should be periodic.
Our aim is to separate the contribution of Ohmic heating from
the contribution of waves and shocks (De Pontieu et al. 2007;
Hasan & van Ballegooijen 2008) by analyzing a time-series.

In order to get an idea of the dominant period (p), ampli-
tude (A), phase (φ) and offset (Coff) of the oscillatory behavior,
we fitted a very simple model y = Coff + A · sin(φ + pt) to the
vLOS and Qtot temporal curves. The results for two random pix-
els are shown in the left and in the middle panels of Fig. 10.
The selected pixels are marked with green crosses in Fig. 7. The
vLOS is estimated in the region at cmass = −3.8, corresponding
to middle and upper chromosphere. The results are in line with
previous studies about wave propagation in different targets of
the solar atmosphere. Both curves have very similar periods, but
there is a phase shift between Qtot and vLOS, which we discuss
below.

The fitting procedure has been extended to the red high-
lighted region in the left top panel of Fig. 7. We plotted a map
for each parameter of the sinusoidal function in Fig. 11. The
displayed parameters represent the quantities characterizing the
time-evolution of Q, vLOS and vturb (from the top row). As a refer-
ence, average values of the parameters over the region are given
in Table 2. In our model, the offset is the value of Q or vLOS not
related to the periodic wave. In the case of the radiative losses,
our interpretation is that it contains the contribution from other
heating phenomena, such as Ohmic dissipation, ion-neutral col-
lisions, and so on. The top-left panel of Fig. 11 shows a smooth

distribution of the offset values. Although the smallest scales are
not present in this plot, there is large-scale variation across the
panel.

If we neglect the upper central part of the maps, outside the
boundary of the plage region, the average amplitudes become
ampQ = 7.6 kW m−2 and ampvLOS

= 3.2 km s−1. The latter is
in agreement with values reported by Centeno et al. (2009) in
a facular region using the He i 10830 Å line. The relatively large
value of the period in the chromosphere could be due to the prop-
agation along an inclined magnetic field line which can extend
the cut-off frequency in the chromosphere (e.g., Bloomfield et al.
2007).

The third column of Fig. 11 shows the period maps of both
Q an vLOS. The yellow contours indicate those areas where the
radiative losses are particularly strong (Q < −20 kW m−2). The
average period of oscillation for Q is pQ = 5.5 min, while con-
sidering only the region inside the contour it drops to pQ =
5.2 min. These results found for vLOS are in line with previous
works (de Pontieu 2004; Centeno et al. 2009), with a value of
pvLOS

= 5.5 min. We note that in the plage area (bottom half
of the panel) the periods present a relatively smooth distribu-
tion, between 4 and 5 min, whereas the upper area of the image,
outside the plage region, shows elongated features with longer
periods. The latter is located at the plage boundary, where the
magnetic field is more horizontal. The phase difference between
the radiative losses and the line-of-sight velocity is dominated
by values close to π/2. As the behavior of the radiative losses is
dominated by the temperature, we are recovering the usual phase
relation for running waves.

Although we do not include plots showing the imprint of the
periodic signal in each of the sub-layers of the chromosphere
investigated here, we performed the fits individually for each
layer. In the lower and middle chromosphere, the modulation
amplitude is of the order of 1 kW m−2, whereas in the upper
chromosphere we get values much closer to the integral over the
entire chromosphere. Therefore, we can conclude that although
the imprint of waves is present in the lower and middle chromo-
sphere, their contribution is larger in the upper chromosphere.

A potential source of error in our results is the presence of
stray light in the data. The effect of stray light in the inten-
sity images is to decrease the rms contrast of small-scale fea-
tures. We estimate the Strehl ratio of our observations to be 0.6.
According to Scharmer et al. (2019), for that Strehl ratio, the
main stray-light contribution at the SST and its instrumentation
is from uncorrected high-order aberrations, with a dominant con-
tribution from within 1′′ radius (see also, Scharmer et al. 2011).
However, we cannot directly translate the effect of stray light
into a quantitative estimate of the error in the derived radiative
losses. The offset map shows blobs with typical sizes of 1−2′′
and therefore we estimate the effect of stray light to be minimal
there. Nevertheless, the amplitude of the periodic component
map shows fine structure down to 0.2′′, which is significantly
smaller than the expected stray-light PSF radius. Although it
is clear that stray light is not washing out the smallest scales,
they must still be affected by it. Therefore, we conclude that
the amplitudes of the periodic component, which we associate
with wave heating, are more affected by stray light than the off-
set map. The estimated contribution of wave heating to the net
radiative losses must therefore be considered a lower limit.

6. Discussion and conclusions

Our temporal analysis allows us to quantify the contribution
from a periodic component, which we associate with wave
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Fig. 11. Maps of the parameters (offset, amplitude, period, and phase) of the sinusoidal functions obtained for the red region of Fig. 7. Top row:
quantities characterizing the sinusoidal time-evolution of the radiative losses, while the second row represents the quantities characterizing the
time-evolution of vLOS at cmass = −3.8. In the maps of the period, yellow contours indicate the plage area corresponding to Q < −20 kW m−2 (see
Fig. 7). The first column from the right shows the phase difference between Q and vLOS. Bottom row: quantities of the sinusoidal evolution for vturb
at cmass = −3.8.

Table 2. Average values of the parameters of the sinusoidal functions
obtained over the red region of Fig. 7.

Offset Amplitude Period Phase

Q −26.1 [kW m−2] 7.0 [kW m−2] 5.5 [min] 3.3 [rad]
vLOS −0.1 [km s−1] 2.9 [km s−1] 5.5 [min] 3.4 [rad]

Notes. Each value of the table corresponds to the average of the respec-
tive panel of Fig. 11.

heating. This component is weaker than the offset (background)
value of the heating terms and has a mean modulation ampli-
tude of ∼7.0 kW m−2. This component is responsible for the very
fine structure that we observe in the Qtot maps. The offset value,
which we associate with a more static or very slowly evolving
component, has a mean value of ∼−26.1 kW m−2. The map con-
structed from the offset value is relatively smooth, which could
also point to a magnetic origin. On the Sun, the β = 2µPg/B2 = 1
layer is usually located in the lower chromosphere, and therefore
the magnetic field becomes smooth and room-filling above that
layer. Having a relatively smooth offset map signals a magnetic
origin. The amplitude of the periodic component of the radia-
tive losses is almost a factor four larger in the upper chromo-
sphere than in the lower and middle regions. Given the spatial
distribution of periods and the relatively homogeneous π/2 phase
difference, we associate the periodic component with compress-
ible acoustic waves (the slow-mode of magnetoacoustic waves
when vA > cs). This argument is further supported by Fig. 12,

where we show the time-evolution of the 8542 Å line at three
random pixels selected in the middle of the canopy areas that are
located in the surroundings of the photospheric magnetic ele-
ments. In all cases, the classical saw-tooth pattern from acous-
tic shocks is clearly visible (see, e.g., Carlsson & Stein 1992;
Langangen et al. 2008; Vecchio et al. 2009).

Our results show that in the lower and middle chromosphere
the radiative losses are distributed in areas surrounding the pho-
tospheric footpoints of the magnetic canopy. We do not see
enhanced radiative losses within the magnetic footpoints of the
canopy. Furthermore, de la Cruz Rodríguez et al. (2013) showed
that in those canopy regions the Ca ii 8542 Å line profiles have
a peculiar shape that can be explained by the presence of a hot
magnetic canopy in the chromosphere that extends over a rel-
atively quiet photosphere. The magnetic canopy should have
a relatively sharp lower edge, where current sheets should be
found through the relation j = ∇ × B/µ. Although, our inverted
models have a low depth resolution in the magnetic field recon-
struction due to the S/N of our observations, the temperature
stratification was derived with more than twice the number of
nodes and we do see a relatively sharp canopy boundary there.
Therefore, we argue that in the lower chromosphere of plage,
Ohmic current dissipation must be responsible for the bulk of
the heating. We also argue that if wave heating were a domi-
nant phenomena in the lower chromosphere, its imprint should
also be visible inside the magnetic footpoints, which we do
not observe in our results (see e.g., Hasan & van Ballegooijen
2008). Brandenburg & Rempel (2019) also showed that Ohmic
dissipation works efficiently in the photosphere and the lower
chromosphere.
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8542 Å line at three random pixels. Lower row: time-evolution of the
Ca ii 8542 Å line at three locations, picked in the middle of the canopy
regions, which are surrounded by the photospheric magnetic elements.
The locations of the three pixels are marked in the upper panel with
colored cross-like markers.

In the upper chromosphere, the radiative losses form a patch
that covers the entire plage region, including most of the pores
that are present in the photosphere. Within this patch, the derived
chromospheric temperatures are relatively homogeneous and
larger than in the surroundings, with temperatures the order of
∼7.5−8 kK and a magnetic field strength of the order of ∼400 G.
The largest contribution to the integrated radiative losses is from
the H i diagnostics in the upper chromosphere. The contribution
of wave heating is, in our results, largest in this layer. From our
results alone, we cannot claim to have direct evidence of turbu-
lent Alfvén wave heating (van Ballegooijen et al. 2011) or from
neutral-ion collisions (Khomenko & Collados 2012). Given the
smooth nature of the magnetic field, we do not expect current
sheets to be present in the upper chromosphere, making Ohmic
dissipation of currents a less likely heating mechanism. The peri-
odic behavior that we observe has a relatively long period of

5.5 min. At a cadence of ∼30 s, wave patterns with periods lower
than 1 min are not properly sampled in our observations, and so
we cannot resolve high-frequency waves.

In order to further investigate the origin of the wave behav-
ior and the deposition of energy in the chromosphere, we briefly
extended our study to the microturbulence velocity vturb. How-
ever, the temporal analysis, represented in the last row of Fig. 11,
does not show a clear pattern in the offset or in the amplitude.
This pattern is definitely different from the typical white noise,
but does not correlate with the patterns shown in the panels of
Q or vLOS. We might expect an imprint of the wave pattern in
the microturbulence if the shocks were relatively unresolved in
depth by the inversion code, forcing a larger microturbulence
value to account for the extra broadening. We do not observe
such behavior.

Our results are somewhat different from those reported by
Anan et al. (2021), but are surprisingly compatible. Their obser-
vations were based on arguably lower spatial-resolution slit-
spectrograph raster scans in the Mg ii h and k lines (IRIS) and
in the He i 10830 Å line. Although the analysis of these latter
authors was not based on the calculation of radiative losses, they
used the integrated h and k line intensity as a proxy, in a similar
way to Leenaarts et al. (2018) , who used the Ca ii h and k lines.
We have shown that the radiative losses in the lower chromo-
sphere are very small in the Mg ii lines. By not having the Ca ii
deeper contribution, Anan et al. (2021) would also miss the heat-
ing closer to the lower boundary of the magnetic canopy. As for
the estimates of the chromospheric magnetic field made by these
latter authors, they are based on inversions of the He i 10830 Å
line, and the latter usually samples the middle and upper chromo-
sphere (see Fig. 1 in de la Cruz Rodríguez et al. 2019) according
to estimates from numerical simulations.

The present study is unique in that we calculated and studied
the distribution of radiative losses as a function of depth and time
from very high-spatial-resolution spectra. The canonical value
of QAR ∼ 20 kW m−2 derived in the 1970s and 1980s using spa-
tially and temporally averaged spectra is unlikely to capture the
complexity and dynamic behavior of the solar chromosphere as
shown in our analysis. Our analysis is also different from pre-
vious studies in that we estimated the contribution from waves
directly from the periodic modulation of the radiative losses, and
not by estimating the energy that is carried out by waves in the
chromosphere from Doppler velocities (Abbasvand et al. 2020).

Ultimately, our results do not provide direct evidence allow-
ing us to decipher the dominant heating mechanism in the upper
chromosphere. In our opinion, future studies of the same nature
should analyze higher cadence time-series and higher spatial-
resolution observations in order to search for observational sig-
natures of high-frequency waves or very small-spatial-scale vari-
ations that could point to turbulent Alfvén wave dissipation. In
order to estimate ambipolar diffusion heating, an accurate esti-
mate of the upper chromosphere density is also needed, and
therefore inversion codes must be modified in order to include
the Lorentz force (Pastor Yabar et al. 2019, 2021) and the sup-
port effects derived from velocity gradients.
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Appendix A: Training of the neural network

In general, an artificial neural network (ANN) is defined by the
dimensionality of the input, the number of layers, the number
of neurons per layer, and the dimensionality of the output. The
number of neurons in each layer does not have to be constant,
and can vary depending on the complexity of the problem. The
most commonly used type of NN is the fully connected network
(FCN; Schmidhuber 2015), in which every input is connected
to every neuron of the following layer. Figure A.1 shows, in a
simplified way, the architecture and connections of a FCN. Each
connection is described by a simple function that linearly com-
bines the input x multiplied by a weight w and summed with a
bias b and finally returns the value of a certain user-defined non-
linear function f (x). In mathematical notation, the information
that will pass from the input neurons i to the neuron j of the next
layer will be:

σ j = f (Σi(wixi + b j)). (A.1)

This output will be the input for another neuron of the next layer.
As the first operation is linear, the activation is the one that intro-
duces the nonlinear character of the FCNs.

The optimization of a NN is called training and it involves
the iterative modification of the weights and biases so that a loss
function that measures the ability of the network to predict the
output from the input is minimized. In our case, we trained the
NN to learn the mapping between the observed Stokes profiles
and the model atmosphere obtained from the inversion. Once the
network is trained, we are able to reconstruct the temperature T ,
the line-of-sight velocity vLOS , the turbulence velocity vturb, the
parallel component of the magnetic field B||, the perpendicular
component |B⊥|, and the azimuth angle φ for the entire time-
series. The dimensions of the input are defined by the total num-
ber of pixels and by the four Stokes parameters. On the other
hand, the output dimensions are the total number of pixels and
the number of obtained parameters multiplied by the number of
grid points.

Architecture of the NN: For our purposes, we design a fully
connected NN with five layers and 200 neurons per layer. After
many tests, we find this configuration to be optimal in terms
of training time and accuracy. The activation function that we
decided to use is the rectified linear unit or ReLU (Nair & Hinton
2010). It has a linear behavior for a positive input; otherwise, if
the input is negative, it is equal to zero:

ReLU(x) = max(0, x). (A.2)

It is applied after every layer of the NN, except for the last one,
to avoid obtaining only positive outputs.

During the design of the network architecture we detected
that the noise in the polarization was amplified and propagated
to some physical parameters. To avoid this problem, we decided
to split the model into two parts: only Stokes I was employed
in the calculation of the temperature and vLOS , while all the four
Stokes parameters are used for the other quantities of the model
atmosphere. Although Stokes Q, U, and V contain information
on the gradient of the source function and the line-of-sight veloc-
ity stratification, in cases where the profiles are very noisy they
do not play an important role in the derivation of the temperature
or line-of-sight velocity, and so it is better to avoid propagating
that noise.

X1

X2

X3

Xn

Input layer Fully-connected  
layer

Output: 
Y1, Y2, Y3 . . . Ym

Other fully-connected  
layers

Fig. A.1. Simplified representation of a fully connected NN. The lines
that connect the inputs with the neurons are represented in differ-
ent styles (straight, doted, dashed, etc.) because they involve different
weights.

Training process and validation set: Optimization is rou-
tinely solved using simple first-order gradient-descent algo-
rithms, which modify the weights along the negative gradient of
the loss function with respect to the model parameters. To scale
the magnitude of our weight updates, we have to use the param-
eter called learning rate. This parameter has to be adjusted to
find a compromise between network accuracy and convergence
speed. If this number is too small, it will take too long to reach
the solution, while if it is too large, there is a risk of overshooting
the optimal solution. In our case, we used a learning rate of 10−4.
For the optimization method, we used a gradient descent vari-
ant called Adam (Kingma & Ba 2017) which was developed to
automatically adjust the learning rate, making the solution con-
vergence faster.

Our goal is to optimize a user-defined loss function that eval-
uates how well our network models the data. The most common
loss function is the mean squared error which measures the aver-
age squared difference between predictions and desirable out-
puts. However, to get an idea of the dispersion of the estimate
we used the quantile regression (Koenker & Bassett 1978), a loss
function for estimating any percentile value:

L(x, y|q) =

{
q(y − f (x)) if (y − f (x)) ≥ 0
(q − 1)(y − f (x)) if (y − f (x)) < 0 (A.3)

where y is the training value and f (x) is output value of the net-
work. During training, q is randomly varied between 0 and 1 so
that the network can learn all possible percentiles. This allows
us to estimate not only the mean value (q=0.5) but also the dis-
persion (q=0.16 and q=0.84) which is equivalent to one standard
deviation σ in the case of a normal distribution. The dispersion
can give us an idea of the uncertainty of the inversion because
similar Stokes parameters could have had different atmospheric
models as solutions (Díaz Baso et al. 2022).

The gradient of the loss function with respect to the free
parameters of the network is obtained using the backpropaga-
tion algorithm. As the networks are defined as a stack of layers,
the gradient of the loss function can be calculated by the chain
rule as the product of the gradient of each module and ultimately
of the last layer and the specific loss function. The main problem
with some activation functions is that the gradient vanishes for
very large values due to the derivative of this function, making it
difficult to train the network. For this reason, we used the ReLU
function, which does not saturate for large values.
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Fig. A.2. Comparison between spectra synthesized from the results of the NN (red lines), synthetic spectra from the inversion process (black
dashed lines) and observed spectra (green dots) for two different time-steps. The synthetic spectra from the inversions were only calculated for the
initial time-step. The two random pixels selected are indicated in the upper left panel of Fig. 11.

Regarding the dataset, we used two nonconsecutive time-
steps of the observations to train the NN in order to include
more statistics in our training set, which correspond to about
41160 pixels. To further increase the diversity of profiles used
for training the network, we added a Gaussian noise component
to the input profiles during the training to make the network pre-
diction more robust to the noise.

Because of the large number of free parameters in a net-
work, overfitting can be a problem. One would like the network
to generalize well and avoid any memorization of the training set
(Bishop 1995; Ripley 1996). To check that, a part of the dataset
is not used during the training but used after each iteration as val-
idation. Desirably, the loss should decrease both in the training
and validation sets simultaneously. If overfitting occurs, the loss
in the validation set will increase. We randomly chose 90% of
the dataset as the training set and the 10% as the validation set.
Furthermore, every time that the loss function –calculated with
the validation set– reached its minimum, we saved the model

parameters. The training was done in a GeForce RTX 2080 Ti
GPU for 400000 epochs. Once we had picked the best weights
and biases, we were able to apply the obtained model to the other
time-step of the observations.

As a final test, we synthesized the spectra from the results
of the NN and compared them with the observed profiles and
with the synthetic spectra obtained from the inversion pro-
cess. The results are shown in Fig. A.2. We selected two
random pixels and two different time-steps. The four lines
(Ca iiK, Fe i 6301/6302 Å and Ca ii 8542 Å) and the contin-
uum point used for the inversions are represented. The syn-
thetic spectra from the inversion process were only obtained
for the two time-steps used in the training process. In the
case of the sixth time-step, the comparison was made between
the observed spectra and the ones synthesized from the
results of the NN. The plots show an overall agreement
between the results of the NN and the observed and synthetic
profiles.
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