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Abstract 

Background: Spatial and temporal malaria risk maps are essential tools to monitor the impact of control, evaluate 

priority areas to reorient intervention approaches and investments in malaria endemic countries. Here, the analysis of 

36 years data on Plasmodium falciparum prevalence is used to understand the past and chart a future for malaria con-

trol in Kenya by confidently highlighting areas within important policy relevant thresholds to allow either the revision 

of malaria strategies to those that support pre-elimination or those that require additional control efforts.

Methods: Plasmodium falciparum parasite prevalence (PfPR) surveys undertaken in Kenya between 1980 and 2015 

were assembled. A spatio-temporal geostatistical model was fitted to predict annual malaria risk for children aged 

2–10 years (PfPR2–10) at 1 × 1 km spatial resolution from 1990 to 2015. Changing PfPR2–10 was compared against plau-

sible explanatory variables. The fitted model was used to categorize areas with varying degrees of prediction probabil-

ity for two important policy thresholds PfPR2–10 < 1% (non-exceedance probability) or ≥ 30% (exceedance probability).

Results: 5020 surveys at 3701 communities were assembled. Nationally, there was an 88% reduction in the mean 

modelled PfPR2–10 from 21.2% (ICR: 13.8–32.1%) in 1990 to 2.6% (ICR: 1.8–3.9%) in 2015. The most significant decline 

began in 2003. Declining prevalence was not equal across the country and did not directly coincide with scaled vec-

tor control coverage or changing therapeutics. Over the period 2013–2015, of Kenya’s 47 counties, 23 had an average 

PfPR2–10 of < 1%; four counties remained ≥ 30%. Using a metric of 80% probability, 8.5% of Kenya’s 2015 population 

live in areas with PfPR2–10 ≥ 30%; while 61% live in areas where PfPR2–10 is < 1%.

Conclusions: Kenya has made substantial progress in reducing the prevalence of malaria over the last 26 years. Areas 

today confidently and consistently with < 1% prevalence require a revised approach to control and a possible consid-

eration of strategies that support pre-elimination. Conversely, there remains several intractable areas where current 

levels and approaches to control might be inadequate. The modelling approaches presented here allow the Ministry 

of Health opportunities to consider data-driven model certainty in defining their future spatial targeting of resources.
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Background

Variations in the intensity of malaria transmission in 

countries requires tailoring of interventions appropri-

ate to the corresponding level of transmission. �e 

World Health Organization Global technical strategy for 

malaria 2016–2030 [1] requires National Malaria Con-

trol Programmes (NMCPs) to stratify their sub-national 

malaria burden based on the analysis of past and contem-

porary malaria data, risk factors and the environment. 

Cartographies of malaria risk obtained through novel 

and robust approaches are, therefore, required to assess 

the impact of control and identify areas where targeted 

malaria control strategies require adaptation to maximize 

future impact [2].

Malaria risk mapping in Kenya is not new. Maps of 

malaria risk were developed as early as the 1950s based 

on the length of the presumed malaria season [3]. In 

the 1970s, topography, climate, and approximations of 

spleen rates in children were used to classify Kenya into 

different endemic zones [4]. Twenty years later climate 

and empirical Plasmodium falciparum survey data were 

used to provide an updated cartography [5, 6]. �e first 

attempt to apply the principles of model based geostatis-

tics (MBG) to malaria prevalence survey data from Kenya 

between 1975 and 2009, at 2095 unique locations was 

undertaken to provide a risk map for the year 2009 [7]. 

�is map was used to define Kenya’s unmet needs for vec-

tor control [8], future strategic planning [9] and funding 

[10] from 2010. �is proved to be a milestone example 

of how applications of MBG can influence health policy 

planning and value for money allocation of resources to 

areas most in need.

However, harnessing the full value of information 

on malaria prevalence in time and space to provide an 

understanding of the fine temporal and spatial resolu-

tion changes in malaria risk at national or sub-national 

scales and provision of probability metrics for important 

programmatic policy relevant thresholds has not been 

attempted. Such approaches are often limited by a pau-

city of input data over time; Kenya however, is a country 

with a rich history of malaria surveys and provides a 

unique opportunity to explore patterns of malaria ende-

micity since 1990. Spatio-temporal methods were applied 

to understand the changing landscape of malaria trans-

mission in Kenya since 1990 and used the statistical cer-

tainty in these models to provide insights into the future 

investments in control during an era of maximizing value 

for money.

For the first time in Kenya, a MBG framework was used 

to provide statistical certainty to identify areas that repre-

sent policy relevant thresholds, allowing the government 

to make informed choices on a more efficient future con-

trol strategy.

Methods

Kenya context

�e Republic of Kenya covers 591,971 km2 and lies on the 

equator across the great East African Rift Valley, extend-

ing from Lake Victoria to Lake Turkana and further 

south-east to the Indian Ocean (Fig. 1). �e country has 

a diverse ecosystem and climate ranging from seasonal 

tropical coastal systems along the Indian Ocean to arid 

desert areas in the North and North-East, perennially hot 

and humid conditions around Lake Victoria and high-

land and mountain ranges including Mount Kenya (5199 

MASL). �is diversity in landscape, and the 40,487 km2 

of national parks and conservation areas, govern the dis-

tribution of human settlement [11] (Fig.  1). In August 

2010, Kenya adopted a new constitution, which decen-

tralized policy setting and financing, including health, to 

47 county governments (Fig. 1), with broad policy direc-

tions maintained at a federal level [12]. �is decentralized 

system was formally introduced following the national 

election in March 2013 [13].

Assembly of Plasmodium falciparum prevalence surveys

A detailed description of the assembly of a database 

of malaria surveys carried between January 1980 and 

December 2015 in Kenya is presented elsewhere [7, 15]. 

�ese included systematic reviews of published data 

(See figure on next page.)

Fig. 1 Kenya’s counties and populated malaria risk margins: 47 counties shown as dark lines with the extents of major rivers and lakes (light blue); 

areas unable to support Plasmodium falciparum transmission (dark grey) and low population density (light grey). Turkana (1), West Pokot (2), Trans 

Nzoia (3), Bungoma (4), Busia (5), Kakamega (6), Siaya (7), Kisumu (8), Homa Bay (9), Migori (10), Kisii (11), Narok (12), Bomet (13), Nyamira (14), 

Kericho (15), Vihiga (16), Nandi (17), Uasin Gishu (18), Elgeyo Marakwet (19), Baringo (20), Nakuru (21), Nyandarua (22), Laikipia (23), Nyeri (24), 

Murang’a (25), Kiambu (26), Nairobi (27), Kajiado (28), Makueni (29), Machakos (30), Embu (31), Kirinyaga (32), Tharaka Nithi (33), Meru (34), 

Samburu (35), Isiolo (36), Marsabit (37), Mandera (38), Wajir (39), Garissa (40), Lamu (41), Tana River (42), Kitui (43), Taita Taveta (44), Kwale (45), Kilifi 

(46), Mombasa (47). To establish the likely margins of malaria transmission, a temperature suitability index (TSI) has been used based on the monthly 

average land surface temperatures, the average survival of Anopheles mosquitoes and the length of sporogony that must be completed within 

the lifetime of one Anopheline generation, where 0 represents the inability to support transmission (dark grey) [14]. Kenya’s population is unevenly 

distributed within its national borders, with large areas of its land mass characterized by unpopulated areas represented by large conservation areas 

and deserts. Areas where population density is less than 1 person per  km2 (light grey) [11] (Fig. 1)  were excluded from subsequent malaria risk 

extraction
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using free text keyword searches “malaria” and “Kenya”; 

searches of national ministry of health archives in Nairobi 

and other major centres; reviews of post-graduate theses 

at three major universities; school-based surveys under-

taken to support the NMCP 2009–2011 [16]; national 

household sample surveys for nutrition or malaria in 

1994, 1999, 2007, 2009/2010 and 2015; and personal 

communications with the extensive malaria research 

community in Kenya. �e generosity of the local research 

community in sharing unpublished data makes Kenya’s 
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malaria prevalence survey repository one of the richest in 

sub-Saharan Africa [15] (see “Acknowledgments”).

For each survey, details were extracted on the start and 

end of survey dates (month and year), age ranges (lowest 

and highest), sample size, numbers reported positive for 

P. falciparum infection, methods used to detect the infec-

tion and every location detail provided in the original 

source including the name, administrative unit, and coor-

dinates, where available. Data were classified as points if 

they were individual villages, communities, schools or a 

collection of communities and covered an area of at most 

5  km2. Areas covering > 5  km2 were classified as wide-

areas. Global positioning systems (GPS) cluster coordi-

nates collected during sample household surveys were 

used to re-aggregate household survey data, to increase 

the sampling precision by combining clusters of small 

sample sizes, while maintaining the 5 km2 criteria.

To provide a precise longitude and latitude where coor-

dinates were not available, a variety of methods were used 

including reported GPS coordinates, other national digi-

tal gazetteers of populated places (cities, towns, villages), 

schools and health facilities [17–19]. All coordinates were 

checked using Google Earth (Google, 2009) to ensure that 

the geolocated points, were within the respective administra-

tive boundaries of their originating source, were located on 

populated areas and/or settlements and not on water bodies.

Geostatistical analysis

A geostatistical modelling framework [20–22] was used 

to map P. falciparum prevalence across Kenya between 

1990 and 2015. More specifically, let S(x, t) denote the 

random effects used to account for unmeasured spa-

tio-temporal risk factors for malaria and let Z(x, t) be 

unstructured random effects accounting for the unex-

plained variation within communities. Conditionally 

on S(x, t) and Z(x, t), the counts of positive tests for P. 

falciparum were assumed to follow mutually independ-

ent binomial distributions with number of trials N, cor-

responding to number of sampled individuals, and 

probability of a positive outcome p(x, t) at location x 

(3701) and year t (1990–2015) given by

where mAand MA are the minimum and maximum age 

among the sampled individuals at a location x. In carry-

ing the spatio-temporal predictions, mAand MA were 

set to 2 and 10 to standardize to a single age range of 

2–10  years (PfPR2–10) conventionally used for malaria 

risk mapping [23, 24].

�e spatio-temporal random effects S(x, t) were mod-

elled as a stationary and isotropic Gaussian process with 

spatio-temporal correlation function given by

log

{

p(x, t)

1−p(x, t)

}

= α + βmA + γMA + S(x, t) + Z(x, t)

where φ and ψ are scale parameters which regulate the 

rate of decay of the spatial and temporal correlation for 

increasing distance and time separation, respectively; 

||x − x′|| is the distance in space between the loca-

tions of two communities, one at x and the other at x′; 

finally, |t − t′| is the time separation in years between two 

surveys.

�e model parameters were estimated using Monte 

Carlo maximum likelihood implemented in the Prev-

Map package [25] in the R software environment (version 

3.4.1). Estimates and corresponding standard errors for 

PfPR2–10 were obtained from the fitted model over a 1 by 

1 km regular grid covering the whole of Kenya, for every 

year between 1990 and 2015, exported and mapped using 

ArcMap 10.5 (ESRI Inc., Redlands, CA, USA). Predic-

tions to each of the 312 months since January 1990 have 

not been attempted as there was insufficient monthly-

gridded data to allow for such analysis.

Model validation

�e fitted spatio-temporal correlation function was vali-

dated using the following variogram-based algorithm 

using R software environment (version 3.4.1): (Step 1) 

simulate 1000 data-sets under the fitted model; (Step 2) 

for each simulated data-set, compute a variogram using 

the residuals from a non-spatial logit-linear model (i.e. by 

setting S(x, t)= 0 for all x and t); (Step 3) compute the 95% 

confidence interval using the resulting 1000 variograms 

at a predefined set of spatial distances and time separa-

tions; (Step 4) compute the variogram using the residu-

als from a non-spatial logit-linear model as done in step 

2 but using the original data and if this falls within 95% 

envelope from (Step 3), then, the adopted spatio-tempo-

ral correlation was compatible with the community para-

site survey data.

Cross-validation was also undertaken by holding out 

a 10% random sample of the survey data points selected 

between 1990 and 2015 to assess the predictive perfor-

mance of the model. �e following were computed: the 

correlation between observed and predicted PfPR2–10 

values, bias (mean error) representing the mean differ-

ence between the observed and predicted values, and 

the mean absolute error (MAE) representing the aver-

age magnitude of the errors of the absolute differences 

between the predictions and actual the observations [26].

Plausibility analysis of trends

Malaria prevention and disease management milestones 

since 1990 in Kenya were defined by the literature, pre-

vious reviews [27–30] and major climate anomalies 

cor
{

S(x, t), S
(

x
′, t ′

)}

= exp
{

−
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{

−

∣

∣t − t
′
∣

∣/ψ
}



Page 5 of 13Macharia et al. Malar J  (2018) 17:340 

[31–33]. In totality, the combination of these factors 

might explain the changes in parasite prevalence and 

formed the basis of a plausibility framework [15, 34] to 

understand the national, annualized cycles of changing 

PfPR2–10 between 1990 and 2015.

Malaria policy relevant criteria for sub-national resource 

allocation and future priorities

Given the importance of county level government 

resource allocation for malaria, mean annual county level 

estimates of PfPR2–10 were calculated by averaging the 

1 × 1 km predictions among populated areas per county 

for the three most recent years of survey data, 2013–

2015. Areas that were represented as temperature unsuit-

able for P. falciparum transmission were assigned values 

of 0% PfPR2–10 [14].

Certainty of model predictions forms an important 

metric for NMCPs by justifying decisions on sustained, 

or changing control intervention policy. MBG allows 

for the quantification of uncertainty, which might arise 

from inadequate survey input data (suggesting further 

sampling needs) and inherent variability in small area 

prediction. Classifying areas into different endemic lev-

els purely based on predicted PfPR2–10 may lead to policy 

decisions that do not allow for the certainty of the PfPR2–

10 predictions [21]. Future decisions related to the choice 

malaria control should be based on the probability (likeli-

hood) of an area having PfPR2–10 below or above certain 

policy relevant thresholds. �e choice of these thresholds 

should be guided by reduction targets set by the global 

community, malaria epidemiology, and local goals for the 

country of interest.

�ere are no formal international guidelines to coun-

tries on how thresholds of malaria risk might inform a 

stratified intervention response. Here, two policy rel-

evance thresholds have been selected that might serve 

as valuable criteria within the Kenyan context. Areas 

with sustained low malaria prevalence where preva-

lence lies below 1% (non-exceedance probability-NEP) 

as an indication of pre-elimination [35], that is a transi-

tion phase which entails reorientation of malaria control 

programmes between sustained control and elimination 

stages [36]. Additionally, areas where prevalence is above 

30% (exceedance probability-EP) were categorized. �ese 

mid mesoendemic areas [23] are likely to continue to yield 

the highest malaria burdens in the country [37] and for 

which intensive and sustained vector control is required.

�e fitted spatio-temporal model was used to compute 

the probability that an area has PfPR2–10 < 1% (NEP), and 

probability that an area has a PfPR2–10 ≥ 30% (EP) across 

the study period and summarized for the three most recent 

consecutive years (2013–2015), formally expressed as

where l is the prevalence threshold. A NEP close to 100% 

indicates that PfPR2–10 is highly likely to be below the 

threshold l; if close to 0%, PfPR2–10, is highly likely to be 

above the threshold l; if close to 50%, PfPR2–10, is equally 

likely to be above or below the threshold l, hence cor-

responding to a high level of uncertainty. Areas likely to 

have a prevalence of ≥ 30% were defined by setting l at 

30% in the preceding equation and calculating EP as

Results

Spatial–temporal mean PfPR2–10 predictions 1990–2015

�e final survey data was represented by 5020 surveys 

within 5 km2 at 3701 unique locations covering malaria 

parasite examinations of over 578,281 blood samples, 

between 1980 and 2015 (see Additional files 1, 2 and 3). 

�ese were used in the spatio-temporal model to gener-

ate the 1 × 1  km grids of mean posterior predictions of 

PfPR2–10 1990–2015 (Fig.  2) and summed across popu-

lated areas able to support malaria transmission for 

each year (Fig.  3). �e results of testing the validity of 

the adopted spatio-temporal structure, showed that the 

empirical semi-variogram was within the 95% tolerance 

intervals (Additional file  4), thus the malaria parasite 

prevalence data does not show evidence against the fit-

ted spatio-temporal geostatistical model. For each year 

and 1 × 1 km grid, the predicted standard errors are pro-

vided in Additional file 5. �e predictive performance of 

the model, based on a sample of 502 validation surveys 

showed a high correlation between observed and pre-

dicted values of 0.86, a MAE of 7.7% and a bias of only 

0.4% (Additional file  6). �e model parameters are pre-

sented in Additional file 7: Table S1. 

�e diversity of PfPR2–10 predictions across the coun-

try is evident from 1990 to 2015 (Fig. 2), reflecting the 

heterogeneity of transmission typical of Kenya, with 

high transmission associated with areas surrounding 

Lake Victoria and the Indian Ocean coastline. �e high-

est predicted values of PfPR2–10 were recorded in 2003 

(92.5%) in Butula, Siaya county and Kinango, Kwale 

county; and the lowest values outside of areas unable to 

support transmission located in Tarbaja, Wajir county 

in 2011 (0.01%) (Fig. 2).

Using 1990 as a baseline, the national mean PfPR2–

10 reduced by 87.7% over a period of 26  years from 

21.2% (Interquartile credibility range 2.5–97.5% (ICR): 

13.8–32.1%) in 1990 to 2.6% (ICR 1.8–3.9%) in 2015 

(Fig. 3). During the period 1990 and 1998, the national 

mean PfPR2–10 remained largely constant (21.2%; ICR 

13.8–32.1% to 21.9%; ICR 14.1–32.1%), declining 

NEP = Prob
(

Pf PR2−10(x, t) < l|Data
)

EP = (1-NEP)
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slightly between 1998 and 1999, then continued at 

this level until 2003. �e largest decline (81%) in the 

national mean PfPR2–10 occurred between 2003 (17.1%; 

ICR 11.7–24.9%) and 2007 (3.2%; ICR 2.1–5.1%) and 

remained generally low thereafter. PfPR2–10 slightly rose 

slowly from 2011 to 2014, following which it declined 

again in 2015 reaching the lowest national mean PfPR2–

10 of 2.6% (ICR 1.8–3.9%) recorded during the 26-year 

period of observation (Fig. 3).

�e two periods of high national mean PfPR2–10 (1990–

2003) coincided with poor population coverage of vector 

control [27], failing chloroquine (CQ) efficacy, subse-

quent replacement with the long half-life, single dose 

sulfadoxine-pyrimethamine (SP) and its rapid increase in 

treatment failure rates [28, 29, 38, 39]. Interestingly, the 

period of greatest decline in PfPR2–10 occurred during a 

period of continued use of SP, relatively poor population 

coverage of insecticide treated bed nets delivered on a 

subsidized cost-recovery basis [27] and before significant 

expansion of indoor residual house-spraying (IRS) in 

selected counties [30]. In 2006, the decision to replace 

SP with artemisinin based combination therapy (ACT), 

made in 2004, started being implemented [29], during 

the same year the first mass-distribution campaigns of 

free long-lasting insecticide-treated nets (LLIN) began 

and significantly increased coverage [27] and IRS began 

in 12 counties [30] (Fig.  3). Improved coverage of vec-

tor control and effective treatments for uncomplicated 

malaria continued through to 2015, however IRS was 

suspended in 2013, which may have resulted in the rise 

in PfPR2–10 during 2014, but does not alone explain the 

subsequent decline in 2015 and the slight rise in PfPR2–10 

prior to IRS suspension (Fig. 3). Kenya has been charac-

terized by periods of drought since 1990, however these 

have become more frequent since 2008 [32, 33] (Fig. 3). 

�e El Niño rains which led to serious epidemics nation-

wide in 1997/1998 [31] occurred during periods of esca-

lating CQ resistance and were associated with the highest 

Fig. 2 Annual predicted posterior mean community Plasmodium falciparum parasite rate standardized to the age group 2–10 years (PfPR2–10) at 

1 × 1 km spatial resolution from 1990 to 2015 ranging from zero (dark blue) to 93% in 2003 (dark red) in Kenya. The corresponding standard errors 

are provided in the Additional file 5
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period levels of PfPR2–10 during the 1990s and early 2000s 

(Fig. 3).

�e declining PfPR2–10 since 2003 was not equal eve-

rywhere (Fig.  2). Areas around Lake Victoria and the 

southern Indian Ocean coastline, whilst shrinking in spa-

tial extents of high PfPR2–10 since 1990 remained high 

through to 2015 (Fig.  2). Conversely, areas where start-

ing transmission intensity during the 1990s was lowest 

(PfPR2–10: 9–14%), in the semi-arid North Eastern and 

central regions, have declined dramatically, to very low 

levels (< 1%) after 2006 (Fig. 2).

Mapping areas of low and high transmission using policy 

relevant thresholds

�e current averaged risks of malaria in Kenya, 2013–

2015 are represented by county in Fig.  4. Twenty-

three (23) counties had mean predicted PfPR2–10 of 

< 1% covering Central (Kiambu, Kirinyaga, Muranga, 

Nyandarua and Nyeri) and North Eastern (Garissa, Man-

dera and Wajir) regions wholly and partially in Eastern 

(Embu, Isiolo, Kitui, Machakos, Makueni, Meru and 

�araka Nithi), Rift Valley (Bomet, Elgeyo Marakwet, 

Kajiado, Laikipia, Nakuru, Samburu and Uasin Gishu) 

and Coastal (Lamu) region encompassing 44.3% (20.1 

million) of Kenya’s 2015 population (Fig. 4).

In the 1990s, counties around the shores of Lake Vic-

toria and the South Coast along the Indian Ocean had 

PfPR2–10 values greater than 50% (hyper-holoendemic). 

Over the 26  years, reductions in prevalence were 

observed in these areas and by 2013–2015 no counties 

were classified as hyper-holoendemic. However, declin-

ing PfPR2–10 was less marked over the 26 years of obser-

vation in these counties compared to countries, which 

started at lower transmission intensity. Four counties 

Fig. 3 The national annual mean (black line), 2.5–97.5% (light green boundaries) interquartile credibility range (ICR) and 25–75% ICR (dark green 

boundaries) of the posterior PfPR2–10 predictions in Kenya from 1990 to 2015. Unsuitable areas for malaria transmission and those with very low 

population were excluded in the computation of mean PfPR2–10 and ICR. Major malaria timelines are shown in bottom panel. Blue boxes represent 

changing first line anti-malarial treatment and diagnostic policies using malaria rapid diagnostic tests (mRDT). Green boxes represent changing 

approaches to the delivery of insecticide-treated nets (ITN) through to the provision of free-of-charge of long-lasting insecticide-treated nets (LLIN) 

during mass campaigns in 2006, 2008, 2011/12, 2014 and 2015 alongside sustained routine delivery to infants and pregnant mothers at clinics. 

Indoor Residual Spraying (IRS), ( yellow boxes), has been targeted to different counties since 2006 starting in focal areas of 12 counties, by 2010/11 

expanding to 16 epidemic prone and 4 endemic counties, and stopped in 2013. Peach colored boxes represent periods of drought while red 

represents excessive El Niño rainfall, all classified as national disasters
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(Migori, Homa Bay, Siaya and Busia) had an averaged 

mean PfPR2–10 of ≥ 30% between 2013 and 2015 (Fig. 4).

The probability of the PfPR2–10 predictions in meet-

ing prevalence thresholds that are relevant for pol-

icy were generated for < 1% (NEPs) and ≥ 30% (EP) 

(Fig.  5). The maximal extents where prevalence is 

< 1% with ≥ 90% probability, stretches across Central, 

Eastern through to North-Eastern regions of Kenya 

between 2013 and 2015, with a slight increase in the 

outer margins at a less stringent probability of 80% 

(Fig. 5). Areas in the counties of Kilifi, Kwale, Migori, 

Homa Bay, Kisumu, Siaya, Kakamega, Vihiga, and 

Busia were likely to have a prevalence ≥ 30% at > 80% 

or > 90% probability levels (Fig. 5).

Fig. 4 Annual county level average mean PfPR2–10 values in populated areas 2013–2015 classified as < 1%, 1–4%, 5–9%, 10–29%, ≥ 30%
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Discussion

�e work presented here is an extension of the 2009 

map [7], incorporating more data, using a different 

model structure and predicting over 26  years (Fig.  2). 

�e analysis considers a temporal presentation of how 

malaria transmission has changed over 26  years against 

the changing landscape of disease management, vector 

control and climate anomalies, allowing reflection on the 

impact of these associated covariates of PfPR2–10 (Fig. 3). 

Finally, the precision in the contemporary, 2013–2015, 

model outputs was considered as a vital component of 

future decision-making (Fig. 5).

Fig. 5 Composite of 3 years 2013, 2014 and 2015 showing areas where predicted PfPR2–10 is less (non-exceedance probability) than 1% which 

were > 80% confidently predicted (light green and dark green) or > 90% confidently predicted (dark green); and areas where PfPR2–10 is greater 

(exceedance probability) than 30% which were > 80% confidently predicted (light red and dark red) or > 90% confidently predicted (dark red). Areas 

which do not support malaria transmission are shown in grey (see Fig. 1); all other areas where transmission can occur is shown in white
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Kenya has made substantial progress in reducing infec-

tion prevalence (Figs.  2 and 3), the precise contribution 

of intervention versus climate are hard to disentangle. 

In addition, it remains difficult to distinguish whether 

a decrease or increase in prevalence was directly or 

indirectly related to an intervention being deployed or 

removed. Clearly, reductions were observed before the 

implementation of optimized treatment and vector con-

trol in 2006. �e timing of this initial decline has been 

demonstrated at a smaller spatial scale along the Kenyan 

coast [40] and at a continental scale [15]. It remains uncer-

tain as to what contributed to this initial decline in PfPR2–

10 post 2003, however reductions were accelerated and 

sustained after 2006, which shows continued reductions 

in national infection rates (Fig. 3), and continued shrink-

ing of the high-intensity areas (Fig. 2). �is occurred dur-

ing a period when sustained efforts to ensure continued 

replacement of LLINs as part of mass campaigns and 

routine delivery to pregnant women and infants were 

high, and treatment regimens for uncomplicated malaria 

switched to ACT (Fig. 3). �e slight rise in 2014 cannot be 

entirely explained by the stopping of IRS in 20 counties in 

2013, since the rise had already started in 2011. �is was 

also observed on the Kenyan coast [40] where IRS has not 

been implemented and nationally returned to levels simi-

lar to those during IRS campaigns in 2015.

�e heterogeneous nature of P. falciparum transmis-

sion in Kenya continues to be reflected in present-day 

(2013–2015) descriptions of risk nationwide. A large 

swathe of the country is occupied by areas predicted to 

have a PfPR2–10 less than 1% with a probability of at least 

80%, covering approximately 68% (297,497  km2) of the 

populated areas and 61% (27.8 million people) of Kenya’s 

2015 population. At a higher probability (≥ 90%) at least 

half (51%) of Kenya’s populated areas, occupied by 53% 

of Kenya’s population has a prevalence of less than 1%. 

In such populations where the infection prevalence over 

the period 2013–2015 is < 1%, should be an indication 

for possible migration to a pre-elimination phase by the 

NMCP [35]. In these areas the coverage of good quality 

laboratory and clinical services, reporting and, surveil-

lance should be reinforced. Strengthening of surveillance 

systems will allow quick detection of infections and 

prompt treatment with effective anti-malarials to prevent 

onward transmission within this band of low transmis-

sion [36].

�e unexpected PfPR2–10 observed in Nairobi (1.1%), 

might be due to a combination of locally acquired and 

imported malaria [41]. A population-based infectious 

disease surveillance over a 5-year period (2007–2011) in 

Nairobi (Kibera slums) reported that about two-thirds 

of patients with malaria had traveled to high malari-

ous areas of Western Kenya [42]. It seems reasonable to 

assume that Nairobi continues to be exceptionally low 

prevalence, and where transmission occurs likely limited 

to the peripheral areas, for example, at a probability of 

90%, 68% of county was likely to have a prevalence < 1% 

while at a probability of 80% the entire county was likely 

to have < 1% PfPR2–10 2013–2015 (Fig. 5).

�ere continues to be areas of Kenya, which over the 

last 26  years appear to be intractable to current cover-

age levels, and approaches to vector control. Areas that 

on average continue to support PfPR2–10 levels of trans-

mission ≥ 30% are located around Lake Victoria, inland 

toward the highlands and along the southern coast of the 

Indian Ocean (Fig. 2). While smaller in their geographic 

extent (8515 km2), compared to low transmission, these 

areas encompass 3.9 million people, 8.5% of Kenya’s 2015 

population. �e counties affected by this elevated level 

of PfPR2–10 transmission are Kilifi, Kwale, Migori, Homa 

Bay, Kisumu, Siaya, Kakamega, Vihiga, and Busia (Figs. 2 

and 4), however, none of the counties are entirely cov-

ered by the 80% exceedance probability that it completely 

belongs to this endemicity class (Fig. 5). It would, there-

fore, seem reasonable to expand vector control since the 

current coverages are still low and below NMCP targets, 

and introduce other possible innovative approaches to 

parasite control in these nine counties and might include 

the use intermittent preventive treatment of infants [43] 

and/or the use of RTS, S vaccine [44].

Spatio-temporal geostatistical models of sparse malaria 

input data have used multiple, dynamic [45] or long-term 

averaged covariates [46] in the prediction of malaria risk. 

However, caution is urged in the use of multiple covari-

ates in malaria risk mapping. �e inclusion of covariates 

(climate, land use, social economic status and interven-

tion) to assist predictions at locations without data pre-

sume: clearly defined and uniform biological relationship 

with prevalence; the veracity of the averaged or tem-

porally varying covariate data is often not tested; and 

including covariates related to intervention coverage 

precludes any further analysis of the impact of interven-

tion on infection prevalence. �e present Kenya analysis 

avoids the use of covariates because, unlike many other 

countries, there is a large volume of empirical input data, 

and the empirical prevalence data are a product of all the 

possible covariate influences of climate and intervention 

coverage, allowing a plausibility analysis of the role of cli-

mate and intervention, thus avoiding circularity. Caution 

should be extended beyond Kenya, countries without 

empirical data on prevalence should not be modelled on 

the basis of presumed covariate associations with malaria 

or prediction made in data rich countries to years beyond 

the last available empirical data.

�e novelty of non-exceedance probabilities will 

allow the NMCP in Kenya, and other malaria endemic 
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countries, to implement control measures that are con-

gruent to malaria risk. �is may involve re-orientation of 

resources allowing optimal utilization of funds in a time 

of competing health agendas and limited resources. �e 

global momentum is to stratify national malaria con-

trol because a blanket cover of intervention is no longer 

appropriate in increasingly heterogenous settings [1]. �e 

work presented here highlights the statistical value of 

NEPs and EPs as a tool for future policy formation.

Conclusion

Kenya has made substantial progress in reducing P. fal-

ciparum infection prevalence over time. �e declines in 

transmission intensity were heterogeneous in nature over 

the 26  years. However, the reductions were witnessed 

before the implementation of optimized treatment and 

vector control. Areas confidently classified to have preva-

lence < 1% calls for a possible migration to control strate-

gies suited for a pre-elimination phase. Conversely, in the 

areas which over the last 26 years seem to be intractable 

to current levels of vector control coverage will require 

expansion of vector control and use of other innovative 

approaches to control both the parasite and vector.
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