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Spatio-Temporal Analysis of Surveillance
Data
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Abstract
In this chapter we consider space-time analysis of surveillance count data.
Such data are ubiquitous and a number of approaches have been proposed for
their analysis. We first describe the aims of a surveillance endeavor, before
reviewing and critiquing a number of common models. We focus on models in
which time is discretized to the time scale of the latent and infectious periods
of the disease under study. In particular, we focus on the time series SIR
(TSIR) models originally described in [15] and the epidemic/endemic models
first proposed in [22]. We implement both of these models in the Stan software,
and illustrate their performance via analyses of measles data collected over a 2-
year period in 17 regions in the Weser-Ems region of Lower Saxony, Germany.
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4 Handbook of Infectious Disease Data Analysis

1.1 Introduction

The surveillance of disease statistics is now routinely carried out at both the
national and subnational level. For example, in the United States, the Centers
for Disease Control and Prevention (CDC) has a national notifiable disease
surveillance system (NNDSS) to which case notifications for more than 70
infectious disease are sent by all states. At a more local level, surveillance
systems are also implemented by state public health departments.

There are many uses for a surveillance system. Early detection of out-
breaks is clearly important, in order to quickly assign resources to minimize
the disease burden and hopefully determine the cause(s) of the outbreak.
Various approaches, with varying degrees of sophistication, are available. Of-
ten, no formal statistical methods are used, but rather astute public health
workers notice increased counts. A simple approach is to analyze each area
separately and to compare newly collected data with the historic numbers of
cases [31]. A more refined approach is to use a scan statistic. For example,
Greene et al [21], describe how the New York City Department of Health and
Mental Hygiene carry out automated daily spatio-temporal cluster detection
using the SatScan software, and discuss the action taken in response to sev-
eral outbreaks including three common bacterial caused infections that cause
diarrhea: shigellosis, legionellosis and campylobacteriosis. This approach does
not acknowledge that spread of an infectious disease under examination has
complex nonlinear dynamics. The models we describe in this chapter have
generally not been used for outbreak detection, but could be, if “trained” on
retrospective data.

Prediction of future disease counts will clearly be of interest in some sit-
uations and for this purpose a model that is not built around an infectious
process may be adequate. If one is interested in predictions under different
scenarios, for example, following different vaccination strategies, then a bio-
logically motivated model is likely to be more useful than a model without
a strong link to the underlying science. The same is true of another aim,
which is to gain an understanding of disease dynamics, including estimation
of fundamental parameters such as R0.

In a time series only situation in which space is not considered, a number
of authors have discussed integer-valued autoregressive (INAR) models in the
context of modeling infectious disease data [7, 18, 14]. The epidemic-endemic
models [22], that we discuss extensively in this chapter, are closely related
to integer-valued generalized autoregressive conditionally heteroscedastic (IN-
GARCH) models, that have also been used for modeling infectious disease
data [13, 51]. Since these approaches do not consider spatial modeling we do
not consider them further (though we note that there is no reason that they
couldn’t be extended to include a spatial component).

In a surveillance setting the following data are typically available: demo-
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graphic information on each case, for example, age and gender; symptom onset
date; date of diagnosis; clinical information, for example, symptoms; labora-
tory information on virology, perhaps on a subset of cases; areal (ecological)
geographical information. These data are usually supplemented with popula-
tion information at the areal level. We emphasize that we will be concerned
with the usual form in which the data are available, which is incidence counts,
that is new cases of disease (as opposed to prevalence data which constitute
the total counts).

We structure this chapter as follows. In Section 1.2, we review disease
transmission models, with brief descriptions of deterministic approaches, dis-
crete time and continuous time models. Section 1.3 introduces the measles
data example, and Section 1.4 describes in detail discrete space-time models.
We return to the measles data in Section 1.5 and conclude with a discussion
in Section 1.6. On-line materials contain code to reproduce all analyses.

1.2 Overview of Disease Transmission Models

1.2.1 Deterministic Models

Historically [28], infectious disease data were analyzed using deterministic
models based on differential equations, see [1] for a thorough discussion. As an
example, we consider the susceptible-infectious-recovered (SIR) model, which
is depicted in Figure 1.1. Models are set up based on a set of compartments
in which individuals undergo homogenous mixing. This approach is typically
used when the number of disease counts is large, and the integer numbers in
the constituent S, I and R compartments are taken to be continuous. Let x(t),
y(t), z(t) be the number of susceptibles, infectives, recovered at time t in a
closed population. The hazard rate (force of infection) is

λ†(t)︸ ︷︷ ︸
Hazard

= c(N)︸ ︷︷ ︸
Contact Rate

×
y(t)

N︸︷︷︸
Prevalence

× pI︸︷︷︸
Infection Prob

.

Two common forms for the contact rate [4] are

c(N) =

{
cFD Frequency Dependent,
NcDD Density Dependent.

The frequency-dependent model is often used, particularly for childhood in-
fections when the most relevant contact group is the classroom, whose size
will be of the same order, regardless of the population size. Under frequency
dependency, λ†(t) = βy(t)/N, where β = cFD × pI.

The deterministic SIR model is defined through classic mass-action [1].
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With frequency dependent transmission we have the following set of ordinary
different equations:

dx(t)

dt
= −

βx(t)y(t)

N
,

dy(t)

dt
=

βx(t)y(t)

N
− γy(t),

dz(t)

dt
= γy(t),

with infection rate β and recovery rate γ.

x(t)

S

y(t)

I

z(t)
βx(t)y(t)/N γy(t)

R

FIGURE 1.1
Susceptible-Infectious-Recovered (SIR) model representation. Solid arrows
show the movement from S to I to R.

To turn these equations into a statistical model there are two important
considerations:

1. Given initial states, and values for the parameters β and γ these
differential equations can be solved to find the time trajectories of
the three compartments. This must be done numerically, but can
be achieved very efficiently, which means, in general, that complex
compartmental models can be formulated, with the advantage that
the transmission parameters are biologically interpretable.

2. More critically, the introduction of an artificial error model is
needed. For example, one could assume additive errors with con-
stant variance or a variance that depends on the mean, and then
fitting can be performed in a straightforward fashion using ordi-
nary or weighted least squares. The arbitrariness of the error model
means that inference is dicey. Implicitly considering the inherent
stochasticity directly is important for small populations and when
the disease is rare. Ordinary or weighted least squares can be used
for fitting, with the implicit assumption of uncorrelated errors with
constant variance, see for example [8], or refined versions of least
squares [26]. The arbitrariness of the (implicit) error model is un-
likely to result in reasonable uncertainty quantification for param-
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eter estimation. For these reasons, we do not consider these models
further here.

1.2.2 Discrete-Time Stochastic Models

We will concentrate on discrete-time models, and postpone an in-depth dis-
cussion of these models to Section 1.4. The basic idea is to model the current
disease counts as a function of previous counts, on a regular time scale. For
a discrete-time stochastic SIR model one may choose the time scale to equal
the transmission dynamics scale (latency plus infectious periods) or the gen-
eration time (time from infection of a primary case to infection of a secondary
case infected by the primary case) [41]. For example, often, but not always,
2 weeks is used for measles. Let Xt and Yt be random variables representing
the number of susceptibles and infectives at time t, t = 1, . . . , T . In the sim-
plest case, the counts at t depend only on the counts at the previous time t.
Susceptibles may be reconstructed from, Xt = Xt−1 − Yt, assuming a closed
population (we describe more complex susceptible reconstruction models in
Section 1.4). The joint distribution of the counts is,

Pr(y1, . . . , yT , x1, . . . , xT |y0) =

T∏

t=1

Pr(yt|yt−1, xt−1)× Pr(xt|yt, xt−1),

where the second term is deterministic and we have suppressed the dependence
of the first term on unknown parameters.

1.2.3 Continuous-Time Stochastic Models

The most realistic approach is to build a model that considers infections and
recoveries on a continuous time scale. We describe a continuous-time Markov
chain for {X(t), Y (t), t ≥ 0} with frequency dependent transmission. The
transition probabilities for a susceptible becoming infective and an infective
becoming recovered are:

Pr

( [
X(t+∆t)
Y (t+∆t)

]
=

[
x− 1
y + 1

] ∣∣∣∣
[
X(t)
Y (t)

]
=

[
x
y

] )
=

βxy

N
∆t+ o(∆t),

Pr

( [
X(t+∆t)
Y (t+∆t)

]
=

[
x

y − 1

] ∣∣∣∣
[
X(t)
Y (t)

]
=

[
x
y

] )
= γy∆t+ o(∆t),

where the remainder terms o(∆t) satisfy o(∆t)/∆t → 0 as ∆t → 0. From
the standpoint of an infective, each can infect susceptibles in ∆t with rate
β∆tx/N , where x is the number of susceptibles at time t. From the standpoint
of a susceptible, each can be infected in ∆t with rate β∆ty/N , where y is
the number of infectives at time t. This set-up leads to exponential times in
each of the S and I compartments. Interpretable parameters are contained in
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this formulation, but unfortunately this approach is not extensively used as
it quickly gets computationally hideous as the populations increase in size,
which is the usual case with surveillance data, see the references in [16]. We
do not consider these models further here.

1.3 Motivating Data

We analyze a simple measles dataset that has been extensively analyzed us-
ing the hhh4 framework that we describe in Section 1.4.3. The analysis of
these data is purely illustrative and for simplicity we do not use the vaccina-
tion information that is available with these data (though we do discuss how
such data may be included in Section 1.4.5). We also analyze the data at a
weekly time scale, for consistency with previous analyses of these data using
epidemic/endemic models [22, 38]. There is no demographic information on
the cases, no information on births; looking at measles post-vaccination in the
developed world is unlikely to yield any insight into transmission. Figure 1.2
shows 15 time series of counts in 15 districts (we exclude 2 areas that have
zero counts), and Figure 1.3 shows maps of total cases over 3-month intervals.
We see great variability in the numbers of cases over time and area.

1.4 Discrete-Time Spatial Models

1.4.1 Preliminaries

We will derive the probability that a susceptible individual at time t− 1 will
become infected by time t. We assume that infected individuals are infectious
for one time unit, before becoming removed, so that we have an SIR model
with a fixed infectious period duration. Hence, we lose the recovery rate pa-
rameter and incidence is assumed equal to prevalence. All of the models that
we discuss in this section assume that the force of infection is constant over
the chosen time interval. A simple discrete-time model for the susceptibles in
the context of measles [15] is,

Xt = Xt−1 − Yt +Bt−d, (1.1)

where Bt−d is the number of births d time units previously, with d chosen
to be the number of time units for which maternally derived immunity lasts.
There is no term for deaths since measles is primarily a childhood disease and
deaths from measles are low in the developed world setting in which our data
are collected, as is child mortality.
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FIGURE 1.2
Observed (black dots) data in the 15 districts with non-zero counts, and pos-
terior summaries (2.5%, 50%, 97.5% quantiles) for µit, under the TSIR model.
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FIGURE 1.3
Average quarterly incidence by city district (per 100,000 inhabitants).

1.4.2 TSIR Models

The time series SIR (TSIR) model was first described in [15], and has received
considerable attention. The TSIR framework usually uses a negative binomial
model, which we now carefully define, since there is some confusing terminol-
ogy. To quote from [5] (with our own italics added), “Starting with It infected
individuals, and assuming independence between them, the birth-death process
will hence be realized according to a negative binomial distribution.” In the
following, we will consider a simple birth process. Perhaps the death process
that is mentioned in this quote is referring to the infectives becoming recov-
ered after one time unit. As [27] comments (page 236), “In the deterministic
theory it made no difference whether the intrinsic rate of growth ν was purely
reproductive in origin, or was really a balance, β − µ, between a birth rate
β and a death rate µ. In the stochastic theory this is no longer true, and
the birth-and-death process is quite distinct from the pure birth process just
described”.

A negative binomial model is developed for the number of infectives and
so we start with a review of this distribution. In one parameterization of the
negative binomial model, the constant r is the number of failures until an
experiment is stopped and k = 0, 1, . . . is the number of successes that occur
on the way to these r failures, with p the success probability. It turns out that
this scenario does not align with the present context, but it is the standard
motivation, so we keep this language for a short while. The negative binomial
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probability mass function is defined by

Pr(K = k) =

(
k + r − 1

k

)
(1− p)rpk. (1.2)

We write as K ∼ NegBin(µ, r), and state the mean and variance,

E(K) =
rp

1− p
= µ,

Var(K) =
rp

(1− p)2
= µ

(
1 +

µ

r

)
.

Note that p = µ/(µ+r). The overdispersion relative to the Poisson is indexed
by r, with greater overdispersion corresponding to smaller r. The negative
binomial can be formulated in a number of ways; the total number of trials
K⋆ = K + r, may also be described as negatively binomially distributed with
K⋆ = r, r+ 1, r+ 2, . . . . We write, K⋆ ∼ NegBin⋆(µ⋆, r), where µ⋆ = r+ µ =
r/(1− p).

Moving towards the context of interest, the negative binomial distribution
arises as the distribution of the population size in a linear birth process, see for
example Feller (1950, p. 448) and Cox and Miller (1965, p. 157). We describe a
linear birth process, also known as a Yule-Furry process. Individuals currently
in the population each reproduce independently in (t, t+∆t) with probability
α∆t+ o(∆t). Let N(t) be the number of individuals at time t. Then,

Pr( birth in (t, t+∆t) | N(t) = n ) = nα∆t+ o(∆t),

with the probability of two or more births being o(∆t). Let,

Pr(N(t) = n | N(0) = n0) = pn(t).

From the Kolmogorov forward equations,

pn(t+∆t) = pn(t)(1− nα∆t) + pn−1(t)(n− 1)α∆t+ o(∆t),

where the n − 1 appears in the second term on the RHS because any of the
n− 1 individuals could give birth and each does so with probability α. Hence,

p′n(t) = −nαpn(t) + (n− 1)αpn−1(t),

with pn(0) = 1 for n = n0 and pn(0) = 0 for n 6= n0. It can be then verified
directly (Feller) or using probability generating functions (Cox and Miller)
that for n ≥ n0 > 0:

pn(t) = Pr(N(t) = n) =

(
n− 1

n− n0

)
e−αtn0

(
1− e−αt

)n−n0

, (1.3)

with the probability p in (1.2) given by pt = 1 − e−αt and N(t) ∼
NegBin⋆(µ⋆

t , n0 ) with µ⋆
t = n0e

αt. This is also derived for n0 = 1 by Kendall
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(1949, equation (17)). Note that the total number of trials N(t) corresponds
to r +K, which fits in with the total population size n (so there are n − n0

births). We can also think of this model as starting with n0 individuals, each
of which independently produces a geometric number of progenies by time t;
the probabilities are given by (1.3) with n0 = 1.

Now let M(t) = N(t)− n0 be the number of births since time 0. Then,

Pr(M(t) = n) =

(
n+ n0 − 1

n

)
e−αtn0

(
1− e−αt

)n
, (1.4)

so M(t) ∼ NegBin (µt, n0), with

µt = E(M(t)) =
n0pt
1− pt

= n0(e
αt − 1),

and

Var(M(t)) =
n0pt

(1− pt)2
= n0(e

2αt − eαt) = µt

(
1 +

µt

n0

)
,

so that as n0 → ∞ we approach the Poisson distribution.
In the context of the SIR model, let yt−1 be the number of infectives at

time t − 1 and then assume that each gives rise to infectives with constant
rate xt−1β/N over the interval [t − 1, t) (where we have assumed frequency
dependent transmission). Note that the constant hazard is an approximation,
because as a new infective appears in [t−1, t) the number of susceptibles xt−1

will drop by 1. With respect to the linear birth process derivation, yt−1 is the
“initial number”.

We assume that the previous infecteds are all recovered. Then the total
number of infectives is equal to the number of new infectives that are produced
Yt is a negative binomial random variable, NegBin(µt, yt−1), with

Pr(Yt = yt | Yt−1 = yt−1) =

(
yt + yt−1 − 1

yt

)(
e−βxt−1/N

)yt−1
(
1− e−βxt−1/N

)yt

and

E(Yt | Yt−1 = yt−1) = µt = yt−1

(
ext−1β/N − 1

)
,

Var(Yt | Yt−1 = yt−1) = µt(1 + µt/yt−1).

The latter form is a little strange since the level of overdispersion is not esti-
mated from the data. Note that as yt−1 → ∞, the negative binomial tends to
a Poisson. If xt−1β/N is small,

E(Yt | Yt−1= yt−1) ≈ yt−1xt−1β/N.

We now explicitly examine TSIR models, an umbrella term which includes
a number of variants. First, note that the susceptibles are often modeled as
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(1.1), with correction for underreporting. We begin with a single area and the
form,

Yt | Yt−1= yt−1, Xt−1= xt−1 ∼ NegBin(µt, yt−1),

where
µt = βyαt−1x

γ
t−1/N.

The power γ is far less influential than the power α [32] and so in general
the case γ = 1 has been considered, with α set to be just below 1 (which
slows down the spread). The rationale for the power α is that it is included to
allow for deviations from mass action [15] and to account for the discrete-time
approximation to the continuous time model [20]. With the non-linear term
yαt−1, the pure birth process approximating the SIR model is no longer linear.
As a result, the number of births during a finite time interval are no longer
negative binomially distributed results, but the TSIR authors still use the
negative binomial nonetheless. From the perspective of the infectives we have
a generalized birth process. We stress again that the level of overdispersion is
not estimated from the data, but is determined by yt−1.

We now turn to the case where we have incidence counts yit indexed by
both time t and area i, i = 1, . . . , n. Consider the model, Yit|yi,t−1, xi,t−1 ∼
NegBin(µit, yi,t−1), with

µit = β(yi,t−1 + ιi,t−1)
αxi,t−1/Ni,

where ιi,t−1 are infected contacts from areas other than i [6]. Again, the neg-
ative binomial distribution does not arise mechanistically when the hazard is
non-linear.

In [50], a “gravity model” is assumed with ιi,t−1 ∼ Gamma(mi,t−1, 1), a
gamma distribution with mean and variance

mi,t−1 = υNτ1
i

∑

j 6=i

yτ2j,t−1

dρij
,

where dij is the distance between areas i and j, and ρ > 0 determines the
strength of the neighborhood flow, with the limit as ρ → 0 giving equal weight
to all neighbors. In practice, at least a subset of these parameters are often
fixed. For example, we could take τ1 = τ2 = 1. A simpler model (that we fit
in Section 1.5) with these constraints might replace ιi,t−1 by its expectation
to give the mean model,

µit = β


yi,t−1 + υNi

∑

j 6=i

yj,t−1

dρij




α

xi,t−1

Ni
, (1.5)

=


eλ

AR

yi,t−1 + eλ
NE

Ni

∑

j 6=i

yj,t−1

dρij




α

xi,t−1

Ni
. (1.6)
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Note that if for some t, yit = 0, for all i, then µis = 0 for s > t. To prevent this
issue, one might add an endemic term, eλ

EN

, to the mean (1.6). This difficulty
has been circumnavigated by randomly simulating a new count from a Poisson
distribution with a mean that depends on the under-reporting rate, see the
supplementary materials of [47].

In Section 1.5, we fit a TSIR like model which takes various components
from the epidemic/endemic model. Specifically, we fit the model,

Yit|µit ∼ NegBin (µit, φ)

µit =


eλAR

t yi,t−1 + eλ
NE

Nτ1
i

∑

j 6=i

wijy
τ2
j,t−1



α

+ eλ
EN

Ni

with seasonality included in the AR component: λAR

t = βAR

0 +βAR

1 t+γ sin(ωt)+
δ cos(ωt). We have, replaced yi,t−1 by φ as the overdispersion parameter ιi,t−1

equal to its mean mi,t−1, set xi,t−1 equal to Ni (that is, approximating the
susceptibles by the population), added an endemic term to the model, use
normalized weights:

wij =
d−ρ1

ij∑
k 6=i d

−ρ1

ik

,

and reparameterized the decay parameter as ρ1 = θ1/(1−θ1), with 0 < θ1 < 1.
A variety of fitting procedures have been used, with various levels of sophis-

tication. An MCMC scheme was used for a TSIR model with under-reporting
and an endemic term (called an influx parameter) appearing in the mean
function [39]. The under-reporting was accounted for by using an auxiliary
variable scheme to impute the unknown true counts. This scheme is natu-
ral from a Bayesian persepctive, though computationally prohibitive in large
populations.

TSIR models have been used to model data on multiple strains; for dengue
without a spatial component [45] and with spatial component for hand, foot
and mouth disease [46]. In the latter, the effect of vaccination was examined;
the statistical analysis was based on estimated counts for EV71 and CoxA16
pathogens. A standard TSIR area model was used with no neighborhood com-
ponent.

TSIR models have been used to examine various aspects of disease dynam-
ics. Koelle and Pascual [29] use a nonlinear time series model to reconstruct
patterns of immunity for cholera and examine the contributions of extrinsic
factors such as seasonality (there are no spatial effects in the model). Season-
ality of transmission has been considered by a number of authors, in particular
in the context of measles. Climatic conditions that are more or less favorable to
transmission might be relevant, along with other seasonal factors that might
affect the extent of social contacts. In contrast with the epidemic/endemic
model, seasonality has been modeled in the autoregressive component in the
TSIR framework. Seasonal forcing (the increase in transmission when children
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aggregate in schools, with a decrease during school holidays) is a particular
aspect that has been considered. A local smoothing model has been used on
the raw rates [34]. The simple sinusoidal model has been argued against [11]
as being too simplistic. The rate βt has been modeled as a function of month
for rubella in Mexico [35], or allowing a unique set of 26 parameters in each
year [5].

The TSIR model may also be fitted in R in the tsiR package [3], with
implementation based on the method described in [15] or a Bayesian imple-
mentation (using the rjags package). At the time of writing, the models are
temporal only, with no explicit spatial modeling possible (other than fitting
separate TSIR models in each area).

1.4.3 Epidemic/Endemic hhh4 Models

We now describe a parallel development, originating in [22], with subsequent
developments being reported in [43, 42, 23, 36, 19, 37]. For an excellent review
of the statistical aspects of infectious disease modeling, and this class of models
in particular, see [25]. The epidemic/endemic description is used to denote
the addition of a term in the mean function that does not depend on previous
counts, while hhh4 is the key function in the surveillance package that fits
the models we describe in this section.

We will derive the probability that a susceptible individual at time t − 1
will become infected by time t. In contrast to the TSIR derivation, in which
the process of the infectives infecting susceptibles was modeled (and lead to
a negative binomial for the number of new infectives), the derivation here
models the process of susceptibles becoming infected (and, as we will see,
leads to a binomial distribution for the number of new infectives).

We again assume that infected individuals are infectious for one time unit,
before becoming removed, so that we have an SIR model with a fixed infectious
period duration (and a constant hazard). So the event of a susceptible at
t− 1 becoming infected in [t− 1, t) is Bernoulli with probability of infection,
1− exp(−βyt−1/N).

Under homogenous mixing and independence of the Bernoulli outcomes of
the susceptibles,

Yt|yt−1, xt−1 ∼ Binomial (xt−1, 1− exp(−βyt−1/N)) . (1.7)

If we write η = exp(−β/N) (which is appropriate given the frequency de-
pendent model we described in Section 1.2.1), we see we have a (Reed-Frost)
chain binomial model (e.g., Daley and Gani, 1999, Chapter 4). Under the
chain-binomial formulation a susceptible at time t − 1 can remain suscepti-
ble by avoiding being infected by all infectives yt−1, and the probability of
avoiding being infected by one infective is η. This leads to Yt|yt−1, xt−1 ∼
Binomial(xt−1, 1− ηyt−1), i.e.,

Pr(Yt = yt|yt−1, xt−1) =

(
xt−1

xt−1 − yt

)
(ηyt−1)xt−1−yt(1− ηyt−1)yt .
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Under the assumption of a rare disease, and the approximation
exp(−βyt−1/N) ≈ 1 − βyt−1/N the model (1.7) becomes (suppressing the
dependence on xt−1), Yt|yt−1 ∼ Poisson(βxt−1yt−1/N). A further assumption
that is implicitly made is that xt−1 ≈ N to give, Yt|yt−1 ∼ Poisson(βyt−1).
Hence, in the epidemic/endemic development there is an implicit assumption
of frequency dependent transmission.

In the original paper [22] a branching process with immigration formulation
was taken:

Yt = Y ⋆
t + Zt,

with independent components,

Y ⋆
t |yt−1 ∼ Poisson(βyt−1),

Zt ∼ Poisson(υt),

which are labeled epidemic and endemic, respectively. The epidemic compo-
nent corresponds to the branching process, and the endemic component to
immigration. To account for overdispersion in the infectives count, the model
is,

Yt|yt−1 ∼ NegBin(µt, κ),

with

E(Yt|yt−1) = µt = βyt−1,

Var(Yt|yt−1) = µt

(
1 +

µt

κ

)
,

where κ is estimated from the data. Unlike the TSIR development, this distri-
bution does not “drop out” of a stochastic process formulation, but is made on
pragmatic considerations. Negative binomial distributions have also been used
in other infectious disease developments. For example, in [33] it is assumed
that individual level reproductive numbers are gamma distributed, with a
Poisson distribution for the cases infected by each infective, to give a negative
binomial distribution for the number of infectives generated.

The development of the TSIR model was based directly on the num-
ber of infectives produced by the current infectives. In contrast, the epi-
demic/endemic development here determines the risk of each susceptible being
infected. The negative binomial distribution derived under the TSIR frame-
work has countably infinite support, whereas the number of susceptibles is
bounded, but given the rate drops with the latter, this approximation is
unlikely to be problematic. The negative binomial distribution of the TSIR
is a continuous time Markov chain (CTMC) approximation, while the epi-
demic/endemic in this section is a discrete time Markov chain (DTMC).

Now we consider the more usual situation in which we have incident counts
yit and populations Nit in a set of areas indexed by i = 1, . . . , n. Suppose that
new infections can occur:

1. from self-area infectives;
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2. from neighboring-area infectives;

3. from another source, which may be an environmental reservoir, or
infectives from outside the study region.

In the case of different possibilities for becoming infected, we can use the classic
competing risks framework [44], in which the hazard rates (forces of infection)
are additive. We let λTOT

it represent the overall hazard for a susceptible in area
i at time t, and write

λTOT

it = λAR

it︸︷︷︸
Self-Area

+ λNE

it︸︷︷︸
Neighboring-Area

+ λEN

it︸︷︷︸
Environmental

.

Assuming λTOT

it is small, the probability of infection in [t − 1, t), for a single
susceptible is, 1 − exp(−λTOT

it ) ≈ λTOT

it . Following detailed arguments in [2]
(including again assuming that xi,t−1 ≈ Nit) we obtain the conditional mean,

µit = λAR

it yi,t−1︸ ︷︷ ︸
Self-Area

+

n∑

j=1

λNE

it wijyj,t−1

︸ ︷︷ ︸
Neighboring Areas

+ Nitλ
EN

it︸ ︷︷ ︸
Environmental

,

where wij are a set of weights that define the neighborhood structure. The
rates may depend on both space and time to allow covariate modeling, trends
in time (including seasonality) and area-specific random effects, which may or
may not have spatial structure. In practice, sparsity of information will lead to
simplifications, in particular, we describe the model for the Germany measles
data. There are only 17 areas which (along with the low counts) means a
simple neighborhood model is considered. Specifically, as in the majority of
illustrations of the epidemic/endemic framework we assume the seasonality
model,

µit = λAR

i yi,t−1 + λNE

n∑

j=1

wijyj,t−1 +Niλ
EN

it ,

with

log λAR

i = βAR

0 + bAR

i ,

log λEN

it = βEN

0 + βEN

1 t+ γ sin(ωt) + δ cos(ωt) + bEN

i ,

where ω = 2π/26 for biweekly data. Note the contrast with the TSIR fram-
work, in which seasonality was modeled in the autoregressive term, though we
note that seasonality can be incorporated in any of the three terms [23], and
this possibility is available in the surveillance package.

Originally, the weights were binary corresponding to spatial contiguity.
More recently [36], the weights are assumed to follow a power law, with

wij =
m−ρ2

ij∑
k 6=i m

−ρ2

ik

,
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and where mij is the number of areas that must be crossed when moving
between areas i and j, and ρ2 ≥ 0 is a power that may be estimated. The
normalization ensures that

∑
k 6=i wik = 1 for all rows of the weight matrix

(infecteds are being allocated to neighbors). The limit ρ2 → ∞ corresponds to
first-order dependency, and ρ2 = 0 gives equal weight to all areas. The power
law allows “contact” between areas that are a large distance apart since it is
“heavy-tailed”. Hence, by analogy with common spatial models we have two
parameters, λNE that determines the magnitude of the contribution from the
neighbors and ρ2 that determines the extent of the neighbor contributions.
We parameterize as ρ2 = θ2/(1− θ2) with 0 < θ2 < 1.

Fitting via maximum likelihood/Bayes is relatively straightforward. The
epidemic/endemic model with random effects is implemented using penalized
quasi-likelihood (PQL) in the surveillance package in R. The computational
burden is not greatly impacted by the data size and so infectious disease
data from large populations is not problematic. In Section 1.5 we describe a
Bayesian approach, with implementation in Stan.

A very similar model to the above has also been independently developed
and fitted to data on hand, foot and mouth disease in China [49]. The model
allowed for infections from not only the immediately previous time periods,
but also for periods further back.

A more complex model in which there is not a fixed latency plus infectious-
ness period has been considered [30]. In the context of a susceptible-exposed-
infectious-recovered (SEIR) model, they develop a discrete-time approxima-
tion to a stochastic SEIR model, in which there is a data augmentation step
that imputes the number of infected over time. Given these numbers, the
counts in each compartment are available, and the likelihood is a product of
three binomials (one each for infected counts, first symptom counts, removed
counts).

We describe how the approach of [30] could be used for the SIR model. The
key difference is that the fixed latency plus infectious period is relaxed and so
it is no longer assumed that incidence is equal to prevalence. Consequently,
we continue to let Xt, Yt, Zt represent the numbers of susceptibles, incident
cases, and number who recover at time t, but now let It be the prevalence.
The model consists of the two distributions:

Yt|It−1 = it−1, Xt−1 = xt−1 ∼ Binomial (xt−1, 1− exp(βit−1/N))(1.8)

Zt|It−1 = it−1 ∼ Binomial (it−1, 1− exp(γ)) , (1.9)

so that γ is the recovery rate, with 1/γ the mean recovery time. In this model,
the reproductive number is R0 = β/γ. Further,

It = It−1 + Yt−1 − Zt−1, (1.10)

subject to the initial conditions x0 = N (the population size, say) and I0 = a.
An obvious way to carry out computation is to introduce the unknown counts
Zt into the model as auxiliary variables, from which the series It can be
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constructed from (1.10). With the “full data” the likelihood is simply the
product over the binomials in (1.8)–(1.9). This scheme will be computationally
expensive for long time series with large numbers of cases.

Summary: Both the TSIR and the epidemic/endemic formulations are ap-
proximations. The TSIR formulation (without the α power) is in continuous
time and assumes the number of susceptibles remains constant between ob-
servation points. The epidemic/endemic formulation assumes the number of
infectives is constant between observation time points.

1.4.4 Under-Reporting

Under-reporting is a ubiquitous problem in infectious disease modeling; this
topic is covered in detail in Chapter ??. We describe an approach to under-
reporting that has been used along with TSIR modeling, particularly for
measles, leaning heavily on [15]. We let Ct represent the reported cases and Yt

the true number of cases. Then, again using Xt as the number of susceptibles,
we generalize (1.1) to,

Xt = Xt−1 − ρtCt +Bt−d + Ut, (1.11)

where 1/ρt is the under-reporting rate at time t, and ut are uncorrelated errors
with E(Ut) = 0, var(Ut) = σ2

u, that acknowledge the errors that may creep
into the deterministic formulation. We write Xt = X+Zt, substitute in (1.11)
and successively iterate to give,

Zt = Z0 −

t∑

s=1

ρsCs +

t∑

s=1

Bs−d +

t∑

s=1

Us.

From this equation, we see that if under-reporting is present and not accounted
for, the difference between cumulative births and observed cases will grow
without bound. Let,

C̃t =

t∑

s=1

Cs, B̃t =

t∑

s=1

Bs−d, Ũt =

t∑

s=1

Us, Rt =

t∑

s=1

(ρs − ρ)Cs,

where ρ = E(ρt) and Rt ≈ 0 under a constant reporting rate. Then, to estimate
ρ it has become common practice in TSIR work to regress the cumulative
births on the cumulative cases,

B̃t = Zt − Z0 + ρC̃t − Ũt,

to estimate ρ as the slope. Note that the cumulative errors Ũt do not have
constant variance, since var(Ut) = σ2

u, so a weighted regression is more appro-
priate.

With an estimate ρ̂, one may estimate the true number of cases as
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Yt = ρ̂Ct, and use these cases in a TSIR model. This approach is often fol-
lowed, though there is no explicit acknowledgement of the additional (beyond
sampling) variability in Yt.

1.4.5 Ecological Regression

Ecological bias occurs when individual and aggregate level (with aggregation
here over space) inference differ. The key to its understanding is to take an
individual-level model and aggregate to the area-level [48]. We report on recent
work [17], that examines the implications of ecological inference for infectious
disease data. Let Yitk be disease indicator for a susceptible individual k in
area i and week t and zitk be an individual-level covariate, k = 1, . . . , Ni. We
present a simple example in which there is an autoregressive term only, and
also assume a rare disease. In this case, the individual-level model is,

Yitk|yi,t−1,k ∼ Bernoulli (λAR

itkyi,t−1/Ni) ,

with λAR

itk = exp(α+ βzitk). The implied aggregate hazard rate for area i and
time t is then [17],

λ
AR

it = exp(α)

∫

Ai

exp(βz)git(z)dz,

where Ai represents area i and git(z) is the within-area distribution of z at
time t.

As a simple example consider the binary covariate, zitk = 0/1 (for example,
the vaccination status of individual k in area i at time t). The aggregate

consistent model, for Yit =
∑Ni

k=1 Yitk, is

Yit|λ
AR

it ∼ Poisson(λ
AR

it yi,t−1/Ni)

λ
AR

it = Ni

[
(1− zit)e

α + zite
α+β

]
.

A naive model would assume λ
AR

it = exp(α⋆ + β⋆zit), where zit is the area av-
erage. This naive model is very different from the aggregate consistent model.

1.5 Analysis of Measles Data

We now return to the measles data and, for illustration, fit a TSIR model and
an epidemic/endemic model. We use a Bayesian approach due to its flexibility,
and since the rstan package allows these models to be fitted with relative ease.
The package implements MCMC using the no U-turns version [24] of Hamil-
tonian Monte Carlo [40]. The code, and comparison of parameter estimates
for the epidemic/endemic model with the PQL versions in the surveillance
package, is included in the supplementary materials.
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1.5.1 TSIR Model

The TSIR type model we fit is,

Yit|µit ∼ NegBin (µit, φ) ,

µit =


eλAR

t yi,t−1 + eλ
NE

Nτ1
i

n∑

j=1

wijy
τ2
j,t−1



α

+Nie
λEN

,

where,

wij =
d
−θ1/(1−θ1)
ij∑

k 6=i d
−θ1/(1−θ1)
ik

,

with dij being the distance between areas i and j, and λAR

t = βAR

0 + βAR

1 t +
γ sin(ωt) + δ cos(ωt). Relatively uninformative priors were used (zero mean
normals with standard deviations of 10). The deviation from linearity param-
eter, α, was restricted to lie in [0.95, 1] and was given a uniform prior on this
support.

Figure 1.2 shows the fit, and it appears reasonable. Figure 1.4 displays
posterior distributions for a few interesting parameters. Notably, the posterior
for α is close to uniform, so that the data tell us little about this parameter.
The posterior for θ1 is quite peaked and the decay corresponding to this
posterior is a swift decrease with increasing distance; τ1 and τ2 are relatively
well-behaved.

1.5.2 Epidemic/Endemic Model

The epidemic/endemic model we fit is,

Yit|µit ∼ NegBin(µit, φ),

µit = eλ
AR+bAR

i yi,t−1 + eλ
NE+bNE

i

n∑

j=1

wijyj,t−1 +Nie
λEN

t
+bEN

i ,

where,

wij =
m

−θ2/(1−θ2)
ij∑

k 6=i m
−θ2/(1−θ2)
ik

,

withmij the number of boundaries to cross when traveling between areas i and
j. Independent normal random effects were used, i.e., bAR

i ∼ N(0, σ2
AR

), bNE

i ∼
N(0, σ2

NE
), bEN

i ∼ N(0, σ2
EN
). Seasonality and a linear trend were included in

the endemic component:

λEN

t = βEN

0 + βEN

1 t+ γ sin(ωt) + δ cos(ωt).

We assume relatively flat priors, as for the TSIR model, on λAR, λNE, βEN

0 ,
βEN

1 , γ and δ. For the random effects precisions σ−2
AR

, σ−2
NE

, σ−2
EN

we use
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FIGURE 1.4
Density estimates of the posterior marginals for τ1, τ2, α and θ1, from analysis
of the measles data with the TSIR model.

Gamma(0.5,0.1) priors which have prior medians for the standard deviations
of 0.66, and (5%, 95%) points of (0.22, 7.1). We used a uniform prior on
0 < θ2 < 1 and a relatively flat prior on the overdispersion parameter φ.

Figure 1.5 shows the time series of data in the areas with non-zero counts,
along with posterior medians of µit, with the gray shading representing 95%
intervals for µit. Overall, the model appears to be picking up the time courses
well. Figure 1.6 displays posterior distributions for a variety of parameters
(for illustration), and we see that λAR and λNE are left-skewed. The neighbor-
hood parameter θ2, is relatively well estimated and favors a nearest neighbor
structure. The posterior medians of σAR and σEN were 1.5 and 1.6, respec-
tively (though note that the random effects associated with these standard
deviations are acting on different scales, so they are not comparable), while
the posterior median of σNE is 3.3. Posterior medians of the random effects
bAR

i are mapped in Figure 1.7, and we see large differences between the areas.
In general, the sizes of the random effects show there is large between-area
variability.
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FIGURE 1.5
Observed (black dots) data in the 15 districts with non-zero counts, and
posterior summaries (2.5%, 50%, 97.5% quantiles) for µit, under the epi-
demic/endemic model.
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FIGURE 1.6
Density estimates of the posterior marginals for λAR, λNE, log(σAR) and θ2,
from analysis of the measles data with the epidemic-endemic model.

1.6 Discussion

In this review article we have concentrated on statistical aspects of the models,
but perhaps the most difficult part is developing models and interpreting
results in order to answer biological questions. Much remains to be done on
continuous time models, particularly with respect to computation.

In the measles example, we illustrated that both TSIR and epi-
demic/endemic models can be fitted using Stan. Residual analysis is under-
developed for the discrete-time models that we have described, and model
comparison in general also requires investigation. We examined conventional
Pearson residuals in our analyses, but these are difficult to interpret with small
counts. For underreporting, introducing the true counts as auxiliary variables
is the obvious approach within a Bayesian model, but for large populations
this is computationally very difficult (and also not currently possible in Stan

since it does not support inference for discrete parameters.
Contact patterns and disease severity are strongly age dependent, and

incorporating age (and gender) in the epidemic/endemic model has been ex-
plicitly carried out [2] in the context of modeling hand, foot and mouth disease
in China. [37] constructed contact matrices based on survey data and incor-
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FIGURE 1.7
Posterior medians of autoregressive random effects bAR

i .
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porated these in the epidemic/endemic framework. Similar approaches would
be straightforward to include in the TSIR approach.
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