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1. INTRODUCTION

Avalanches are natural phenomena that in a mostly mountainous territory may signif-
icantly affect land use. In recent years the study of avalanche phenomena has attracted
growing interest especially for the increase of accidents and deaths, now comparable
with those related to natural disasters. This is mainly due to a wide anthropization of
mountain areas which has often brought a rapid growth of recreational activities, trans-
portation, and constructions in high-altitude areas without an adequate assessment of
avalanche hazard. Hence, the analysis of avalanche activity is extremely important to
prevent damage and for activities aimed at land use planning in mountain areas.

Many scientists have been studying avalanches to try to map the risk and improve
predictions. To that end several statistical methods have been proposed based on differ-
ent approaches. While some papers are aimed to predict the long-return period avalanche
for a given avalanche path (Meunier and Ancey, 2004; Eckert et al., 2008, 2010), oth-
ers try to find variables that are correlated with avalanche events and that can be used
as predictors in a statistical model (Baggi and Schweizer, 2009; Ancey, 2001). Baggi
and Schweizer (2009) studied the characteristics of wet-snow avalanche activity for 20
years of observations from a high alpine valley in Switzerland. From the analysis of the
occurrence data in combination with meteorological and snowpack data, they found
that snow depth, precipitation and air temperature have the highest correlation with
avalanche activity. Ancey (2001) distinguishes three fixed parameters related to the ava-
lanche path: they are the mean slope, new slope and wind. In particular, his findings
can be summarized as follows: (i) the average inclination of starting zones ranges from
27 to 50 degrees; (ii) most of the time, snowfall is the cause of avalanches, hence the
hazard increases significantly with the increase in the depth of new snow; (iii) the wind
is an additional factor which significantly influences the stability of a snowpack since it
causes uneven snow redistribution (accumulation on lee slopes), which accelerates snow
metamorphism, and forms cornices, whose collapses may trigger avalanches. The latter
approaches are aimed to study avalanche activity on a small spatio-temporal scale. Cli-
mate change has been considered by some authors for characterizing the avalanche activ-
ity at a larger scale (Eckert et al., 2010; Jomelli and Pech, 2004). While Jomelli and Pech
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(2004) suggested that at low altitudes, avalanche magnitude has declined since 1650 in
the Massif des Ecrins, in the French Alps, Jomelli et al. (2007) found no significative cor-
relation between the fluctuations in avalanche activity between 1978 and 2003 and large-
scale atmospheric patterns, in the Maurienne Valley in France. Few models have been
proposed for forecasting the risk of avalanche in a spatio-temporal framework. Straub
and Gray-Regamey (2006) proposed a Bayesian probabilistic model for spatial mapping
and hazard risk assessment, based on a deterministic dynamic model combined with an
explicit representation of different parameter uncertainties and Eckert et al. (2010) in-
troduced a spatio-temporal hierarchical model inspired by spatial epidemiology to study
the fluctuations of avalanche occurrence possibly resulting from climate change.

In this work we propose an approach based on space-time point processes (see Daley
and Vere-Jones (1998) for an introduction) for modeling the avalanche risk. In partic-
ular, the intensity function of the process indicates the limiting expected rate of snow
avalanches occurring on day t at location (x, y), conditioned on the historical infor-
mation available prior to time t . The location (x, y) represents the baricenter of the
polygon which draws the shape of avalanche. For showing the effect of some covariates
(such as elevation, slope, temperature, etc.) different models are proposed. Application
to the digitalized Avalanche Dataset of Trentino region (Italy) illustrates the ability of the
models to estimate the avalanche risk. Although this approach has not been previously
applied to avalanche events, it has been used for spatio-temporal analysis of earthquakes
occurrences (Ogata, 1998; Brix and Diggle, 2001) and wildfire risk (Peng et al., 2005;
Schoenberg et al., 2007; Brillinger et al., 2006).

The paper is organized as follows. Section 2 and Section 3 provide a description of
the data set and a preliminary analysis of data, respectively. The analysis of space-time
patterns is given in Section 3. In Section 4, some space-time models for avalanches are
proposed. Results and conclusions are in Section 5.

2. THE DATA

The data used in this work have been provided by the province of Trento (shown in
Figure 1) through the availability of digitalized Avalanche Database (based on a perma-
nent survey on avalanches). The database collects and documents the avalanche events
from the 70’s to today, including maps with the location of various sites of avalanches
and documents with the description and analysis of various phenomena (dates, causes,
altitude of posting, exposition, damages to people or things, etc.). For a large zone of the
Province of Trento (around 40%) the database includes further detailed information of
avalanche events which were collected for drawing the CLPV (Map of Probable Local-
ization of Avalanche), a cartography of nominal scale 1:25000 which shows the localiza-
tions of dangerous areas and the avalanche events which happened before a given period
of time (see Figure 2, left for an example). An online version of the data set is available on
the web site http://www.territorio.provinia.tn.it/. The Avalanche Database
includes 4693 well documented avalanche events over a period from January 1970 to Jan-
uary 2008 for 1108 sites distributed on the Trentino region as shown in Figure 2 (right).
However, some avalanche counts are missing or were not perfectly surveyed during the
entire time period, making certain data nonhomogeneous in space and time. In this
study we will concentrate our attention on some time periods in which the permanent
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Figure 1 – Italia map (left): the black area is the province of Trento; Elevation map for the province
of Trento (right);

survey has been conducted as fully as possible.
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Figure 2 – Example of avalanches (darker pink color) and dangerous zones (lighter pink color)
from a CLPV map (left) and avalanche sites (right) in the period January, 1970 - January, 2008 .

We also consider data on elevations, snowpack and meteorology, which are poten-
tially connected to avalanche activities. Elevation data (in Figure 1, right) are given by
the web site
http://eros.usgs.gov which provides the GTOPO30 data set with 1km resolution.
GTOPO30 is a global digital elevation model (DEM) consisting of a raster grid of reg-
ularly spaced elevation values that have been primarily derived from the U.S. Geolog-
ical Survey (USGS) topographic map series. Snow-pack and meteorological data for
Trentino province are collected from the public meteorological center “Meteotrentino”
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Figure 3 – Permanent sites where snow-related data are collected.

(www.meteotrentino.it). The database includes data from 36 permanent areas where
daily are registered hand made observations of temperatures, snowpack parameters and
avalanche activity (Figure 3).
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Figure 4 – Yearly avalanche events from 1970 to 2008.

3. PRELIMINARY ANALYSIS OF DATA

The number of avalanche events in Trentino changes significantly in time from January,
1970 to January, 2008 (Figure 4). In particular, a large number of avalanches occurred in
the period from 1979 to 1988 while it decreased significantly in the last 20 years. There is
not a clear reason for this decreasing temporal behavior but it is known that this period
is characterized by different meteorological conditions. While the winter 1985-1986 is
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Figure 5 – Monthly avalanche events from 1983 to 1988.

remembered for its frequent snowfalls, the winter 2006-2007 is known for being the
warmest in the last 60 years. For showing the relationship between avalanche events
and meteorological variables we have chosen the period November - April of the years
1983-1988 which is characterized by a large number of avalanche events. The winter
season starts September 1st of a given year and ends June 30th of the following year,
but the major avalanches in Trentino region occur between November and April with
peaks during the months of February and April. In fact, the latter months are often
characterized by snowstorms (February) and thaw (April) which contribute to increase
the level of danger. Figures 5, 6 and 7 show the monthly number of avalanches, the
monthly average level of snow, and the monthly average temperature, respectively: the
highest numbers of monthly avalanches are often associated to high levels of snow and
cold winters. The data on the average level of snow and the monthly average temperature
are missing for the month of November 1984 and 1985. Although the amount of new
snow and temperature are important factors for assessing the risk of avalanches, other
factors can be responsible of these events (such as elevation, slope, snowpack, presence
of skiers, etc.).

In order to better understand the dynamics of the avalanche activity, let’s analyze
some of the most intense avalanche days. Figures 8 (a) and 8 (b) represent the space-time
distribution of avalanche events in two different periods: from January 30 to February 2,
1986 and from December 9 to December 12, 1990. While in the first period the avalanche
events cover all the Trentino region in the second period the number of avalanche events
are concentrated in the North East part. In both periods, the avalanche activity lasted 4
days with a spatial clustered distribution for each day. This means that if an avalanche
occurs in a particular site, it is likely that other avalanches occur in the neighborhood
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Figure 6 – Monthly average snow depth from 1983 to 1988.

in the same day. As expected, no avalanche occurs at the same site on consecutive days.
In both examples the altitude is a very important variable for the spatial distribution of
avalanche events.

Since, the number of avalanche events are often related with the levels of new snow,
depth snow and temperature we tried to analyze these variables using a spatial interpo-
lation, known as ordinary Kriging (Cressie, 1993). In particular, we considered the data
from the permanent areas shown in Figure 3 for estimating the values in the sites where
they were not collected. The Matérn model was used for estimating the parameters of
the spatial covariance function. The results for the first day of February, 1986 are shown
in Figures 9, 10, and 11. The different shape of the zone on which the feature are inter-
polated is due to different available data set. These variables are collected manually and
it often happens that they are not available in those sites (and days) where the weather
condition is extremely harsh. The white area of the region indicate that there are not
enough data for performing a kriging. The standard deviations show the values of un-
certainty in estimates. As expected, the least values are close to the monitored points.

3.1. Space-time patterns

In a space-time analysis, the first task is to check how much the spatial pattern changes
over time or, equivalently, how much the temporal evolution changes as we move in
space. If the spatial pattern does not change in time, we can carry out a simple analysis by
analyzing separately the marginal spatial and temporal patterns rather than considering
them jointly. This is so because the temporal invariance of the spatial pattern implies
that the joint pattern is simply the product of a marginal spatial pattern and a marginal
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Figure 7 – Monthly average temperature from 1983 to 1988.

temporal pattern.
Unfortunately, this is not the case in the point process representing the avalanche. To

show this lack of invariance and, at the same time, to motivate a more complex model,
we will use a simple kernel smoothing estimate of the point pattern intensity in three
different time periods. For a purely spatial point process, the intensity function at loca-
tions x is given by

λ(x) = lim
‖∆

x
‖→0

E (N (∆
x
))

‖∆
x
‖

where |∆
x
| is the area of a small region ∆

x
centered at x. Our kernel estimates use

a correction for edge effects and they are based on the quartic kernel function with a
bandwidth of h = 0.5.

Figure 12 shows the point pattern of the avalanches on top of the kernel intensity
estimate for data broken up into three periods: from 1981 to 1984, from 1985 to 1988,
and from 1989 to 1992. It is visually distinct the changing spatial pattern. There is an
increase in the NW corner and in the E and NE corners of the map.

We carried out formal statistical tests to verify this visual impression of a changing
spatial pattern. Figure 13 shows the plot of the difference D(r ) = K1(r )− K2(r ) be-
tween a pair of estimated Ripley’s K-functions (K1(r ) and K2(r )), shown as solid lines.
The dashed lines show the 95% confidence bands under the hypothesis of equal under-
lying K-functions. The left plot shows the difference between the Ripley’s K -functions
of patterns from time periods 1 and 2. The second plot corresponds to the difference
between the K -functions from the first and third periods. Finally, the third plot is that
connected with the difference between the K -functions from periods 2 and 3. The first
and third D(r ) curves lie outside the envelopes at short distances giving a statistical ev-
idence of true difference between the underlying K-function of the second period with
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Figure 8 – Avalanche events from January 30 to February 2, 1986 (a); Avalanche events from De-
cember 9 to December 12, 1990 (b).

the other two time periods. The second plot shows that there is not significant differ-
ence between the second and third periods at short distances but only for longer ones.
Therefore, the visual suggestion of Figure 12 that the avalanches intensity increased in
some regions is justified by the data evidence.

This brings a difficulty in terms of modeling and in terms of understanding of the
phenomenon. A good model should allow for a differential change in the spatial pattern
as times evolves. It is not clear which covariate could drive this change other than the
longitude. We wonder if the increase of human presence (traffic, occupation by house-
holds or leisure activities) increased in the period in the regions where the intensity
increased. This would indicate that the intensity is likely to have no trend in time but
that the recording of the avalanches increased in those regions. There is some anecdotal
evidence that leisure business has been initiated more intensively in this region in the
90’s and this could imply a more intense surveillance of the region.

This difficulty induced an analysis strategy. If we analyze the whole period as a
single dataset we will need to come up with a model for the changing patterns as well
as a model for the prediction of avalanches in steady state situations. We think that this
mixing is not healthy and can lead to models good for one purpose but not for the other.
Since our main objective is to propose a predictive method for avalanches under regular
conditions, we decided to break the data into two periods and to analyze only the first
one, from January 01, 1980 to December 31, 1989, covering 10 years of data. This is the
period that has a reasonably stable spatial pattern. It allows us to study the predictive
power of our methods in a situation that is not changing due to human intervention.
Later, in a second analysis to be pursued elsewhere, we will consider the time evolution
of the spatial pattern, specially its increase in the NE region.
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Figure 9 – Kriging estimates of the level of new snow on February 1, 1986 (left) and their standard
deviations (right). Triangles show the sites where data are collected.
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Figure 10 – Kriging estimates of the level of snow depth on February 1, 1986 (left) and their stan-
dard deviations (right). Triangles show the sites where data are collected.
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Figure 11 – Kriging estimates of the average temperature on February 1, 1986 (left) and their stan-
dard deviations (right). Triangles show the sites where data are collected.
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Figure 12 – Pattern 1 (left): from 1981 to 1984; Pattern 2 (middle): from 1985 to 1988; Pattern
3 (right): from 1989 to 1992. On the background, we draw the kernel estimates of the intensity
function using a quartic kernel function with a border effect correction and a bandwidth h = 0.5.
The black circles show the avalanche events for the considered period.

3.2. The temporal pattern

The purely temporal trend can be seen in Figure 14. The deep and seasonal valleys in
this intensity function are due to the spring and summer periods in each year when there
is no avalanches. It is obvious that the mid years had a higher intensity compared to the
earlier and the later years. Because of the near zero intensity in the mid year months, we
fitted our models using only the data from November to April in each year. Therefore,
each year is composed by five months only.

3.3. Effect of elevation and slope

Some covariates associated with the avalanches risk are exogenous, in the sense that oc-
currence is not causally affected by the avalanches point process. These covariates are
elevation, temperature, and the slope of the terrain. We are still collecting the data for
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Figure 13 – Test for the difference between two K-functions: periods 1 versus 2 (left), periods 1
and 3 (middle), and periods 2 and 3 (right). Bands of 95% confidence are shown as dashed lines.

temperature so we present here a preliminary analysis.

To explore the possible influence of altitude on the avalanches intensity, we carried
out a simple spatial correlation analysis. First, it should be noted that, for all practical
aspects, altitude is constant during the analysis time frame. Hence, it can not be asso-
ciated with any temporal changing pattern, but only with the marginal spatial pattern.
For this reason, we considered all point events during the 80’s, irrespective of their time
of occurrence. The left hand side in Figure 15 shows the elevation map with the events
pattern superimposed. There is a clear association between the two with more events
clustered on regions of high altitude.

On this same Figure, the middle map shows a map of the slope, calculated as the
square length of the gradient vector associated with the tangent plane on the elevation
surface at each pixel. The point pattern is also superimposed in this map. In this case,
there is less association between the events and the slope map than between the events’
intensity and elevation. The explanation is that slope per se is not the correct variable
as the avalanche risk is not linearly related with the terrain inclination. There is a non-
linear association as angles too close to zero or too steep present no risk of avalanches.
As pointed out in Section 1, the angle with the horizontal plane must be between 25 and
50 degrees in order to present some avalanches risk. Therefore, we created a binary map
with areas with slopes’ angles within this (25,50) range marked as white while pixels
where the angles are outside this range are colored in green (left hand side plot of Figure
15). We see more matching between the events’ pattern and this binary map than the
slope per se.

3.4. Effect of time varying and endogenous covariates

Maybe the most important predictor for avalanches in the near future at a given loca-
tion x is the occurrence of other avalanches in the recent past days in the immediate
neighborhood of x. This variable can be easily collected and be used to forecast future
avalanches. Therefore, at each pixel x and time t , we considered the number of other
avalanches in the previous four days that occurred in a radius of 5.0 kilometers away
from x.
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Figure 14 – Kernel density estimation of avalanche time events

4. MODELS FOR AVALANCHES

4.1. Conditional intensity in point processes

Any spatial-temporal point process is uniquely characterized by its conditional intensity
function λ(t , x, y|H t ) given by the limiting conditional expectation

λ(x, y, t |Ht ) = lim
∆t ,∆x,∆y↓0

E[N{(t , t +∆t )× (x, x +∆x)× (y, y +∆y)}|Ht ]

∆t ,∆x,∆y

provided the limit exists. This is a random function that depends on the prior history,
Ht , of the point process up to time t . Technically, this history is defined as the filtration
{Ht : t ≥ 0}, the increasing and right-continuous family of sigma-algebras determined
by all events occurring up to time t plus all initial conditions. The space-time process is
Ht -measurable for every t ≥ 0 and it is said to be adapted to this filtration. In practice,
we can simply assume that Ht represents the set {(ti , xi , yi ),∀i : ti < t} of all events
that occurred previous to t where where ti is the time of the i−th event and (xi , yi ) is
its spatial location.

The importance of the conditional intensity function is that, if it depends on a vector-
valued parameter β = (β0,β1, . . . ,βk ) ∈ R

k+1, then the likelihood based on the ob-
served events (ti , xi , yi ) for i = 1, . . . , n is given by

L(β) =
n
∏

i=1

λβ
�

xi , yi , ti |Hti

�

exp
�

−

∫ ∫ ∫

λβ(x, y, t |Ht ) d xd yd t
�

(1)

The difficulty to evaluate this likelihood function is the random integral term. When
there is a large dataset and the conditional intensity depends on a complex way of the
past events, this can be a hard task.
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Figure 15 – Maps of elevation (left), slope (center) and maximum nearby slope (right) with the
events pattern superimposed.

The parameter β is estimated by maximizing the log-likelihood function

l (β) =
n
∑

i=1

l o gλβ
�

xi , yi , ti |Hti

�

−

∫ ∫ ∫

λβ(x, y, t |Ht ) d xd yd t . (2)

The second derivative matrix with respect toβ of the log-likelihood function l (β) eval-
uated at the maximum likelihood estimator can be used in a usual way to derive confi-
dence intervals and hypothesis tests concerning the parameter values. Therefore, statisti-
cal inference is straightforward with the main difficulties concentrated on the numerical
aspects of evaluating the likelihood and its derivatives.

4.2. Conditional intensity models for avalanche risk

In this preliminary analysis, we considered a small number of models that should capture
the main aspects of the avalanche dataset. One first class of models is nonparametric and
has separable spatial and temporal effects. This is given by

λ1a(x, y, t |Ht ) = λ(x, y, t ) =β0+β1S(x, y)+β2T (t ) (3)

or by
λ1m(x, y, t |Ht ) = exp (β0+β1S(x, y)+β2T (t )) (4)

where β is the parameter vector to be estimated. So, one is an additive model while the
other is a multiplicative model. In these models, S(x, y) is a deterministic function of
the location (x, y) and it is estimated by a two-dimensional kernel smoother

S(x, y) =
1

n0

n0
∑

j=1

1

φx

1

φy

K

�

x − x0 j

φx

�

K

�

y − y0 j

φy

�

where K is a suitable kernel function, taken as the quartic kernel in this paper, n0 is the
number of avalanche events, and (φx ,φy ) are called kernel bandwidths. The function

T (t ) is a periodic with trend deterministic function, also estimated by kernel methods
using the events’ times. This function is shown in Figure 14. The determinist aspect of
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these functions make the conditional intensity independent of the past, justifying the
first equality in (3). To have an identifiable model and to avoid numerical instabilities,
we centered all covariates at zero.

It is likely that this model has less predictive power than other models that incor-
porate important additional information. One possibility to improve these models is
to use the available covariates. At this moment, we have the elevation E l e v(x) and the
binary slope S l o pe(x), that do not vary in time and is available for all points x in the
map. As in the previous model, we centered the covariates at zero.

Hence, another class of models has an intensity varying only with the exogenous
covariates and the temporal components. We again have λ(x, y, t |Ht ) = λ(x, y, t ) for
these models, a deterministic intensity function. It is given by

λ2a(x, y, t ) = λ1a(x, y, t )+β3E l e v(x)+β4S l o pe(x) (5)

Another version of this model is the multiplicative form where

λ2m(x, y, t ) = λ1m(x, y, t )exp (β3E l e v(x)+β4S l o pe(x)) (6)

We can test for the additional improvement of this model with respect to the first class
of models by means of the the AIC Index.

5. SOME RESULTS AND CONCLUSIONS

The data used in this work have been provided by the province of Trento through the
availability of digitalized Avalanche Database (based on a permanent survey on avalanches).
In this application we consider 3350 avalanche events at 970 sites for the period January
1980 – December 1989. The preliminary results for the multiplicative models are in
Table 1.
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Figure 16 – Estimated intensity function at February 1, 1986 by model (4) (left) and model (6)
(right). Asterisks represent avalanche events at the same day.

From the AIC results of Table 1, it seems that models (6) and (6a) including elevation
performs better than models without this component described by Eq. (4). Figure 16
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TABLE 1
Estimated parameters from multiplicative models (4) and (6), with and without slope (w.s).

Models Intercept S(x) T (t ) Elev(x) S l o pe(x) AIC

Model (4) -0.1709 0.00031 36.3739 NA NA 3061.67
Model (6) -0.1533 0.00027 92.6485 0.0003 0.6913 2568.24
Model (6a) w.s. -0.1604 0.00028 34.1586 0.0003 NA 2709.11

shows the estimated conditional intensity functions for the day February 1, 1986 using
the multiplicative models (4) and (6).

We think that the inclusion of some additional covariates such as temperature and the
amount of daily accumulated snow should be useful for improving the performance of
the model. Moreover, the small number of spatial data for the considered period made
difficult to achieve this aim in the current work. We are in the process of collecting
these covariates and we expect to extend soon the proposed models incorporating these
additional information.

Finally, in future papers we are going to define a new class of model with dependency
from previous observations, given by the number of avalanche events nearby each spatial
point in the few previous days.
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SUMMARY

Spatio-temporal analysis of the avalanche hazard in the North of Italy

The study of avalanche events is particularly important to assess and predict the degree of risk
involved in a given area and time. In this work we consider an alternative methodology based
on a space-time point process where the intensity function indicates the limiting expected rate of
occurrence of snow avalanches occurring on day t at location (x, y), conditioned on the historical
information available prior to time t . The model depends also on some environmental variables
(degree of slope, exposure, altitude, etc.) which may be considered as covariates. In order to show
the spatio temporal modeling of the avalanche hazard we consider the application to the digitalized
Avalanche Database of the Trentino region, Italy.


