
Spatio-temporal and -spectral feature maps 
in photoplethysmography imaging and infrared 
thermography

Michael Paul1* , Sabrina Caprice Behr2, Christoph Weiss1, Konrad Heimann2, Thorsten Orlikowsky2 

and Steffen Leonhardt1 

Abstract 

Background: Only a small fraction of the information available is generally used in 

the majority of camera-based sensing approaches for vital sign monitoring. Dedicated 

skin pixels, for example, fall into this category while other regions are often disregarded 

early in the processing chain.

Methods: We look at a simple processing chain for imaging where a video stream is 

converted to several other streams to investigate whether other image regions should 

also be considered. These streams are generated by mapping spatio-temporal and 

-spectral features of video segments and, thus, compressing the information contained 

in several seconds of video and encoding these in a new image. Two typical scenarios 

are provided as examples to study the applicability of these maps: face videos in a lab-

oratory setting and measurements of a baby in the neonatal intensive care unit. Each 

measurement consists of the synchronous recording of photoplethysmography imag-

ing (PPGI) and infrared thermography (IRT). We report the results of a visual inspection 

of those maps, evaluate the root mean square (RMS) contrast of foreground and back-

ground regions, and use histogram intersections as a tool for similarity measurements.

Results: The maps allow us to distinguish visually between pulsatile foreground objects 

and an image background, which is found to be a noisy pattern. Distortions in the maps 

could be localized and the origin could be discovered. The IRT highlights subject contours 

for the heart frequency band, while silhouettes show strong signals in PPGI. Reflections 

and shadows were found to be sources of signals and distortions. We can testify advan-

tages for the use of near-infrared light for PPGI. Furthermore, a difference in RMS contrast 

for pulsatile and non-pulsatile regions could be demonstrated. Histogram intersections 

allowed us to differentiate between the background and foreground.

Conclusions: We introduced new maps for the two sensing modalities and presented 

an overview for three different wavelength ranges. The maps can be used as a tool 

for visualizing aspects of the dynamic information hidden in video streams without 

automation. We propose focusing on an indirect method to detect pulsatile regions by 

using the noisy background pattern characteristic, for example, based on the histo-

gram approach introduced.
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Background

Motivation

Camera-based sensing of vital parameters is a recent research topic in many application 

fields, such as clinical monitoring, driver-state estimation, emotion detection and even 

anti-spoofing in biometrics [1]. Most of the time, conventional video cameras are used 

for the task because they are affordable, widely available and often return color data, 

which humans are used to. In addition, cameras sensitive to other parts of the electro-

magnetic spectrum are also used, for example, thermal cameras, which are more and 

more used for fever screening at airports.

Nevertheless, there is neither a standardized measurement setup nor an agreement 

on algorithms even for conventional cameras [2]. �is is not surprising considering the 

many different areas of application. However, standard implementations of certain algo-

rithms have been available since 2019 [3–5]. Moreover, one other aspect is the reduction 

of data in an early processing stage to maintain manageability, especially when facing 

videos that are both very bandwidth- and storage-intense. It is known that lossy, conven-

tional video compression algorithms deteriorate the useful signal [6]. Consequently, a 

first approach was presented to overcome this problem [7] but is not widely used. �us, 

it is no surprise that when extracting dynamic information for vital sign sensing for real-

time applications, videos are often reduced to image regions. �ese regions of inter-

est (ROIs) might contain only the patient or a small portion of the skin (e.g., face, hand 

[8]). However, the surrounding area is often not considered at the expense of discarding 

information which might be useful in signal retrieval and subsequent processing steps 

(e.g., artifact removal). A few examples of what can happen outside the ROIs are as fol-

lows: the movement of caregivers in a clinical monitoring scenario affects the lighting 

conditions, for example, by casting unwanted shadows, medical devices emit light signals 

influencing the scene, or tubes and wires are moving (partly following breathing move-

ments of the patient). While the presence of the first two introduces artifacts, the occur-

rence of movement coupled to body activity might contain the vital sign anticipated.

Hence, we will look in the following at the regions not yet exploited. Dynamic compo-

nents of video segments can be compressed to 2D images for this purpose.

State of the art

�e two sensing modalities photoplethysmography imaging (PPGI) and infrared ther-

mography (IRT) were used in this work.

PPGI is known by various names [9, 10] and can be used to extract the PPG signal 

(changes in light intensity that are modulated by blood volume pulsations) and ballis-

tographic signals (signals resulting from movement, for example, from blood ejected by 

the heart [11]) remotely. �e IRT, or thermal imaging [12], uses specialized cameras sen-

sitive to thermal radiation emitted by objects and subjects. One of its prevalent medi-

cal applications is the screening of fevers (e.g., at airports), but also the extraction of 

vital signs (predominantly breathing by exploiting temperature differences at the nostrils 
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or by detecting movements of the chest). One other aspect in which the modalities dif-

fer is spatial resolution: PPGI can be used with cameras, both charge-coupled devices 

(CCD) and complementary metal-oxide semiconductors (CMOS), which are mass-

market products and, nowadays, typically have high-definition (HD) resolutions (above 

1280 × 720 pix ) at a reasonably low price. By contrast, IRT cameras use special sen-

sors (e.g., bolometers) typically equipped with 640 × 480 pix (or below) because higher 

resolving sensors are still very expensive (several thousand dollars). However, we have 

witnessed a price drop in this area in recent years and the first low-cost devices have 

entered the market.

�e typical signal extraction for video processing is described as follows: depending 

on the application, the first step is to detect the subject, and the second step involves 

locating one or multiple ROIs which are then tracked over time. Pixels of a ROI can be 

pooled (often by spatial averaging) and, thus, a time series is created. Signals of different 

ROIs (or different optical wavelengths in the case of PPGI) can be optionally combined 

to form a signal which is finally analyzed by one-dimensional signal processing.

Algorithms can rely on a separate reference ROIs which do not contain the signal to 

improve the signal extracted. Such an approach that employs autoregressive modeling 

was developed by Tarassenko and co-workers to compensate for the effects, for example, 

of artificial light flicker in the visible light range [13]. However, the authors did not state 

how to choose this reference ROI, but define it manually on an empirical basis.

Furthermore, the spatial resolution was exploited by several groups in various ways: 

Kamshilin and co-workers [14] used synchronous detection and applied lock-in ampli-

fication on every pixel of a video stream to make blood volume pulsations more visible. 

A reference signal required for the approach was obtained from a reference ROI of the 

same video stream. Interestingly, this approach may be applied to any frequency band of 

interest. It was shown that not only the amplitude, but also the phase of the blood vol-

ume pulsations is unevenly distributed [15].

Bobbia and co-authors [16] pointed out that the identification of a well-defined ROI 

(number of skin pixels and temporal stability) is not a simple task. Instead of relying 

on direct skin segmentation (e.g., based on color or body part detectors), the authors 

relied on the assumption that living skin exhibits pulsatility, while non-skin pixels would 

not. �us, in order to identify pulsatile regions, the whole image was unequally divided 

by a superpixel approach (which clusters pixels of similar properties) resulting in non-

rectangular ROIs.

Amelard and co-workers [17] developed a spatial probabilistic pulsatility model that 

allowed them to identify regions of strong pulsatility for their specific scenario. Such a 

model-based approach could be adapted to different scenarios. �is would also allow the 

generation of new models for different body parts, views, illumination, wavelengths, etc.

�e Eulerian video magnification approach [18] magnifies the dynamic information 

in video sequences, such as blood pulsations, and makes these more visible in ampli-

fied video sequences. �is process involves spatially low-pass filtering of the images and 

downsampling for computational efficiency, and, generally contains a full Laplacian pyr-

amid of different spatial resolutions. Dynamic information in Eulerian video magnifica-

tion is considered by temporal bandpass filtering of pixel series. Hence, the approach is 

useful for the visualization of dynamic processes.
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Approaches exploiting deep learning have emerged more recently. One example is 

the work of Bousefsaf et al. [19] where the team uses 3D convolutional neural networks 

to estimate the pulse rate. �eir approach is to generate pulse prediction maps where 

frequencies are mapped to pixel positions. �ey developed a network that operates on 

small spatio-temporal video patches for this.

In fact, shortly after camera-based sensing had been used to extract signals from sin-

gle or multiple ROIs, imaging was researched, which involves at least the spatial pool-

ing of pixels to form ROIs and subsequent temporal filtering. �ese approaches use 

ROIs laid out on a grid on the image (sometimes, the ROIs are referred to as cells). An 

image is obtained by extracting a signal for each ROI and mapping a signal characteris-

tic (feature) to the ROIs’ position (see Fig. 1). �is is typically the PPG amplitude (e.g., 

[8, 20]) but can also include the blood pulse phase and other waveform parameters [1, 

15, 21–23]. �e approaches of Verkruysse et al. and Kumar et al. are particularly note-

worthy for this paper: Verkruysse and co-workers [21] defined and generated power 

maps and phase maps at single frequencies, i.e., they analyzed the Fourier spectrum at 

the known heart frequency and mapped the signal power. Kumar et al. [24] combined a 

cell-based approach with tracking to extract a more robust pulse signal. �ey calculated 

spatio-spectral maps for this which are based on the power spectral density. �ey used 

the latter to define a mapping of a goodness metric, which is essentially the power in a 

band close to an initial pulse rate estimate versus the remaining power of the signal. �e 

power spectral density was also exploited by Fallet and co-workers [25] who used the 

power in the band close to the heart rate known to determine suitable ROIs in the face 

for signal retrieval. Other approaches exploit motion in grid cells to estimate breathing 

activity [26, 27].

Furthermore, it is also possible to extract information about movement without calcu-

lating motion vectors: We used difference images to calculate movement maps that, for 

example, can help to identify good ROIs [28], i.e., those less affected by movement.

Cell-based approaches also exist for IRT: exemplarily, breathing was extracted in [29].

As has been described above, the conventional method of signal retrieval is to locate 

and track ROIs and extract signals. An approach that does not rely on tracking but 

requires multiple color channels was presented in [30].

An application besides vital sign monitoring is anti-spoofing in biometrics, where real 

faces need to be discerned from fake faces (masks, photos). Heusch et al. [31] applied 

PPGI for this and used spectral statistics (first- and second-order) derived from the 

pulse-signal for face presentation attack detection.

Fig. 1 Feature video generation. Dynamic information of a video segment is compressed to images. 

Processing the whole video yields new video streams. The same processing is used for each image region on 

a grid (‘cell’)
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Approach

In this work, spatio-temporal and -spectral features are extracted from a relatively 

dense grid of evenly spaced ROIs and mapped to new feature videos. Similar to Bob-

bia et al. [16], we exploit the fact that the signals have a certain temporal characteris-

tic (i.e., pulsatility). However, we do not look at a complete processing chain for vital 

sign retrieval. Instead, we focus on the presence of the pulsatile image regions and the 

usefulness of spatio-temporal and -spectral maps.

According to [22], this usefulness was not always ascertainable in previous works. 

We are facing and objecting this criticism by introducing various new maps.

�is paper deals with the aspects of choosing good regions by exploring whether 

the foreground (pulsatile image segments) are highlighted against a less ordered/

noisy background and if we can determine the noise sources.

As stated above, the precise identification of ROIs is a non-trivial task. Moreover, it 

is interesting to see whether only skin pixels can contribute to useful signals. �at is 

why we aim at the extraction of dynamic information, such as pulse or breathing rate, 

from video sequences. We will present and discuss maps of two subjects regarding 

signals in the heart frequency band to give examples.

Let us assume, for this, that the content of the video is unknown. Moreover, we 

want to extract the signals from sources that can have arbitrary shapes. In addition, 

we want to explore which image regions contain valuable information. Hence, we 

can rely neither on detectors for the skin, the pose nor body parts. Furthermore, we 

concentrate on monochrome data, which means that there is no color. Instead, only 

(light/radiation) intensity values are available. �is is a useful constraint to apply to 

IRT generally or to PPGI scenarios where color information is not available, such as 

for example, at night using near-infrared (NIR) wavelengths. However, the approach 

can also be applied to visible light (VIS) which we will also cover.

We use tools for one-dimensional signal analysis to identify pulsatile signals. We 

rely on well-established methods based on Fourier analysis and signal statistics inter 

alia, particularly spectral descriptors, which are commonly used in speech and audio 

processing (e.g., [32, 33]). Our mapping approach is similar to the one used by Ver-

kruysse et al. [21] to generate power maps. However, instead of generating maps for 

a particular single frequency (we do not know the frequency a priori), we introduce 

maps where each ROI is handled independently for a certain frequency range.

�e basic idea is that each ROI can be treated as a one-dimensional signal (Fig. 1). 

�e overview of the method for generating feature maps and the postprocess-

ing steps for evaluation proposed are depicted in Fig.  2 and are presented in detail 

in Section  "Methods". �e ROIs are represented here by single pixels. Each ROI is 

constructed by spatially pooling pixels (blurring image patches). After subsampling, 

only a subset of the pixels pooled are further processed. Prior to calculating the fea-

tures, the mean is subtracted from the pixel time series and these are filtered. Hence, 

dynamic components outside of a pre-defined frequency band are attenuated. Fea-

ture maps are generated by mapping the calculated features of the individual ROIs 

to the corresponding image positions. For the evaluation of the maps, we computed 

the image contrast of bigger, manually selected ROIs, which either present the back-

ground or a pulsatile region. Furthermore, the similarity between one of these ROIs 
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Fig. 2 Video processing chain. Video segments pass through the three stages: ROI generation, temporal 

filtering and feature generation to create new feature maps. Firstly, pixels are spatially pooled. Images are 

then subsampled to a resolution which can be processed. Afterwards, pixel series which correspond to ROIs 

are processed. Consequently, the subsampled video segments are buffered in a first in, first out (FIFO) stack. 

Features are generated from short-time Fourier transforms (STFT), power spectra (PS) or signal statistics. 

An optional preprocessing adds artificial frames if there were losses during recording. We introduce a 

postprocessing for evaluating the maps: ‘Similarity maps’ are created by using histogram intersections and 

the root mean square (RMS) contrast is calculated for a manual selection of ROIs. The parametrization used in 

this work is given in Table 3 and the method is provided in Section "Methods" in detail
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(background) and small image patches is compared by using histogram intersections 

resulting in ‘similarity maps’.

�e main contributions of this work are:

• �e introduction of several new spatio-temporal and -spectral maps for the two 

sensing modalities PPGI and IRT,

• �e identification of maps suitable for signal retrieval,

• Examples of the detection of noise sources,

• An algorithmic approach for discerning pulsatile and non-pulsatile image regions 

based on spatial histograms,

• and, consequently, recommendations for improving sensing setups.

Outline

�e remainder of this work is structured as follows: a selection of maps is displayed 

and described in Section  "Results" and the results of the similarity measurements are 

presented. For this, short video sequences of an adult and of a baby with minimal body 

movements were processed and analyzed in the anticipated value range for the heart 

rate. We report our findings regarding movements, image detail and noise sources for 

three different wavelength ranges using PPGI and IRT. In Section  "Discussion", we 

address the limitations of the RMS contrast and discuss the feature map approach pre-

sented regarding movements and different wavelengths. In addition, we encourage the 

use of the ‘similarity maps’ for segmentation. �is section concludes with the implica-

tions for camera-based measurements. �e key findings and future research directions 

are provided in Section "Conclusions and outlook". In Section "Methods", we describe 

the generation of the feature maps in detail and how these are evaluated using the RMS 

contrast and histogram intersections. �e videos used for the evaluation and the meas-

urement setup are presented. �e mathematical descriptions of the features are provided 

in the appendix. �ese are supplemented by a detailed overview of the corresponding 

maps. Furthermore, we report the results for the sequences of the two subjects, which 

contain more intense body movement.

Results

In this section, we present the results of our algorithmic approach for generating feature 

maps. �e video sequences used consist of adult and baby measurements. One sequence 

without (w/o) and one with (w/) movement is analyzed for each subject (Figs. 11 and 

12), as described in Section "Methods". Each measurement has been recorded synchro-

nously in three wavelength ranges, i.e., in the VIS and NIR for PPGI and in the long-wave 

infrared (LWIR) for IRT. Ambient and measurement light (white and NIR light-emitting 

diodes) have been used to illuminate the subjects. �e length of each sequence analyzed 

is 10 s.

Firstly, we present a selection of feature and similarity maps for the videos w/o move-

ment. Subsequently, we look briefly at the results of the root mean square (RMS) con-

trast. We consider the same two ROIs for each feature map for this purpose: a region 

in the image background ( ROIBG ) and a region that was expected to show pulsatility 
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( ROIPULSE ). ROIBG is also used to compute the similarity maps. �ose result from his-

togram intersections between ROIBG and local image patches (see Section "Methods").

Maps

We generated 20 maps per video and wavelength (19 feature maps, one reference) and 

corresponding similarity maps for each sequence. However, we present only a selection 

in this part of the work, i.e., the temporal variance, band mean power, and spectral flat-

ness. We use the mean intensity maps as visual references.

Moreover, we dedicate this part to the maps of the measurements w/o movement 

while the maps corresponding to the video segments w/ movement are given in the 

appendix for completeness. �us, the complete overview of the feature and similarity 

maps is given in the appendix (Section C) ranging from Figs. 13, 14, 15, 16, 17, 18, 19 

and 20 for the adult measurement and from Figs. 21, 22, 23, 24, 25, 26, 27 and 28 for the 

baby measurement.

Adult lab measurement w/o movement

�e maps for this video segment are given in Fig.  3 and in the appendix (Section C.1 

Figs. 13 and  14).

�e first thing to notice is that the IRT mean intensity image is the brightest, followed 

by the VIS and NIR PPGI camera. �e simple reason is that the IRT camera uses the 

Fig. 3 Selection of feature maps of the adult measurement w/o movement: mean intensity is used as a visual 

reference. All dynamic maps show a noisy background pattern. The maps temporal variance and band mean 

power look very similar. Both allow the identification of static background elements, hinting at non-constant 

illumination conditions. Regarding spectral flatness, the static background is not visible which could be 

advantageous for image segmentation
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complete dynamic range, while the other cameras were not even close to being satu-

rated. �is is also true for the power (e.g., band mean power) in the frequency band of 

interest.

What can also be noticed is that PPGI and IRT enhance different image regions: when 

we look at the subject using PPG, the silhouette is visually enhanced, while for IRT, con-

tours are emphasized. �e head contour is highlighted the most, but also the torso con-

tour. By contrast, the mean intensity image or the raw IRT image would allow an easy 

segmentation of the body silhouette.

Most PPGI maps allow easy identification of the head and facial components (the head 

is harder to discern only in the spectral flux ratios). It is easy to discriminate eyes, eye-

brows, nose and mouth. It is even possible to identify the dark rings under the eyes. 

Facial components (especially the mouth) are also visible in IRT. Eyes and nose can be 

discerned by their contours and the regions below the eyes also show some dynamic 

behavior.

Small head movement has occurred, as can be spotted in PPGI, for example, at the 

reflective markers which were spatially smeared as a result.

As one would expect, we observed no uniform intensity distribution either on the sub-

ject or in the background (e.g., band (mean) power). Moreover, the frequency max map 

(Fig.  14) shows more than one value on the subject pixels, but demonstrates that the 

subject’s heart frequency was in an expected range for a sitting subject. Furthermore, a 

different frequency can be detected for the eyes. �is is due to not only blinking, but also 

eye-movement which contributes to this signal. In addition, the subject suffers from an 

innate condition of nystagmus, where the eyes move rapidly horizontally, which could 

also have influenced the signal.

One notable observation is that some dynamic PPGI maps (e.g., temporal variance) 

allow the identification of objects in the background that should be static and, therefore, 

not visible in the maps. �is manifestation could be due to the usage of inconsistent illu-

mination probably caused by light sources which exhibit flicker. Furthermore, the left 

and right face halves show a different pattern in both PPGI cameras (e.g., spectral flat-

ness, spectral entropy, phasor phase in Figs. 13 and 14, respectively).

Both spectral flatness and spectral entropy highlight the interesting regions by linking 

low values to pulsatile regions.

We can testify for PPGI that the pulsatile image segments contrast well against a noisy 

background: the background is characterized by a noisy pattern for all dynamic maps. 

It is also possible to see a horizontal line pattern (e.g., spectral flux ratios in Fig. 4) for 

Fig. 4 Enhancing small movement in the adult measurement w/o movement: a swallowing movement 

was made visible at the neck by the spectral flux ratios (ratio flux pos). The map for LWIR is distorted and, thus, 

it cannot be said whether the highlighting worked. However, the corresponding similarity map supports a 

highlighting (Fig. 16)
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the NIR camera which we attribute to the low lighting conditions and low saturation of 

the sensor. A similar pattern can also be seen for the IRT camera, though the origin is 

unknown.

Enhanced dynamic movement Even though the movement was aimed to be minimal, 

swallowing movement occurred during this particular time segment. �e movement is 

visually enhanced by PPGI for the spectral fluxes and more so for the ratios, but not vis-

ible in IRT (Fig. 4). However, we think it is masked in IRT by background noise.

Similarity maps

�e maps are listed in Figs. 5,  15 and 16 in the appendix (Section C.1).

In general, the resulting maps of the histogram intersection approach (e.g., Fig.  5) 

expectedly show low similarity for subject pixels and higher values for the background. 

Note that the similarity maps depend on the selection of the ROI that is used for the his-

togram model. Hence, if a selected ROI does not model the background sufficiently, the 

similarity maps will show this difference. In addition, choosing an arbitrary region would 

result in completely different maps.

Regarding PPGI, the mean intensity map image regions are subjectively not as discern-

ible as in IRT. As one can see, this approach is not suitable when the background is not 

noisy.

Fig. 5 Similarity maps of the selection of feature maps of the adult measurement w/o movement: the 

mean intensity maps are not very uniform. The IRT map highlights the subjects silhouette, while the head is 

recognizable in the PPGI maps. The temporal variance and band mean power maps are less clear for all bands 

than the corresponding spectral flatness maps. The VIS maps especially suffer from an uneven distribution (left 

and right image halves have different histograms)
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�e dynamic maps of the temporal variance and band power allow one to discern both 

background and subject. However, in these maps, the background shows more variance 

compared to spectral flatness. Here, we can see clear advantages for similarity maps 

based on ‘non-decibel’ feature maps, such as the spectral flatness. �e head is visible in 

IRT. However, the background is distorted, and discerning structures is harder than in 

PPGI.

Baby NICU measurement w/o movement

�e maps for this video segment are given in Figs.  6, 21 and 22 in the appendix 

(Section C.1).

Many observations for the baby measurements are analogous to the adult measure-

ment (e.g., signal power for the different cameras, background noise and faint visibility 

of the original background). One distinguishing fact about the background noise is the 

absence of the horizontal lines for the NIR camera, while the pattern in the IRT camera 

remains. �e PPGI cameras again highlight more body parts (i.e., cover more body area), 

while the IRT maps only highlight the torso and belly, which are divided by a wire. A 

small round region below the torso can be observed which is an attached electrode.

We can identify multiple sources of pulsation by looking at the maps derived from 

the power (e.g., band power) in the heart band: �e main source is the baby lying in 

Fig. 6 Selection of feature maps of the baby measurement w/o movement: mean intensity is used as a visual 

reference. All dynamic maps show a noisy background pattern. The VIS maps especially show additional 

image content, all of which is caused by cast shadows and reflections of the researcher behind the cameras 

of the measurement setup. A corresponding reflection in LWIR can be identified in the right bottom image 

corner of the dynamic maps. A reflection of the baby, at least in the PPGI maps, carries pulsatile signals and, 

thus, is visible above the abdomen
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the bed. Additionally, regarding the PPGI cameras, there are reflections of the baby 

on the plastic encasing the bed showing at least the torso. �ese reflections were also 

present in the IRT in the raw video.

When comparing the PPGI maps, we can also see that there is less power in the NIR 

maps compared to VIS, and that the baby is enhanced and only a noisy background is 

visible. By contrast, other sources of pulsation affect the VIS maps: �ere was move-

ment behind the measurement setup during the recording. �is becomes evident due 

to reflections at the front of the bed casing (right and left bottom) and next to the bed 

cover (right top), resulting in bigger and more connected structures compared to the 

background. �ese structures also have a similar high power in the same order as the 

pulsations of the baby (e.g., band power, temporal variance). Indeed, even parts of the 

bedcover are affected, probably due to the researcher’s shadow being cast.

�e presence of the researcher can also be confirmed by the thermal camera show-

ing a spot at the right bottom corner of the maps originating from the reflections of 

legs and shoes in the encasing. A second spot belonging to the researcher can also be 

seen above the belly of the baby (e.g., band power). We again ascribe the disturbance 

in PPGI to the illumination condition: while only one NIR source was used, not only 

the dedicated measurement light, but ambient light contributed to VIS. We can con-

clude that although the sources of disturbance are not in the field of view (FOV) of 

the cameras, undesirable image and map artifacts can occur.

Regarding fine details, the PPGI maps preserve, for example, the eyes. Bigger wires of 

skin-attached sensors are easy to spot and smaller wires generate a vessel-like pattern 

on the skin (due to movement). �e spectral fluxes and ratios (Fig. 22) show changes for 

torso, belly and wires but the head is not visible, thus indicating only small changes. �e 

smallest discernible object in the IRT maps is the electrode.

Similarity maps

�e observations made during the adult measurements are also true for the baby meas-

urements (Figs. 7, 23 and 24 in Section C.1). However, due to the different settings, it 

was harder to define a big background region ROIBG (see Fig. 6). In addition to many 

reflective materials in the background, there was also the shadow cast by the researcher. 

Hence, ROIs were chosen retrospectively using the maps. �e general results and espe-

cially those for VIS are not good due to the distortions. However, the position of the 

baby is recognizable at least for spectral flatness using NIR (see Fig. 7).

RMS contrast

�e results of the RMS contrast calculation for the adult and the baby measurements are 

given in Tables 1 and 2, respectively. We have highlighted the cases, where ROIPULSE has 

smaller values than ROIBG because we saw higher values for the majority of maps. �e 

positions of the ROIs are highlighted in Section "Methods" (Figs. 11 and 12).

A graphical representation of the RMS results is presented exemplarily for the adult 

and the baby measurements using the NIR wavelength (Figs. 8 and 9): the RMS contrast 

is generally higher in pulsatile regions compared to non-pulsatile ones. �is behavior is 

inverted for the max frequency maps.
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In the case of movement in the adult and baby measurement, some maps show lower 

values in ROIpulse compared to ROIBG for VIS (e.g., band power according to Tables 1 

and 2).

Discussion

We looked at a selection of feature maps of two example scenarios in the previous sec-

tion. Here, we will firstly discuss the key findings and the limitations of the approach 

presented.

Subsequently, we will suggest some recommendations for camera-based measure-

ments on the basis of the measurements conducted and the results presented.

Approach

�e majority of feature maps allow us to visually discern the main source of pulsation 

(the subject silhouette (PPGI) or contour (IRT)) from the non-pulsatile background 

during small movements. �e background is structured by a noisy pattern for all 

dynamic maps. We demonstrated that the histogram intersection approach helps us 

to explore the differences between spatial regions.

A smaller RMS contrast (standard deviation) compared to pulsatile regions could 

be observed for the majority of maps. In the case of the max frequency maps, the 

Fig. 7 Similarity maps of the selection of feature maps of the baby measurement w/o movement: the 

mean intensity maps are not very uniform. It was harder here to select background regions for the histogram 

intersection approach. The VIS maps especially suffer from an inappropriate background model. Only 

spectral flatness highlights the location of the baby for this selection. The spectral flatness map in LWIR is also 

not visually clean. Nevertheless, low values for the similarity with the background were calculated for the 

pulsatile region. Hence, the pulsatile region is distinguishable
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contrast is lower in the pulsatile regions. �is observation supports the assumption 

that similar conditions exist within the pulsatile region.

We could identify some maps with lower contrast for the pulsatile region in VIS for 

the videos w/ movement. However, no further conclusions should be drawn as this 

is not consistent and we had only four samples (adult and baby measurement w/ and 

w/o movement). A direct comparison between the video segments w/o and w/ move-

ment should particularly not be made since the value ranges are not identical in the 

maps (i.e., min and max pixel values are frame-dependent). However, the RMS con-

trast allowed us to detect differences between the two regions.

We could show that ‘non-decibel’ feature maps enable us to distinguish between 

pulsatile and background regions during small movements. Furthermore, we could 

observe, that the background is more similar and less structured than in ‘decibel’ 

maps. By contrast, during more intense movement, the ‘decibel’ maps allowed easier 

visual recognition of the subject’s position (see the appendix). However, this is to be 

expected when relatively long time segments (here, 10 s) are considered. In fact, more 

movement results in more changes and signal power. At the same time, the spectral 

distribution of the signal is different. �erefore, the ‘non-decibel’ maps (e.g., spectral 

flatness) are affected. In the future, this could be used to detect regions with move-

ment artifacts.

What can be observed is that moving signal sources are spatially smeared, and, thus, 

affect relatively large areas. As an illustration, the feature maps of the adult meas-

urement w/ movement (Fig. 17) visualize how a long time segment affects the maps: 

while hand and arm movements are not visible in the mean intensity map, all other 
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maps show an effect. Movements that only contribute to some frames of a sequence 

are barely (or not) visible due to the mean filtering. Longer periods of movement, such 

as the ones observed at the baby (Fig. 12), blur the image regions so that fine details 

become unrecognizable. Adjusting the time window and the spatial parameters could 

mitigate the effect. However, these parameters need to be tuned per application.

Concerning the application of different wavelengths used for the modalities, we can 

see that the NIR in the clinical scenario, for example, is less affected by ambient light 

than VIS. Hence, NIR maps highlight the subject and not background sources. �e 

IRT was not affected by light sources, at least in these measurements, but suffers from 

a noise pattern different from the one observed in the NIR. We recognized mainly 

contours in IRT, whereas in PPGI, silhouettes were visible, i.e., both modalities high-

light different regions in the heart frequency band. Nevertheless, it is advantageous 

that the IRT maps were not disturbed by local illumination changes, which result 

from body movements. Consequently, the maps w/ movement highlight more subject 

pixels compared to the maps w/o movement (e.g., Figs. 21 and 25). Furthermore, the 

close surrounding of the subject is, at least visually, less influenced than what can be 

observed in PPGI.

We can conclude that the feature maps are useful to visualize certain aspects of the 

signal in the corresponding pixel region (similar to the Eulerian video magnification). 

Spotting regions of different frequencies (e.g., the eyes), is especially easy for a human 

using the maps. Furthermore, movement patterns, such as swallowing, can be made 

more perceivable (Fig. 4).
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Fig. 9 The RMS contrast of the baby measurements using NIR. The contrast for ROIPULSE is typically higher 

compared to ROIBG . As expected, the results are inverted for max frequency. The location of the ROIs is given 

in Fig. 12
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�e similarity maps derived from feature maps also have useful functions. �ey 

allowed us to identify noise sources and suboptimal measurement conditions visually. 

�e background needed to be visible in the scene for this. �e maps displayed once 

more confirm the existence of a difference between pulsatile and non-pulsatile regions 

by highlighting the subjects. Moreover, the value range is between 0 and 1 for all maps. 

�ese maps could be exploited for segmentation using the same algorithm (regardless of 

the camera modality), in the future.

Consequently, we could show that there are advantages in not restricting the image to 

single ROIs at an early processing stage by exploiting the non-pulsatile background.

Recommendations for camera-based measurements

�e value of the maps is also determined by how they can improve camera-based sens-

ing. We suggest the following recommendations based on the observations made in this 

work, especially for the acquisition of videos.

Avoid reflective materials As could be seen in the different maps, even reflections 

carry the pulsatile signal. On the positive side, this could be exploited to conduct indi-

rect measurements or assess regions that are not directly visible (e.g., the body site not 

directed to the camera). On the negative side, reflective materials also reflect radiation 

from noise sources which may distort the signal in a particular ROI. �us, when choos-

ing a reference ROI to mitigate the effects of noise sources on a measurement ROI (e.g., 

[13]), calculating one of the maps described could help to determine good regions. If 

none are found, the setup can be changed (e.g., by adjusting the FOV).

Avoid shadow casting We tried to minimize the shadow cast in both experiments by 

using diffused light sources as the measurement light. However, the directionality of the 

sources was still visible and introduced unwanted effects. Hence, the common practice 

to record only the subject or disregard the background should be reconsidered to study 

the effects.

An evenly distributed and diffuse illumination is to be preferred to lessen the shadows. 

All light sources in the measurement environment should be taken into account, includ-

ing ceiling lights, network activity lights, and computer or medical monitors.

Choosing a signal quality index Ratios of power are often used to assess the signal 

quality of a dynamic signal. However, we could see that it is harder to discern the pul-

satile and non-pulsatile regions by using ‘decibel’ power maps exclusively. Indeed, other 

maps can be advantageous in these situations, for example, spectral flatness and spectral 

entropy.

Camera parametrization �e extraction of dynamic information requires images free 

from motion blur. �is means that long shutter times should be avoided whenever pos-

sible. Furthermore, automatic camera adjustments should be turned off. �e sensor 

should be operated close to saturation to achieve good raw image material.

Reference object Depending on the application, it would be beneficial if a reference 

object was visible all the time. Such an object (e.g., grey card, color checkerboard, black 

body radiator) helps to acquire measurements in a consistent quality.
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Conclusions and outlook

We evaluated the generation of feature videos by transforming video segments into 

frames of new videos. �e application intended is the sensing of vital signs using camera-

based modalities such as PPGI and IRT. �e feature videos can be used to assess which 

image regions of a video contain pulsatility. �is is interesting, for example, because 

often only skin pixels are exploited for signal retrieval and non-skin pixels are discarded. 

However, we could show that useful signals are not only visible on the subject’s silhou-

ette, but also in reflections or on nearby objects as well as on the contour of the subject.

As expected, a noisy image pattern, which defines non-pulsatile image regions, mani-

fested in the background for both example measurements. �e majority of maps showed 

a difference in the local RMS contrast in noisy vs. pulsatile regions. We successfully 

exploited the noisiness and could show that histogram intersection is a tool that could 

be used for further image segmentation. However, a suitable reference region had to be 

determined for building a model. Here, we had to manually select a region. �is should 

be automated, and we suggest to either provide one or more suitable regions in the FOV 

of the camera during measurement (e.g., by using a grey card) or to focus on the devel-

opment of a noise model of the background.

The maps show fine image details during small subject movements and more 

intense movements distort this information. However, we only generated maps from 

relatively long time segments (10 s) during which a lot of movement can occur. For 

shorter segments, the effect is expected to be weaker. Moreover, we suspect that the 

image acquisition parameters have a great impact on the maps. We think that each 

image should be free from motion blur, especially for the evaluation of dynamic phe-

nomena, which means that the image integration time should be as short as the illu-

mination conditions allow.

Regarding the application of different wavelengths to assess the activity in the 

heart frequency range, we could show that despite the lower sensitivity of silicon in 

the NIR range, these maps can be less disturbed than visual ones because fewer NIR 

sources add to ambient light for the scenarios given.

The PPGI generally highlights the silhouette, while contours are emphasized for 

IRT. We particularly found high power at the head contour (adult) and torso (baby). 

This is in accordance with previous findings, at least for adults, which suggest that 

head movement can be a result of ballistocardiographic blood pulsations [11, 34]. 

However, these high-contrast image regions at the head contour might not be suit-

able to extract the pulse rate [21] but to locate the head.

We showed the adverse effects of shadow being cast and reflective materials which 

should be considered when deploying camera-based sensing technologies or need to 

be considered in algorithmic development. Algorithms that rely on reference regions 

for artifact removal could especially benefit from choosing regions accordingly.

In this work, we could not determine a ‘best’ map. However, some maps have 

properties that are desirable, such as a well-defined value range. It should be noted 

that the temporal filtering and frequency transforms are computationally expensive 

and account for the biggest share in computational time (excluding the very expen-

sive spatial pooling operation) and scale with the number of signals, i.e., with the 

spatial resolution of the maps. Furthermore, there is an overhead for calculating the 
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PS versus the FFT-spectrum. The actual feature computation is performed compara-

tively fast.

While most maps presented compress the information of a single time segment, 

the spectral flux ratios combine two subsequent segments. Hence, more dynamic 

information is compressed. As a secondary result, the flux ratios proved to be valu-

able tools for the visual detection of movement activity.

Future work could direct research on which maps could be exploited best and if 

certain regions correspond to those that, for example, deep learning approaches 

would use for vital signs retrieval.

However, calculation of the maps is still very time consuming with the current pro-

cessing capabilities and this restricts the spatial output resolution if real-time pro-

cessing is required. We could make new observations and gained valuable insights 

for the deployment of camera-based sensing in realistic scenarios by computing fea-

ture maps at a high resolution. The approach described just relies on the tempo-

ral dynamic characteristic of the signal and, thus, should be exploitable for various 

imaging applications.

Methods

In this section, the processing chain is described in more detail. Furthermore, the vis-

ualization of feature maps and the postprocessing steps for evaluation are explained. 

Finally, the videos used for evaluation are presented.

Processing chain

A sketch of the generation of feature videos is provided in Fig. 1: each ROI of a video 

segment of fixed length contains a time series. Features of the time series or from its 

spectral representation (spectrum) can be mapped to the corresponding ROI position 

and, thereby, create a new image. Subsequent processing of video segments results in 

a feature video.

�e processing chain can be decomposed into three main stages mandatory for gener-

ating feature videos and two other stages dealing with pre- and postprocessing (Fig. 2):

• Firstly, pixels are spatially pooled and the resulting images are subsampled.

• Each pixel then represents a ROI for which a temporal filtered signal is created.

• Depending on the feature, the signal is statistically evaluated (temporal feature) or 

transformed into the frequency domain beforehand.

An optional preprocessing replaces dropped frames by a simple linear interpolation 

using neighboring frames. �e postprocessing stage describes how the maps are eval-

uated in this work.

�e parametrization used for each stage is given in Table 3.

�e processing chain was implemented in Matlab 2017b.

ROI generation

Each image is spatially filtered by a Gaussian filter. �us, the resulting image is a blurred 

version of the input image and the resulting pixels represent spatially weighted averages 
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Table 3 Processing chain parameters used for the chain given in Fig. 2

Preprocessing

Method linear interpolation

Nsamples all

ROI generation

PPGI IRT

Spatial pooling

Filter

Type Gaussian

σgauss 10 5

Nkernel 41 33

Decimation

dx 5 1

dy 5 1

bcenter True

Temporal �ltering

Tseg 10

Nseg 250

Filter

Type IIR

Design Butterworth

Norder,design 6

bzero-phase True

f 1
2 ,low,baby

0.80 Hz

f 1
2 ,high,adult

5 Hz

f 1
2 ,low,baby

1.30 Hz

f 1
2 ,high,adult

5 Hz

Feature generation

Window

Type Hann

Nwin 250

Noverlap 249

NFFT 1024

bzero-pad True

fFFT low, adult 0.85 Hz ( ≈50bpm)

fFFT high, adult 3.98 Hz ( ≈240bpm)

Nband, adult 129

fFFT low, baby 1.51 Hz ( ≈90bpm)

fFFT high, baby 3.66 Hz ( ≈220bpm)

Nband, baby 89

Postprocessing

Histogram intersection

Nscale 256

Nbins 256

Nkernel,hist 31

Padding Symmetric
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of their respective surroundings. A subsequent subsampling (decimation) reduces the 

image dimensions. Consequently, we still retain a regular grid (here, Cartesian) which 

can be evaluated. �e Gaussian weighting ensures that the central pixel contributes 

more highly to the output pixel value and in contrast to a uniform mean weighting 

scheme, the resulting images are not blocky. Subsampling can be applied to reduce the 

computational load in the subsequent stages at the expense of a loss in spatial resolution.

Choosing the right parameters for spatial filtering is application-dependent. How-

ever, a certain number of pixels generally need to be combined to form a time series 

and stronger blurring reduces the effects of small movements at the expense of spatial 

resolution. Similarly, a lower subsampling will result in higher resolution but, simul-

taneously, more signals need to be processed.

Temporal �ltering

In the second stage, each pixel time series is evaluated by a sliding window approach. 

�e respective temporal mean value is subtracted in each time window (segment). 

Afterwards, a temporal bandpass filter is applied to limit the signal to a pre-defined 

frequency band of interest. Here, this is the range of anticipated heart frequencies. In 

this paper, we use forward–backward filtering with an infinite impulse response (IIR) 

filter. �e signals are then windowed by a windowing function (Hann window).

Because a high number of signals need to be filtered, the filter length should be kept 

short. �us, IIR filters are a suitable choice.

Feature generation

A frame of a feature video is created by calculating a feature on each pixel series and 

simply mapping it on the ROI position on the image grid. In this work, the temporal 

signal variance within a time segment sseg[n] is the only dynamic temporal feature com-

puted. All other features are spectral features calculated from the frequency domain 

using one or two time segments. �e windowed segments are zero-padded to a length 

equal to a natural power of two ( NFFT = 1024 ). To clarify, the previous processing steps 

are used to prepare for calculating the single-sided discrete Fourier transform (DFT) and 

the power spectrum (PS) ( ≡ 2 · |DFT |2 scaled by the inverse of the squared sum of the 

window values [35]) of the time series or its segments sseg[n] . To be more precise, we 

are calculating the short-time Fourier transforms (STFTs) of the time series for a whole 

video, where each time segment has a corresponding DFT and PS segment. �e segment 

is padded accordingly to apply the fast Fourier transform (FFT) algorithm, instead of the 

slower DFT.

Regarding the spectral features, a narrow band is defined by a lower and upper fre-

quency bin blow and bhigh corresponding to the frequency range selected flow,subject and 

fhigh,subject . �us, the number Nband of discrete spectral bins ( [blow, bhigh] ) depends on 

the frequency range (Table 3 and Fig. 1).

Feature description

For the sake of readability, the feature definitions can be found at the end of the paper in 

the appendix (Section B).
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We generated a total of 20 different maps: nineteen feature maps and one map as a 

visual reference. �e mean intensity of the video sequence that was subtracted during 

the temporal filtering (Fig. 2) was used as a visual reference.

�e general idea is that when a pulsatile signal is present, the features are different 

from the case when such a signal is absent.

In the case of the spectral features, each spectrum can be viewed as a (non-normal-

ized) distribution. �e spectral features are tools to describe the shape, center, spread, 

and other characteristics of the distributions and, therefore, should allow the differentia-

tion of pulsatile from noise-like signals. Furthermore, if there is temporal variance in the 

filtered time series, it can indicate the presence of pulsatility.

In particular, spatial regions corresponding to the same signal source should be similar 

(values of the features are in similar ranges). We will explore this further below visually 

and by a measure of similarity.

Visualization

Not all maps are visually appealing (e.g., these are too dark to allow the discernment of 

details) without an appropriate scaling. For these maps, a logarithmic conversion was 

applied beforehand as given below:

where ε represents a small number to handle the case where a map pixel is zero, I is an 

image/map and U ∈ {10, 20} is a factor depending on the map for the correct conversion 

to decibel.

Afterwards, a separate windowing has been applied for each image to display the 

various maps. In each case, this was a linear gray-scale transform that maps the pixel 

values to limits selected manually. Values outside the range were clipped to the low-

est and highest values of the windowing range to map all pixels. �e limits were set 

manually to allow a visual comparison.

Postprocessing

Subsequent segmentation of the maps is necessary to identify sources and corre-

sponding spatial image locations. However, this would be a topic on its own. For now, 

we just wanted to find out whether the background distinguishes from pulsatile image 

regions.

Similarity measurement

We compared histogram intersections similar to [36] to measure the similarity. We 

defined a normalized model histogram HM and compared it to the normalized histo-

gram of an image patch HP . Hence, the intersection η(HM ,HP) is:

(1)V (I) = U · log10(|I | + ε)[dB],

(2)η(HM ,HP) =

Nbins∑

j=1

min(HM,jHP,j).
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Values of η range between [0, 1]. To demonstrate the calculation of η , Fig. 10 is provided.

We have constructed ‘similarity maps’ by calculating η for each image patch of a map. 

Consequently, the maps were discretized to Nscale = Nbins = 256 levels. We tried to 

pick a reasonably big and, thus, representative background region to build the model 

histograms for each camera. Here, this region was the same for all maps of a camera. A 

histogram was then computed for each pixel from an image patch, a 31 × 31 pix block 

( Nkernel,hist = 31 ) with the pixel in the center. Symmetric padding was used to handle 

boundary pixels. We implemented a naive and slow approach for the calculation of the 

histogram intersections. However, a much faster implementation could be possible by 

calculating so-called ‘integral histograms’ [37].

Evaluation

As stated above, the value ranges of the individual maps differ; for example, some are 

bound while others are not. �us, the values were scaled to Nscale = 256 levels to make 

the maps comparable. However, the scaling was normalized to the range [0, 1] using all 

the pixels of a map.

We chose to compare manually selected ROIs by calculating the spatial standard devi-

ation (SD) to find out whether there is not only a visual difference between pulsatile and 

non-pulsatile image regions.

RMS contrast �e SD is also known as the RMS contrast CRMS [38]:

where µpix is the mean of all ( Npix ) pixels in the ROI and A is the vector containing all 

pixels of said ROI.

(3)CRMS =

√

√

√

√

1

Npix − 1

Npix
∑

i=1

(

Ai − µpix

)2
,
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Fig. 10 Histogram intersection as a measure of similarity. We created two simplified histograms ( HM and HP ) 

with 16 ( Nbins = 16 ) different pixel values to visualize (2) and the calculation of η
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�e same representative ROIs have been processed for each map: One very large 

region represents the background pixels ( ROIBG ), the other region has been chosen to 

carry the pulsatility of a signal ( ROIPULSE ). �e ROIBG was also used to calculate HM for 

all maps.

We calculated the RMS contrast for images of the video sequences described below. 

Two time segments were selected per video: One without (w/o) and one with (w/) 

movement.

Fig. 11 Adult face video w/o (top) and w/ movement (bottom): mean intensity mapping of 10-s segments. 

The round optical markers are doubled due to movement. Furthermore, motion blur reduces the detail in 

the facial region. The movement of the arm is not visible due to the temporal low-pass effect (bottom). The 

ROIs marked for evaluation were manually chosen and correspond to the background ( ROIBG ; blue) and to a 

region that was expected to show pulsatility ( ROIPULSE ; red)

Fig. 12 Video of a baby in a thermal bed w/o (top) and w/ movement (bottom): mean intensity mapping of 

10-s segments. In the segment w/ movement, motion blur reduces all details in the face. The ROIs marked 

for evaluation were manually chosen and correspond to the background ( ROIBG ; blue) and to a region that 

was expected to show pulsatility ( ROIPULSE ; red). The regions selected are different for the three cameras to 

account for the different fields of view and disturbances detected in the video streams (i.e., shadows cast, 

reflections)
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Video sequences

We used videos of two measurements serving as illustrative examples for the evaluation: 

1) An adult in a controlled lab and 2) a baby in a clinical scenario. �e cameras used 

for the measurements and the resulting feature map resolutions are provided in Table 4, 

while the measurements are described below.

An overview of the camera setup is given in [39]. Due to the setup, the cameras have a 

different FOV and parallax is present between the cameras.

Adult In this scenario, an adult subject with an unclothed upper body had been sitting 

on a chair and was asked to sit still to conduct a video recording (Fig. 11, top). As part of 

the measurement, the subject took a small spoon of chili sauce (Fig. 11, bottom). Conse-

quently, movement in this scenario is expected to originate from breathing movements, 

eye movements, swallowing and the changing of facial expressions. Moreover, the move-

ment sequence also contains hand to face movement when consuming the sauce.

Such a measurement is comparable to facial measurements of the pulse rate using 

webcams. However, more skin pixels are present due to the unclothed torso. Further-

more, spherical optical markers, which are highly reflective in the NIR, were attached to 

the head and upper torso. �e markers were only used here as visual cues.

Baby Whereas the first scenario was very controlled, the recordings of a baby in the 

clinic (Fig.  12, top) were more affected by movement (Fig.  12, bottom): the baby was 

moving randomly and, thus, changed the illumination conditions at various image 

regions. Furthermore, the illumination was influenced by people not directly visible in 

the scene but who cast shadows and were also visible in mirror-like reflections of the 

subject’s bed. To be more precise, people were moving behind the measurement setup.

Abbreviations

DFT: Discrete Fourier transform; FIFO: First in, first out; FFT: Fast Fourier transform; FOV: Field of view; HD: High defini-
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Appendix

Appendix B: Features

�is part of the paper lists the definitions of the features used for the generation of maps 

as described in Section "Methods".

Features are generated for each segment of a discrete time series sseg,r[n] of a ROI (r), 

where n indexes the time. In the following, we omit the index r for simplicity. However, 

spectral features are generated from padded signal segments of the length NFFT while 

the temporal feature uses Nseg values (Table 3).

B.1 Temporal features

We use the mean intensity image extracted in the temporal processing stage as a visual 

reference (but not as a feature) (Fig. 2). �e mean intensity and temporal (sample) vari-

ance are defined for a signal segment as given below:

Mean intensity

Temporal (sample) variance

B.2 Spectral features

�e calculation of the spectral features uses parts of the one-sided spectra of the DFT 

and PS. Specifically, a narrow band is defined by a lower and upper frequency bin blow 

and bhigh corresponding to the frequency range selected flow,subject and fhigh,subject.

We use the PS and calculate the following features using the values at the spec-

tral bins bk with values Sk and corresponding frequencies fk . �e band has 

Nband = (bhigh − blow + 1) spectral bins.

Band power

Band mean power

(4)µintensity,mean =
1

Nseg

Nseg−1∑

n=0

s[n].

(5)µvariance,sample =
1

Nseg − 1

Nseg−1
∑

n=0

(

s[n] − µintensity,mean

)2
.

(6)µband =

bhigh∑

k=blow

Sk .
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Spectral centroid

Spectral spread

Spectral skewness

Spectral kurtosis

Spectral crest

Spectral flatness

Ratio of spectral max and band—band max/band power

Spectral entropy

Spectral slope

(7)µband,mean =

1

Nband

bhigh∑

k=blow

Sk .

(8)µ1 =

∑bhigh
k=blow

Sk fk

µband
.

(9)µ2 =





�bhigh
k=blow

Sk(f k − µ1)
2

µband





1
2

.

(10)µ3 =

∑bhigh
k=blow

Sk(f k − µ1)
3

µ2
3µband

.

(11)µ4 =

∑bhigh
k=blow

Sk(f k − µ1)
4

µ2
4µband

.

(12)µcrest =

max(Sk)
1

Nband
µband

, k ∈

[

blow, bhigh
]

.

(13)µflatness =

(

∏bhigh

k=blow
Sk

)

1
Nband

1
Nband

µband

.

(14)µmax, tot =

max(Sk)

µband
, k ∈

[

blow, bhigh
]

.

(15)µentropy =

−

∑bhigh

k=blow
Sk log2(Sk)

log2 (Nband)
.



Page 30 of 54Paul et al. BioMed Eng OnLine            (2021) 20:8 

Spectral max frequency

B.2.1 DFT features

So far, we only have spectral features that use the amplitude, while the phase was not 

considered.

As we do not know which frequency is the dominating frequency in the band, we cal-

culate the phasor of the whole band and evaluate its phase. Here, we assume that the 

phasor (which is just a vector) is mainly influenced by the strongest spectral components.

Phasor

Two features based on phase and or phase and amplitude were computed from the one-

sided DFT:

Phase

Values of the phase range between ±π . By adding up all phasors to pband , we hope that 

in a pulsatile signal the phasors corresponding to the pulsatile component are dominat-

ing, while non-pulsatile components cancel each other or have less influence.

Phasor amplitude

B.2.2 Features using two time segments

More features are defined by combining two video segments of time t and t − 1 . �ese 

are used to account for the temporal change of the spectrum and should allow the defi-

nition of detectors for onsets and offsets of drastic signal changes, such as movement 

activity. Conventionally, the spectral flux is defined as the (power) exchange between 

two segments using a p−Norm (e.g., p = 2 [40]). However, we were interested in how 

many bins change their values and define positive and negative spectral fluxes and their 

ratios, respectively:

Positive and negative spectral flux

(16)µslope =

∑bhigh
k=blow

(

fk − fmean

)(

Sk − µband,mean

)

∑bhigh
k=blow

(f k − fmean)
2

.

(17)fmax = f (kmax) with kmax = arg max
k

(Sk), k ∈

[

blow, bhigh
]

.

(18)pband =

bhigh∑

k=blow

Sk ,FFT with Sk ,FFT =

NFFT−1∑

n=0

s[n]e

−
i2π

NFFT
kn

.

(19)θband = angle(pband).

(20)pband, amp = |pband|.
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�e ratio of bins with positive/negative flux—ratio flux pos (neg) 

B.3 Meaning of the features and novelty

As was stated above in Section  "Methods", the spectra extracted can be considered as 

distributions and, therefore, can be assessed by signal statistics. In fact, we need meas-

ures to attest the presence of peaks, outliers, etc., of these distributions.

With this in mind, we will briefly discuss some of the features:

�e (spectral) kurtosis is often misinterpreted as a measure of ‘peakedness’ of distribu-

tions, whereas it is a measure for the weight of the tails and outliers [41].

�e (spectral) skewness differentiates between the tails of the distribution: higher 

frequencies dominate when skewness is negative while lower frequencies are more 

dominant for positive values. What we observed is that if a sudden (non-rhythmic, per-

cussive) movement is present, the spectrum is less concentrated. Additionally, bins of 

lower frequencies are more dominant than bins of higher frequencies..

Lower values of the spectral flatness [42] indicate that a spectrum is less flat, and a dis-

tinguishable signal might be extractable, while high values indicate noise-like signals. In 

essence, spectral flatness is the ratio of geometric and arithmetic mean and values range 

between [0, 1].

Spectral crest and ratio of band max power and band power are very similar to each 

other: By omitting the normalization, we get a direct measure of the power relations 

between the band and the maximum. In both cases, the maximum is calculated on the 

raw spectra without interpolation. �e first occurrence of a maximum value defines the 

spectral bin of the spectrum.

For many of the features, a detailed overview is given by Mathworks [43] and the cor-

responding functions for generations have been available since the 2019a release of 

Matlab.

To the best of our knowledge, most of these maps have not been used either for PPGI 

or IRT. For this reason, we provide an overview. �e closest implementations we could 

find use power maps to define signal-to-noise ratio maps as ratios of the power at a 

(21)µflux+ =

bhigh∑

k=blow

Sk(t) − Sk(t − 1), with Sk(t) − Sk(t − 1) ≥ 0,

(22)µflux- =

bhigh∑

k=blow

Sk(t) − Sk(t − 1), with Sk(t) − Sk(t − 1) < 0.

(23)rflux+ =
1

Nband

bhigh
∑

k=blow

B+(k), with B+(k) =

{

1 , if Sk(t) − Sk(t − 1) ≥ 0
0 , otherwise.

(24)rflux- =

1

Nband

bhigh
∑

k=blow

B
−
(k), with B

−
(k) =

{

1 , if Sk(t) − Sk(t − 1) < 0
0 , otherwise.
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predetermined frequency band centered at a heart rate estimate vs. the power without 

this narrow band (e.g., [1, 21, 24, 25]) and the average power in the frequency band close 

to the estimated heart rate [21]. By contrast, our mapping approach requires only the 

frequency range of the signal anticipated. In fact, many of the maps can be calculated 

without knowing the exact heart frequency (pulse rate) but might help to select ROIs to 

determine the frequency in question.

B.4 Implementation

B.4.1 Common terms

Not surprisingly, as can be seen from the equations, several features share the same 

terms (e.g., (fk − µ1) , µband or the number of bins ( Nband ) defining the band. When 

implementing the processing pipeline, these terms should be calculated prior to the fea-

tures for efficiency.

Table 5 Processing times  for  the maps and  a  selection of  processing steps. The average 

time based on the calculation of one partitioned video segment is reported

Map/processing step Time series [µs] Map 376 × 232 [s] Map 608 
× 448 [s]

Mean intensity 0.13 0.01 0.03

Band power 0.03 0.00 0.01

Band mean power 0.05 0.00 0.01

Band max/band power 0.16 0.01 0.04

Spectral centroid 0.56 0.05 0.15

Spectral spread 1.37 0.12 0.37

Spectral skewness 4.53 0.39 1.23

Spectral kurtosis 1.82 0.16 0.50

Spectral crest 0.19 0.02 0.05

Spectral flatness 1.39 0.12 0.38

Spectral entropy 1.73 0.15 0.47

Spectral slope 0.98 0.09 0.27

Max frequency 0.11 0.01 0.03

Phasor phase 0.10 0.01 0.03

Phasor amp 0.10 0.01 0.03

Temporal var 5.24 0.46 1.43

Spectral flux pos 1.27 0.11 0.35

Spectral flux neg 1.27 0.11 0.35

Ratio flux pos 1.45 0.13 0.39

Ratio flux neg 1.45 0.13 0.39

PS 19.01 1.66 5.18

Mean subtract 0.13 0.01 0.04

Filter 5.70 0.50 1.55

Windowing 1.25 0.11 0.34

FFT 10.41 0.91 2.84
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B.4.2 Scaling of DFT components

Please note that the amplitude of the phasor was calculated without scaling all spectral 

components by 2, whereas the other spectral features have been scaled. However, this 

factor does not influence the information contained in the map.

B.4.3 Processing times

We report the processing times for the feature maps (without scaling for visualization 

and spatial pooling) on a workstation computer (Intel Xeon E5-1650v3 3.50 GHz, 128GB 

DDR4-2133) running Matlab 2019b.

We calculated benchmark results for one video segment of the adult NIR video. We 

computed the times by processing the segment in partitions of up to ten image columns 

simultaneously (i.e., time series of said columns). �e times represent the average times 

based on one 10-s video segment, i.e., the average for one time series and for the two 

map resolutions used were calculated and result from multiplication by the total number 

of signals. �e average processing times are shown in Table 5. �e cumulative times, i.e., 

the times including the filtering, transforms, etc., are listed in Table 6. �e time for the 

Table 6 Cumulative processing times  for  the maps and  a  selection of  processing steps. 

The average time based on the calculation of one partitioned video segment is reported. 

Cumulative times  are shown, i.e., including  preprocessing times  of  mean subtraction, 

�ltering, windowing, FFT and PS calculation, respectively

Map/processing step Time series [µs] Map 376× 232 [s] Map 608 
× 448 [s]

Mean intensity 0.13 0.01 0.03

Band power 26.26 2.29 7.15

Band mean power 26.27 2.29 7.16

Band max/band power 26.38 2.30 7.19

Spectral centroid 26.79 2.34 7.30

Spectral spread 27.60 2.41 7.52

Spectral skewness 30.75 2.68 8.38

Spectral kurtosis 28.05 2.45 7.64

Spectral crest 26.41 2.30 7.19

Spectral flatness 27.61 2.41 7.52

Spectral entropy 27.95 2.44 7.61

Spectral slope 27.20 2.37 7.41

Max frequency 26.34 2.30 7.17

Phasor phase 17.73 1.55 4.83

Phasor amp 17.72 1.55 4.83

Temporal var 12.46 1.09 3.39

Spectral flux pos 53.72 4.69 14.63

Spectral flux neg 53.72 4.69 14.63

Ratio flux pos 53.90 4.70 14.68

Ratio flux neg 53.90 4.70 14.68

PS 19.01 1.66 5.18

Mean subtract 0.13 0.01 0.04

Filter 5.70 0.50 1.55

Windowing 1.25 0.11 0.34

FFT 10.41 0.91 2.84
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spatial pooling is not included ( Tpool,PPGI = 35.44 s and Tpool,IRT = 4.08 s ). �e pooling 

times depend on the spatial resolution and the kernel size Nkernel . �e times reported 

account for the blurring at full resolution. However, it should also be possible to only 

pool at the subsampling positions to reduce the overhead. All in all, the number of sig-

nals and, thus, the spatial resolution is the main factor influencing the time required. 

Expensive operations are also the signal transformation by the FFT (and PS), filtering 

and windowing. Noteworthy, but not to be anticipated any differently, are the relatively 

short processing time of the temporal variance and the longer times for the flux opera-

tions. Furthermore, the processing time for the spectral skewness is unexpectedly long in 

comparison to spectral kurtosis. We assume that the implementation in Matlab for calcu-

lating the power of a number which can be calculated by repeated squaring is optimized 

and, thus, explains the time difference between the two very similar features (see (10) 

and (11)). We also measured the time for the computation of one PPGI similarity map 

which was Tsimilarity,PPG = 14.64 s (the time for the larger IRT map would consequently 

be longer). Finally, it must be noted that the parametrization used resulted in processing 

times that are not suitable for real-time applications.

B.4.4 Time complexity

We also report the time complexity using the big O notation as the metric. Firstly, we 

determine the complexity of a feature map. We start by estimating the cost of com-

puting all Sk which are present in most features. Computing all Sk is of order O(N 2

FFT
) 

regarding the DFT and DFT-based PS and only of order O(NFFT log(NFFT)) when 

using the FFT for both. We assume that the spectra (DFT/FFT and PS) were calcu-

lated and all Sk are available and can be accessed in constant time ( ∈ O(1) ). On this 

assumption, it follows that the equations for the spectral descriptors all have the same 

linear complexity ( ∈ O(Nband) ). Computing the mean intensity (4) and temporal vari-

ance (5) are only O(Nseg) . Filtering a one-dimensional segment is O(NsegNfilterlength) . 

Windowing a segment is O(Nwin) which is the same as O(Nseg) . Blurring an image is 

O(wkernelhkernelwimagehimage) , where w and h are the width and height of the kernel or 

image, respectively. Since the Gaussian filter is separable, the complexity can be reduced 

to O(wkernelwimagehimage) + O(hkernelwimagehimage).

As an example, the complexity of a map of a spectral feature is given approximately by 

the following:

 �is can be further summarized with the big O notation. �us, (25) turns into:

(25)

∈ O(wimagehimage)
︸ ︷︷ ︸

number of ROIs/pixels

·
[

O(wkernelhkernel) · O(Nseg)
︸ ︷︷ ︸

spatial pooling and creation of a time series

+O( Nseg
︸︷︷︸

mean subtraction

+NsegNfilterlength
︸ ︷︷ ︸

temporal filtering

+ Nwin
︸︷︷︸

windowing

)

︸ ︷︷ ︸

temporal processing

+ O(N 2
FFT + Nband)

︸ ︷︷ ︸

feature generation

]
.
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�e estimate of the temporal complexity in (26) is therefore consistent with the meas-

ured times as given in Table 5.

In the following, the complexity of the similarity maps is determined: Comput-

ing a histogram requires accessing all pixels of an image patch defined by the kernel 

( ∈ O(wkernel, histhkernel, hist) ). For a similarity map, all pixels of a feature map have to be 

visited ( ∈ O(wfeature maphfeature map) ). Computing a model histogram is ∈ O(Nmodel) , 

where Nmodel is the number of pixels of the model. �e histogram intersection (2) is 

∈ O(Nbins) on the basis of the simplified assumption that determining the minimum is 

∈ O(1) . Hence, the order of growth of computing a similarity map is:

Appendix C: Feature and similarity maps

Here, the results for the measurements w/ movement of the subjects are given. In addi-

tion, the complete set of feature and similarity maps is provided.

C.1 Adult measurement

In this section, the feature and similarity maps for the adult measurement (Fig. 11) are 

provided: Figs. 13, 14, 15 and 16 correspond to the video segment w/o movement, while 

Figs. 17, 18, 19 and 20 represent a segment w/ movement.

In the following, the results for the measurement w/ movement are presented and 

discussed.

C.1.1 Adult lab measurement w/ movement

�is video segment introduces hand to face movement to consume the chili sauce. In 

addition to the moving arm, the head was also moved. �e maps are given in Figs. 17 and 

18.

Firstly, we can observe that when strong movements are introduced, more power is 

available and, consequently many regions tend to low frequencies (see frequency max). 

While many foreground regions can still be observed, the arm is now visible in all map-

pings (except for mean intensity).

�e PPGI maps show two new pulsatile formations next to the head. �ese formations 

are left and right of the head for the VIS camera and correspond to the light sources 

left and right of the camera setup. �ese are caused by the subject’s shadows (we used 

frontal illumination with one LED brick light left and right of the camera for visible light, 

(26)

∈ O(wimagehimage)
︸ ︷︷ ︸

number of ROIs/pixels

·
[

O(wkernelhkernel) · O(Nseg)
︸ ︷︷ ︸

spatial pooling and creation of a time series

+O(NsegNfilterlength
︸ ︷︷ ︸

temporal filtering

) + O(N 2
FFT)

︸ ︷︷ ︸

DFT/PS

]
.

(27)

∈ O(wfeature maphfeature map)
︸ ︷︷ ︸

number of patches

·
[
O(wkernel, histhkernel, hist)
︸ ︷︷ ︸

histogram of an image patch

+ O(Nbins)
︸ ︷︷ ︸

intersection

]
+ O(Nmodel

︸ ︷︷ ︸

histogram of a model

).
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Fig. 13 Feature maps of adult measurement w/o movement: mean intensity to spectral flatness 
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Fig. 14 Feature maps of adult measurement w/o movement: spectral entropy to flux ratios 
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Fig. 15 Similarity maps of adult measurement w/o movement: mean intensity to spectral flatness 
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Fig. 16 Similarity maps of adult measurement w/o movement: spectral entropy to flux ratios 
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Fig. 17 Feature maps of adult measurement w/ movement: mean intensity to spectral flatness 
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Fig. 18 Feature maps of adult measurement w/ movement: spectral entropy to flux ratios 
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Fig. 19 Similarity maps of adult measurement w/ movement: mean intensity to spectral flatness 
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Fig. 20 Similarity maps of adult measurement w/ movement: spectral entropy to flux ratios 



Page 44 of 54Paul et al. BioMed Eng OnLine            (2021) 20:8 

while one LED brick was positioned on top of the cameras for NIR illumination). �e 

IRT is not affected as this is a phenomenon caused by illumination.

We can see for all cameras that the upper torso is affected by the arm movement (less 

visible in NIR due to the FOV). Again, this is well visible due to the increased flatness 

and higher entropy. Although the phase also shows the subject’s silhouette, an interpre-

tation of the visualization is difficult.

�ere is more positive than negative flux at pixels covering the arm for this time seg-

ment, indicating that the newest values taken for the calculation contain the movement. 

From here on, the more the buffer gets updated, the fewer images belong to the move-

ment and, thus, the trend will shift to negative values.

C.1.2 Similarity maps

�e similarity maps are given in Figs. 19 and 20.

�e results are visually comparable to the case w/o movement presented in the main 

part of the paper. In addition, when movement is introduced, the dynamic maps of the 

IRT camera show the subject’s silhouette and not only the contour.

C.2 Baby measurement

Here, the feature and similarity maps for the baby measurement (Fig. 12) are provided: 

Figs. 21, 22 , 23 and 24 correspond to the video segment w/o movement, while Figs. 25, 

26, 27 and 28 represent a segment w/ movement.

In the following, the results for the measurement w/ movement are presented and 

discussed.

C.2.1 Baby NICU measurement w/ movement

In this scene, the baby moved the head, stretched the legs, and moved the chest and 

abdomen. �e maps are given in Figs. 25 and 26 in the appendix (Section C.2).

�e first thing to notice regarding this video segment is that the reflection of the baby 

in the encasing is more detailed which is in accordance with the higher power due to 

movement. Moreover, the baby’s body is now visible in the IRT maps. Secondly, most 

maps show a different texture on the body and surrounding image regions. As a result of 

this intense movement, the image content of many maps is very hard to grasp even for 

a human. Positive exceptions are band power, spectral slope, phasor amplitude, temporal 

variance and spectral flux.

Amongst other regions, the face was blurred and no facial components could be dis-

cerned. Wires outside the body are highlighted by the movement.
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Fig. 21 Feature maps of baby measurement w/o movement: mean intensity to spectral flatness 
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Fig. 22 Feature maps of baby measurement w/o movement: spectral entropy to flux ratios 
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Fig. 23 Similarity maps of baby measurement w/o movement: mean intensity to spectral flatness 
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Fig. 24 Similarity maps of baby measurement w/o movement: spectral entropy to flux ratios 
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Fig. 25 Feature maps of baby measurement w/ movement: mean intensity to spectral flatness 
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Fig. 26 Feature maps of baby measurement w/ movement: spectral entropy to flux ratios 
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Fig. 27 Similarity maps of baby measurement w/ movement: mean intensity to spectral flatness 
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Fig. 28 Similarity maps of baby measurement w/ movement: spectral entropy to flux ratios 



Page 53 of 54Paul et al. BioMed Eng OnLine            (2021) 20:8  

C.2.2 Similarity maps

Introducing strong movement (Figs. 27 and 28) allows us to distinguish the baby from 

the background using IRT and ‘decibel’ maps, but also using the phase. Similarly, using 

PPGI, these maps allow a rough determination of the baby’s position.
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