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Statistical dependencies in the responses of sensory neurons govern both the amount of

stimulus information conveyed and the means by which downstream neurons can extract

it. Although a variety of measurements indicate the existence of such dependencies, their

origin and importance for neural coding are poorly understood. Here we analyze the

functional significance of correlated firing in a complete population of primate parasol

retinal ganglion cells using a model of multi-neuron spike responses. The model, with

parameters fit directly to physiological data, simultaneously captures both the stimulus

dependence and detailed spatio-temporal correlations in population responses, and pro-

vides two insights into the structure of the neural code. First, neural encoding at the

population level is less noisy than one would expect from the variability of individual

neurons: spike times are more precise, and can be predicted more accurately when the

spiking of neighboring neurons is are taken into account. Second, correlations provide

additional sensory information: optimal, model-based decoding that exploits the response
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correlation structure extracts 20% more information about the visual scene than decod-

ing under the assumption of independence, and preserves 40% more visual information

than optimal linear decoding. This model-based approach reveals the role played by cor-

related activity in the retinal coding of visual stimuli, and provides a general framework

for understanding the importance of correlated activity in populations of neurons.

How does the spiking activity of a neural population represent the sensory environment? The answer

depends critically on the structure of neuronal correlations, or the tendency of groups of neurons to fire

temporally coordinated spike patterns. The statistics of such patterns have been studied in a variety

of brain areas, and their significance in the processing and representation of sensory information has

been debated extensively [1, 2, 3, 4, 5, 6, 7, 8, 9].

Previous studies have examined visual coding by pairs of neurons [7], and the statistics of simultaneous

firing patterns in larger neural populations [10, 11]. However, no previous approach addresses how

correlated spiking activity in complete neural populations depends on the pattern of visual stimulation,

or the question of how such dependencies affect the encoding of visual stimuli.

Here we introduce a model-based methodology for studying this problem. We describe the encoding of

stimuli in the spike trains of a neural population with a generalized linear model (fig. 1a), a generalization

of the well-known linear-nonlinear-Poisson (LNP) cascade model [12, 13, 14, 15]. In this model, each

cell’s input is described by a set of linear filters: (1) a stimulus filter, or spatio-temporal receptive

field; (2) a post-spike filter, which captures dependencies on spike-train history (e.g. refractoriness,

burstiness, adaptation); and (3) a set of coupling filters, which capture dependencies on the recent

spiking of other cells. For each neuron, the summed filter responses are exponentiated to obtain an

instantaneous spike rate. This is equivalent to exponentiating the filter outputs and then multiplying.

The exponentiated post-spike and coupling filters (as plotted in Fig. 1) may therefore be interpreted

as spike-induced gain adjustments of the neuron’s firing rate.

Although this model is strictly phenomenological, its components can be loosely compared to biophys-
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ical mechanisms: the stimulus filter approximates the spatio-temporal integration of light in the outer

retina and passive dendritic filtering; the post-spike filter mimics voltage-activated currents following

a spike; coupling filters resemble synaptic or electrical interactions between cells (and can mimic the

effects of shared input noise); the exponential nonlinearity implements a “soft threshold” converting

membrane potential to instantaneous spike probability. Note that the post-spike and coupling filters,

which allow stochastic spiking in one cell to affect subsequent population activity, give rise to shared,

non-Poisson variability in the model response.

We fit the model to data recorded in vitro from a population of 27 ON and OFF parasol ganglion cells

(RGCs) in a small patch of isolated macaque monkey retina, stimulated with 120-Hz spatio-temporal

binary white noise. The receptive fields (RFs) of each of the two cell types formed a complete mosaic

covering a small region of visual space (fig. 1b), indicating that every parasol cell in this region was

recorded [16, 11]. Such complete recordings, which have not been achieved elsewhere in the mammalian

nervous system, are essential for understanding visual coding in neural populations.

The model contains many parameters (i.e., specifying the shapes of all filters), but fitting by maximum

likelihood remains highly tractable [15]. A penalty on coupling filters was used to obtain a minimally

sufficient set of coupling filters, which yields an estimate of the network’s functional connectivity [17, 18].

Figure 1 shows the estimated filters describing input to example ON and OFF cells. The stimulus

filters exhibit center-surround receptive field organization consistent with previous characterizations

of parasol cells. Post-spike filters show the timecourse of recovery from refractoriness following a

spike, while coupling filters show the effects of spikes in nearby cells: for the ON cell (top), spikes in

neighboring ON cells elicit a large, transient excitation (increasing the instantaneous spike rate by a

factor of three), while spikes in nearby OFF cells elicit suppression. These effects are reversed in the

OFF cell, which is excited/suppressed by spikes in neighboring OFF/ON cells. Both populations exhibit

approximate nearest-neighbor connectivity, with coupling strength falling as a function of distance

between RF centers [11]. Surprisingly, fitted stimulus filters have smaller surrounds than the spike-
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triggered average, indicating that a portion of the classical surround can be explained by interactions

between cells [19] (see Supp. Materials).

To assess accuracy in capturing the statistical dependencies in population responses, we compared

the pairwise cross-correlation function (CCF) of RGCs and simulated model spike trains (fig. 2). For

nearby ON-ON and OFF-OFF pairs, the CCF exhibits a sharp peak at zero, indicating the prevalence

of synchronous spikes, while for ON-OFF pairs, a trough at zero indicates an absence of synchrony.

For all 351 possible pairings, the model accurately reproduces the CCF (fig. 2a-c,e-f).

To examine whether inter-neuronal coupling was necessary to capture the response correlation struc-

ture, we re-fitted the model without coupling filters (i.e., so that each cell’s response depends only on

the stimulus and its own spike-train history). This uncoupled model assumes that cells encode the stim-

ulus independently, though correlations may still arise from the overlap of stimulus filters. However,

the uncoupled model fails to reproduce the sharp CCF peaks observed in the data. These peaks are

also absent from CCFs computed on trial-shuffled data, indicating that fast time-scale correlations are

not stimulus-induced and thus cannot be captured by any independent encoding model.

Higher-order statistical dependencies were considered by inspecting correlations in three-neuron groups:

triplet CCFs show the spike rate of one cell as a function of the relative times to spikes in two other

cells (fig. 2e-g) [11]. For adjacent neurons of the same type, triplet CCFs have substantial peaks at

zero (i.e., “triplet synchrony”), which are are well matched by the full model.

Although the full and uncoupled models differ substantially in their statistical dependencies, the two

models predict average light responses in individual cells with nearly identical accuracy, capturing 80-

95% of the variance in the peri-stimulus time histogram (PSTH) in 26 of 27 cells (fig. 3a-c). Both

models therefore accurately describe average single-cell responses to novel stimuli. However, the full

model achieves higher accuracy predicting multi-neuronal spike responses on a single trial (8±3% more

bits/spike, fig. 3d). This discrepancy can be explained by the fact that noise (i.e., variability) is shared

across neurons. Shared variability means that population activity carries information about a single
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cell’s response (due to coupling between cells) beyond that provided by the stimulus alone. Individual

neurons therefore appear less noisy when conditioned on spiking activity in the rest of the population

than they appear in raster plots.

We measured the effect of correlations on single-trial, single-cell spike train prediction by using the

model to draw samples of a single cell’s response given both the stimulus and the spiking activity in

the rest of the population on a single trial (fig. 3e-f). Averaging the resulting raster gives a prediction

of the cell’s single-trial spike rate, or “population-conditioned” PSTH for a single trial. We compared

these predictions with the cell’s true spike times (binned at 2ms) across all trials and found that on

nearly every trial, the model-based prediction is more highly correlated with the observed spikes than

the neuron’s full PSTH (fig. 3g). Note that the full PSTH achieves the highest correlation possible

for any independent (i.e., trial-independent) prediction. Thus, by exploiting the correlation structure,

the coupled model predicts single-neuron spike times more accurately than any independent encoding

model.

Although the full model accurately captures dependencies in the activity of RGCs, it is not obvious a

priori whether these dependencies affect the amount of sensory information conveyed by RGC responses.

In principle, the correlation structure could be necessary to predict the responses, but not to extract

the stimulus information they carry [9]. To examine this issue directly, we used the full and uncoupled

models to perform Bayesian decoding of the population response (fig. 4a), which optimally reconstructs

stimuli given an accurate description of the encoding process. For comparison, we also performed

Bayesian decoding under a Poisson (i.e., LNP) model and optimal linear decoding.

Each decoding method was used to estimate short (150-ms) segments of the stimulus given all relevant

spike times from the full population (fig. 4b). Bayesian decoding under the coupled model recovers

20% more information than Bayesian decoding under the uncoupled model, indicating that knowledge

of the correlation structure is critical for extracting all sensory information contained in the population

response. This improvement was invariant to enhancements of the model’s stimulus filters and nonlin-
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earities (see Supp. Materials), indicating that the difference in performance arises specifically from the

coupled model’s ability to incorporate the correlation structure. Our results also show that spike his-

tory is relevant for decoding (a Poisson model preserves 6% less information than the uncoupled model

[21]) and that linear decoding fails to extract the sensory information contained in RGC responses.

Decoding analysis can also be used to examine the coding fidelity of specific stimulus features. As a

simple illustration, we examined the temporal frequency spectrum of reconstructed stimuli and found

that the response correlation structure is most important for decoding those stimulus frequencies (6-20

Hz) that are encoded with highest fidelity (fig. 4c).

These results demonstrate that the responses of a population of retinal ganglion cells are well described

by a generalized linear model, and that correlations in the response can be exploited to recover 20%

more visual information than if responses are regarded as independent given the stimulus. By contrast,

previous studies have reported this information gain to be less than 10% for pairs of neurons [5, 8].

However, pairwise analyses provide little evidence about the importance of correlations across an entire

population. Second-order correlations between pairs of neurons could give rise to either much larger

(scaling with the number of neurons n) or much smaller (falling as 1/n) gains for a full population (see

Supp. Materials). To compare more directly with previous findings, we performed Bayesian decoding

using isolated pairs of neurons from the same population; we found a ≤ 10% gain in sensory information

when correlations were included (see Supp. Materials). While consistent with previous findings, this

shows that the information gain for a complete population is larger than that observed for pairs. We

also compared the model to a pairwise maximum-entropy model, which has recently been shown to

capture the instantaneous spiking statistics of groups of retinal ganglion cells [10, 11]. The coupled

model exhibits similar accuracy in capturing these statistics, but has the advantage that it accounts

for the temporal correlation structure and stimulus dependence of responses, which are essential for

assessing the effect of correlations on sensory coding.

Although it provides an accurate functional description of correlated spike responses, the generalized

6



linear model does not reveal the biophysical mechanisms underlying the statistical dependencies be-

tween neurons: coupling does not necessarily imply anatomical connections between cells, but could (for

example) reflect dependencies due to shared input noise [22]. The model also lacks several mechanisms

known to exist in retinal ganglion cells (e.g., contrast gain-control [23]), which may be required for

characterizing responses to a wider range of stimuli. One additional caveat is that Bayesian decoding

provides a tool for measuring the sensory information available in the population response, but it does

not reveal whether the brain makes use of this information. Physiological interpretations of the model

and mechanisms for neural read-out of sensory information in higher brain areas are thus important

directions for future research.

Nevertheless, the generalized linear model offers a concise, computationally tractable description of

the population encoding process, and provides the first generative description of the space-time de-

pendencies in stimulus-induced population activity. It allows us to quantify the relative contributions

of stimulus, spike history, and network interactions to the encoding and decoding of visual stimuli,

and clarifies the relationship between single-cell and population variability. More generally, the model

can be used to assess which features of the visual environment are encoded with highest and lowest

fidelity, and to determine how the structure of the neural code constrains perceptual capabilities. We

expect this framework to extend to other brain areas, and to play an important role in revealing the

information processing capabilities of spiking neural populations [24, 25, 14, 17].

Short Methods (journal version)

Data . Multi-electrode extracellular recordings were obtained in vitro from a segment of isolated,

peripheral macaque monkey retina, and analysis was restricted to two cell types (ON and OFF parasol)

[26, 11, 27]. A standard, spike sorting procedure, followed by a specialized statistical method for

detecting simultaneous spikes was used to sort spikes (cf [28]). The retina was stimulated with a

photopic, achromatic, optically reduced spatio-temporal binary white noise stimulus refreshing at 120

Hz, with an RMS contrast of 96%.
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Fitting. Model parameters were fitted to 7 minutes of spike responses to a non-repeating stimulus.

Each cell’s parameters consisted of a stimulus filter (parametrized as a rank-2 matrix), a spike-history

filter, a set of incoming coupling filters, and a constant. Temporal filters were represented in a basis

of cosine “bumps” [21]. Parameters for the uncoupled and Poisson (LNP) models were fitted indepen-

dently. Parameters were fitted by penalized maximum likelihood [15, 14], with an L1 penalty on the

vector length of coupling filters to eliminate unnecessary connections.

Encoding. Spike prediction was cross-validated using the log-likelihood of 5 minutes of novel spiking

data (scaled to units of bits/s). Repeat rasters were obtained using 200 presentations of a novel

10s stimulus. Population-conditional rasters were obtained from the coupled model by sampling the

model-defined probability distribution over the neuron’s response given the stimulus and surrounding-

population activity on a single trial [29].

Decoding. Population responses were decoded using the Bayes’ least squares estimator (posterior

mean) to reconstruct 18-sample single-pixel stimulus segments (cross-validation data). Linear decoding

was performed using the optimal linear estimator [20]. Decoding performance was quantified using the

log signal-to-noise ratio (SNR) of each technique, which gives an estimate of mutual information.

Breakdown by temporal frequency was obtained by computing the Fourier power spectra of the stimuli

and residuals and then computing log-SNR.

Full Methods (pdf only)

Recording. Multi-electrode extracellular recordings were obtained in vitro from a segment of isolated,

peripheral macaque monkey retina, using preparation and recording methods described previously

[26, 11]. Analysis was restricted to two physiologically-defined classes of cells which, on the basis of

light response properties and density, were identified as ON and OFF parasol cells [27]. The cells shown

were recorded in a square region of retina covered by 76 electrodes. A standard clustering spike sorting

procedure (cf [26, 11]) was used to estimate the number of units, and least-squares regression of the

estimated spike times against multi-electrode voltage signal was used to estimate multi-electrode spike
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waveforms for each unit. Although this approach correctly and efficiently identifies isolated spikes,

when two cells fire within a 1-2 ms window, the clustering approach can fail to identify the presence

of both spikes. We solved this problem by using estimates of the elementary waveforms to detect the

superposition of spikes. We performed maximum a posteriori estimation under the model that the

multi-electrode voltage signal was the linear superposition of Gaussian white noise and the spike trains

convolved with their associated spike waveforms, with a sparse (exponential) prior on the spike trains.

This corresponds to a tractable quadratic optimization problem under linear inequality constraints,

which can be efficiently solved using existing methods. The real-valued solution vector was then

binarized by greedily inserting spikes whenever the reduction in mean-squared error between predicted

and actual voltage exceeded a threshold [28]. This procedure correctly identified simultaneous spikes

in simulated datasets and corrected obvious cross-correlation artifacts appearing in real data sorted

with standard clustering techniques.

Stimuli. The retina was stimulated with a photopic, achromatic image of a cathode ray tube display,

refreshing at 120 Hz. The stimulus was a spatio-temporal pseudo-random binary sequence, where the

intensity of each pixel was drawn independently from one of two values on each frame. The stimulus

pixel size was 120 x 120 microns on the retina, and contrast (standard deviation divided by mean) was

96%.

Fitting. Model parameters were fitted by maximizing likelihood [15], using 7 minutes of spiking data

recorded during presentation of a non-repeating stimulus. The parameters for each cell consisted of a

stimulus filter k, a spike history filter h, a set of incoming coupling filters {li}, and a constant (DC

offset) µ. k was a 750-dimensional vector (5x5 spatial pixels x 30 time bins), parametrized using a

lower-dimensional representation as a rank-2 matrix: k(x, y, τ) = ks,1(x, y)kt,1(τ) − ks,2(x, y)kt,2(τ),

with ks,i(x, y) denoting a spatial filter (25 parameters) and kt,i(τ) a temporal filter (10 parameters),

giving 2 × 35 = 70 parameters. A rank-3 representation did not improve performance. These filters

closely resembled a time-varying difference-of-Gaussians [30]; spatial filters were well-approximated

(in a least-squares sense) by Gaussians, which were used to plot spatial ellipses shown in (fig. 1)
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and to summarize receptive field properties (Supp. Figures S2–S3). Gaussians fit to RF centers and

surrounds had average standard deviations of 0.25 pixels and 0.7 pixels (1.0 pixels for the uncoupled

model), respectively. Temporal filters h and {li}, and the temporal components of k were represented

using a basis of raised cosine “bumps” of the form bj(t) = 1

2
cos(log[t + ψ] − φj) + 1

2
for t such that

log(t + ψ) ∈ [φj − π, φj + π] and 0 elsewhere (see Supplementary Materials). This basis allows for the

representation of fine temporal structure near the time of a spike and coarser/smoother dependency at

later times (see [21]). h was represented with 10 such basis vectors, and li from each coupled neuron

was represented with 4. The “uncoupled model” was fitted independently without coupling filters {li},

and the inhomogeneous Poisson model (fig. 4) was fitted without {li} or h.

Conditional intensity (spike rate) is given by λ(t) = exp(k · x + h · y + (
∑

i li · yi) + µ), where x is

the stimulus, y the cell’s own spike-train history, µ is the cell’s baseline log-firing rate, and {yi} the

spike-train histories of other cells at time t. The population log-likelihood is the sum over single-cell

log-likelihoods, each given by L =
∑

log λ(tsp) −
∫

λ(t)dt, where tsp denotes the set of spike times

and the integral is taken over the length of the experiment [15, 14]. We added a penalty of the form

−α
∫
t |

∑
i li(t)

2|1/2dt to eliminate unnecessary coupling filters (using a constrained Newton-Raphson

algorithm to maximize the penalized log-likelihood), which regularizes and prevents overfitting. The

regularization parameter α was selected via cross-validation on a novel 5-minute dataset, but results

were robust with respect to both α and the choice of basis. (This reduced the number of number

of coupling filters from 702 to 243 and recovered a roughly pairwise-adjacent structure; see Supp.

Materials).

Correlations. Spike responses of full and uncoupled models were simulated with the same 20-min stim-

ulus (144,000 samples) presented experimentally. Pairwise cross-correlations were computed in 1-ms

bins, according to C(τ) = [〈y1(t)y2(t + τ)〉 − 〈y1(t)〉〈y2(t)〉] /(〈y2(t)〉dt), where y1(t) denotes the spike

response of the first neuron in bins of width dt, and 〈·〉 denotes averaging over t. Triplet correlations

were computed in 5-ms bins according to C(τ1, τ2) = [〈y1(t)y2(t + τ1)y3(t + τ2)〉 − 〈y1(t)〉〈y2(t)〉〈y3(t)〉]

/(〈y2(t)〉〈y3(t)〉dt).
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Encoding. Spike-train prediction was validated using the log-likelihood of novel spike trains under

both models, computed on 5 minutes of data not used for fitting or setting α. The difference of log-

likelihood under the model and the baseline firing rate,
∑

log λ̄(tsp) −
∫
t λ̄(t)dt (where λ̄ = nsp/T is

the mean spike rate), divided by nsp, gives prediction accuracy in bits/spike for each cell [25]. Repeat

rasters were obtained using 200 presentations of a novel 10s stimulus, and the time-varying average

response (PSTH) was computed in 1-ms bins, smoothed with a Gaussian kernel of width σ=2ms.

Conditional rasters were obtained from the coupled model by holding the responses of all but one

neuron fixed, and sampling from the model-induced probability distribution on the remaining neuron’s

response. Samples were obtained by the Metropolis-Hastings algorithm, with spike “proposals” drawn

from a point process model as described in [29]. We kept only every 100th output sample of the

algorithm to ensure independent samples.

Decoding. We decoded the population response using the Bayes’ least squares estimator, computed

under each model (fully coupled, uncoupled with spike history terms, and inhomogeneous Poisson) using

6000 different 18-sample single-pixel stimulus segments (validation data—not used for model fitting).

Each stimulus xi (an 18-dimensional binary vector, given by the time series of light intensities for a

centrally located stimulus pixel) was decoded by first extracting yi, the multi-neuronal spike response

portion that was causally influenced by this stimulus. For each model, and for every one of the 218

possible binary xj , we then computed pj = p(yi|xj), the likelihood of the observed population response

given that it was generated by stimulus xj . By Bayes’ rule, the posterior is p(xj|yi) ∝ p(yi|xj)p(xj),

and the prior p(xj) here is constant across binary stimuli. Thus, the posterior is proportional to

pj, and the Bayes’ least squares estimate is given by x̂i = (
∑

pjxj)/(
∑

pj). We also performed

decoding on longer (30-sample) stimulus segments, where exhaustive evaluation of these sums is no

longer tractable: in this case we used Gibbs sampling from p(xj|yi) to approximately evaluate the sum;

the results obtained using both methods were similar.

Linear decoding was performed using the optimal linear estimator [20], with the same training data

as for model fitting. Decoding performance was quantified using the log signal-to-noise ratio (SNR)
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of each technique: log(|〈xix
T
i 〉|/|〈rir

T
j 〉|), where ri = x̂i − xi denotes the residual error for decoding

stimulus vector xi, and |〈·〉| denotes averaging over i followed by matrix determinant. Breakdown

by temporal frequency was obtained by computing the Fourier power spectra of the stimuli x̃i(ω)2

and residuals r̃i(ω)2, and computing log SNR according to log(〈x̃i(ω)2〉/〈r̃(ω)2〉). Integrating this

log SNR across frequency, (1/2)
∫

log SNR(ω)dω, gives a commonly-employed estimate of the mutual

information between the stimulus and the spike train response [20], which is equivalent to the quantity

shown in Fig. 4b.
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Figure Legends

Figure 1: Multi-neuron encoding model and fitted parameters. a, Model schematic for two coupled

neurons: each neuron has a stimulus filter, post-spike filter, and coupling filters that capture dependen-

cies on spiking in other neurons. Summed filter output passes through an exponential nonlinearity to

produce the instantaneous spike rate. b, Mosaics of 11 ON and 16 OFF retinal ganglion cell receptive

fields (RFs), tiling a small region of visual space. Ellipses represent 1 SD of a Gaussian fit to each RF

center; square grid indicates stimulus pixels. c-e, Parameters for an example ON cell. c, Temporal

and spatial components of center (red) and surround (blue) filter components, whose difference is the

full stimulus filter. d, Exponentiated post-spike filter, which may be interpreted as multiplying the

spike rate following a spike at time zero. It produces a brief refractory period and gradual recovery

(with a slight overshoot). e, Connectivity and coupling filters from other cells in the population. Black

filled ellipse is this cell’s RF center, and blue and red lines show connections from neighboring OFF

and ON cells (line thickness indicates coupling strength). Below, exponentiated coupling filters show

the multiplicative effect on this cell’s spike rate following a spike in a neighboring cell. f-h, Analogous

plots for an example OFF cell.

Figure 2: Analysis of response correlations. a-c, Example cross-correlations functions (CCFs) of

14



retinal responses, and simulated responses of the full and uncoupled models, for two ON cells (a), two

OFF cells (b), and an ON-OFF pair (c). Baseline is subtracted so that units are in spikes/s above (or

below) the cell’s mean rate. d RF mosaic overlaid with arbitrary labels. e, CCFs between all ON pairs,

where the i, jth plot shows the CCF between cell i and cell j. Gray box indicates the CCF plotted

above in (a). f, CCFs between all OFF pairs and g, between all ON-OFF pairs. h, Third-order (triplet)

CCF between three adjacent ON cells, showing the instantaneous spike rate of cell 5 as a function of

the relative spike time in cells 4 and 8 (left: RGCs; middle: full model; right: uncoupled model). i

Analogous triplet CCF for OFF cells 15, 16 and 22. j, Comparison of triplet CCF peak in RGC and

model responses (full model = black, uncoupled = gray), for randomly selected triplets of adjacent ON

(open) and OFF cells (filled).

Figure 3: Spike-train prediction comparison. a, Raster of responses of an ON RGC to 25 repeats of

a novel 1-s stimulus (top), and responses of uncoupled (middle) and full models (bottom) to the same

stimulus. b, Peri-stimulus time histogram (PSTH) of the RGC (black), uncoupled (blue) and coupled

model (red); both models account for ≈ 84% of the variance of the true PSTH. c, PSTH prediction by

full and uncoupled models, showing that coupling confers no advantage predicting average responses.

d, Log-likelihood of novel RGC spike responses under full and uncoupled models; full model provides

8% more information about novel spike trains. e, Magnified 150-ms portion of RGC raster and PSTH

(gray box in a). Red dots highlight RGC spike times on selected individual trials, which are re-

plotted in f. f, Single-trial spike-train prediction using the coupled model. Top half of each plot shows

population activity on a single trial: true spike times of the cell (red dots), coupled ON cells (light

gray dots) and coupled OFF cells (dark gray dots; each line in the raster shows the spike times of

a different cell). Below, a raster of 50 predicted responses of the cell in question, using both the

stimulus and coupled responses (shown above) to predict spike trains. Red trace shows the single-trial

rate prediction (population-conditioned PSTH), compared with true PSTH of the cell (black trace,

identical in all plots). g, Correlation coefficient of true spike trains and the PSTH (ordinate) and with

population-conditioned predictions (abscissa); the full model predicts single-trial responses with higher

15



accuracy than the true PSTH.

Figure 4: Decoding performance comparison. a, Bayesian decoding schematic: to estimate an un-

known stimulus segment from a set of observed spike times (highlighted in boxes), the stimulus prior

p(s) is multiplied by the model-defined likelihood p(r|s) to obtain the posterior p(s|r). The posterior

mean is the Bayes’ least-squares stimulus estimate. b, Log of the signal-to-noise ratio (SNR) for lin-

ear decoding, and Bayesian decoding under the Poisson, uncoupled and full models, in units of bits/s

[20]. The full model preserves 20% more information than the uncoupled model, which indicates the

additional sensory information available from the population response when correlations are taken into

account. c, Log-SNR decomposed as a function of temporal frequency for various decoding methods

(Poisson omitted for clarity).
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Figure 1: Multi-neuron encoding model and fitted parameters. a, Model schematic for two coupled

neurons: each neuron has a stimulus filter, post-spike filter, and coupling filters that capture dependencies

on spiking in other neurons. Summed filter output passes through an exponential nonlinearity to produce

the instantaneous spike rate. b, Mosaics of 11 ON and 16 OFF retinal ganglion cell receptive fields

(RFs), tiling a small region of visual space. Ellipses represent 1 SD of a Gaussian fit to each RF center;

square grid indicates stimulus pixels. c-e, Parameters for an example ON cell. c, Temporal and spatial

components of center (red) and surround (blue) filter components, whose difference is the full stimulus

filter. d, Exponentiated post-spike filter, which may be interpreted as multiplying the spike rate following

a spike at time zero. It produces a brief refractory period and gradual recovery (with a slight overshoot).

e, Connectivity and coupling filters from other cells in the population. Black filled ellipse is this cell’s

RF center, and blue and red lines show connections from neighboring OFF and ON cells (line thickness

indicates coupling strength). Below, exponentiated coupling filters show the multiplicative effect on this

cell’s spike rate following a spike in a neighboring cell. f-h, Analogous plots for an example OFF cell.
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Figure 2: Analysis of response correlations. a-c, Example cross-correlations functions (CCFs) of retinal

responses, and simulated responses of the full and uncoupled models, for two ON cells (a), two OFF cells

(b), and an ON-OFF pair (c). Baseline is subtracted so that units are in spikes/s above (or below) the

cell’s mean rate. d RF mosaic overlaid with arbitrary labels. e, CCFs between all ON pairs, where the

i, jth plot shows the CCF between cell i and cell j. Gray box indicates the CCF plotted above in (a). f,

CCFs between all OFF pairs and g, between all ON-OFF pairs. h, Third-order (triplet) CCF between

three adjacent ON cells, showing the instantaneous spike rate of cell 5 as a function of the relative spike

time in cells 4 and 8 (left: RGCs; middle: full model; right: uncoupled model). i Analogous triplet CCF

for OFF cells 15, 16 and 22. j, Comparison of triplet CCF peak in RGC and model responses (full model

= black, uncoupled = gray), for randomly selected triplets of adjacent ON (open) and OFF cells (filled).
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Figure 3: Spike-train prediction comparison. a, Raster of responses of an ON RGC to 25 repeats of

a novel 1-s stimulus (top), and responses of uncoupled (middle) and full models (bottom) to the same

stimulus. b, Peri-stimulus time histogram (PSTH) of the RGC (black), uncoupled (blue) and coupled

model (red); both models account for ≈ 84% of the variance of the true PSTH. c, PSTH prediction by full

and uncoupled models, showing that coupling confers no advantage predicting average responses. d, Log-

likelihood of novel RGC spike responses under full and uncoupled models; full model provides 8% more

information about novel spike trains. e, Magnified 150-ms portion of RGC raster and PSTH (gray box in

a). Red dots highlight RGC spike times on selected individual trials, which are re-plotted in f. f, Single-

trial spike-train prediction using the coupled model. Top half of each plot shows population activity on

a single trial: true spike times of the cell (red dots), coupled ON cells (light gray dots) and coupled OFF

cells (dark gray dots; each line in the raster shows the spike times of a different cell). Below, a raster of 50

predicted responses of the cell in question, using both the stimulus and coupled responses (shown above)

to predict spike trains. Red trace shows the single-trial rate prediction (population-conditioned PSTH),

compared with true PSTH of the cell (black trace, identical in all plots). g, Correlation coefficient of

true spike trains and the PSTH (ordinate) and with population-conditioned predictions (abscissa); the

full model predicts single-trial responses with higher accuracy than the true PSTH.
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Figure 4: Decoding performance comparison. a, Bayesian decoding schematic: to estimate an unknown

stimulus segment from a set of observed spike times (highlighted in boxes), the stimulus prior p(s) is

multiplied by the model-defined likelihood p(r|s) to obtain the posterior p(s|r). The posterior mean is

the Bayes’ least-squares stimulus estimate. b, Log of the signal-to-noise ratio (SNR) for linear decoding,

and Bayesian decoding under the Poisson, uncoupled and full models, in units of bits/s [20]. The full

model preserves 20% more information than the uncoupled model, which indicates the additional sensory

information available from the population response when correlations are taken into account. c, Log-

SNR decomposed as a function of temporal frequency for various decoding methods (Poisson omitted for

clarity).
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Spatio-temporal correlations and visual signaling in a complete

neuronal population

May 20, 2008

Supplementary Materials

To provide more insight into the generalized linear model, we present several figures illustrating details

of the model components and their contributions to model response properties. We also discuss several

control analyses addressing whether the difference in performance of the full and uncoupled models

can be attributed primarily to their difference in capturing the response correlation structure. Finally,

we provide connections to several previous results on correlated spiking activity in neural populations,

specifically maximum-entropy analyses [1, 2] and pairwise measurements of coding efficiency [3].

Analysis of Model Components

Figure S1 shows the linear bases used to parametrize post-spike filters and coupling filters, respectively.

These bases provide a low-dimensional parametrization of the waveforms, allowing for fine temporal

structure near the time of a spike and coarse temporal structure at longer delays. The raised cosine

form for these vectors means they sum to a constant and are free of temporal aliasing.

Figure S2 shows that coupling strength falls off strongly with the distance between receptive field (RF)

centers, illustrating the fact that coupling effects are primarily restricted to neighboring cells (cf. [2]).

Coupling between ON cells is on average much stronger and extends over larger distances than between
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Figure S1: Bases used for representing spike-

history and coupling filters. Basis vectors have the

form of raised cosine “bumps”, so they sum to a

constant, and have log-scaling of the time axis, so

they can represent fine structure near the time of

a spike and coarser structure on longer timescales

using a restricted number of parameters (see Meth-

ods). Filters were fit as a weighted linear combina-

tion of the basis vectors. Above: 10-dimensional

basis for post-spike filters. Below: 4-dimensional

basis for coupling filters.

���������������
������

����� �������

� ��� !��
�

�

�

"

��� 

�
�
�
�
�
�
�
�
��
�
�
�
�#
�
�
�

�
�

� ��� !��
�

�

�

"

�����

Figure S2: Connectivity summary, showing

strength of coupling between cells vs. the distance

between their RF centers. Coupling strength is

quantified as the exponentiated amplitude of the

largest absolute peak of the filter exp(f(xpeak)),

where xpeak = argmaxx |f(x)|. Left: strength of

incoming coupling filters to ON cells. Right: cou-

pling filters into OFF cells. Points on the line y=1

indicate an absence of coupling (i.e., filters elimi-

nated by the sparse prior). Absence of ON-ON and

OFF-OFF points within the range 0–70 µm reflects

the minimum spacing between cells within a single

mosaic.

OFF cells.

Comparison of the fitted parameters obtained for the full and uncoupled models provides insight into

the manner in which correlations affect stimulus processing in the retina. Specifically, the spatial extent

of the receptive field “surround” mechanism is larger for the uncoupled model than for the full model

(fig. S3). This indicates that, when population activity is taken into account, each cell integrates light

from an effectively smaller region. In other words, the effect of stimuli far out in the surround can be

more parsimoniously explained in terms of population spiking activity. Classical estimates of receptive

fields, such as the spike-triggered average, do not resolve such effects. The functional consequence of

this change in receptive field structure (fig. S3c) is to make stimulus filters more orthogonal to one

another, meaning that stimulus drive is more independent across neurons under the full model.
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Figure S3: Receptive field changes induced by coupling. a, Ellipses show 1 SD contours of a Gaussian fit

to the surround mechanism for each cell, for uncoupled (above) and full models (below). b, Scatter-plot

of RF center and surround sizes; each point represents the estimated RF diameter of a single cell under

full and uncoupled models. Surround width is reduced by roughly 70% in the coupled model, while the

center width is roughly constant. c, Correlation coefficients between all pairs of RFs, under uncoupled

(x-axis) and full models (y-axis), showing RFs to be more orthogonal (i.e., closer to zero-correlation)

under the full model (cf. [5]).

To examine the relative magnitude of the inputs provided by stimulus and coupling-related model

components, we show the net linear input to an example ON cell from the stimulus filter and from

coupling filters from ON cell and to OFF cell activity (fig. S4). The sum of these inputs (including

post-spike filter output) can be loosely interpreted as membrane potential in a “soft-threshold integrate-

and-fire” model: the exponential nonlinearity forms a soft threshold whereby the probability of spiking

increases as a smooth function of membrane depolarization [6]. The relative importance of network-

and stimulus-induced inputs to each cell can be roughly quantified by the amplitude of the fluctuations

they induce in the membrane voltage. Across the population, the standard deviation of the total

network-induced input is approximately 1/2 the standard deviation of the stimulus-induced input in

ON cells, and 1/3 in OFF cells.

For each cell, the model converts linear input into an instantaneous spike rate by means of an expo-

nential nonlinearity. To assess the adequacy of this assumption, we compare an exponential function

with a direct “reconstruction” estimate of the nonlinearity, computed using the raw distribution of

filter outputs and the observed spike responses (fig. S5) [7]. These reconstructions look reasonably

exponential for both uncoupled and full-model parameter settings, though slightly better for ON than

OFF cells. For comparison, we also performed a complete re-fitting of the model parameters using
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Figure S4: Relative contribution of stimulus and coupling dependent inputs to an example ON cell.

a, Net linear input from the stimulus, ON cells, and OFF cells during a 500ms stimulus segment on a

single trial, with true spike times of the ON cell shown above (black dots). Traces show the output of

the stimulus filter (black), and the summed outputs of coupling filters from ON cells (red) and from OFF

cells (blue). b, Summing the three traces above gives the net external input to the cell (purple trace),

plotted alongside the stimulus-dependent input to this cell under the uncoupled model (its only external

input). Exponentiating the total input (which also includes input from the post-spike filter, omitted here

for visual clarity) gives the instantaneous spike rate of the model. c, Histogram showing the relative

magnitude of stimulus and population-induced inputs to each cell under the full model. x-axis is the

ratio of the standard deviation of each of these inputs (where population input is the sum of ON and

OFF inputs). Population-induced input tends to be approximately half as strong as stimulus-induced

input in ON cells (above), and about a third as strong in OFF cells (below).

output nonlinearities given by a half-wave rectified linear function and by log(1+exp(x)), which grows

linearly for large x and decays like ex for negative values. These models gave much lower likelihoods

for the observed data and exhibited poorer cross-validation performance.

Finally, we re-fit both full and coupled models using a flexible nonlinearity, parametrized as a cubic

spline with 8 piecewise polynomial segments. This addition conferred a slight improvement in cross-

validation performance (see fig. S7), and it did not elicit a noticeable change in the fitted filters. We

return to this model under Control Analyses, below.

Control Analyses

Although they have the same functional form, one might wonder whether the difference in performance

of the full and uncoupled models arises from some functional differences other than the full model’s

4
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Figure S5: Histogram-based estimates of the

nonlinearity transforming linear input to instan-

taneous spike rate (blue traces), for an example

ON (left) and OFF (right) cell, under uncou-

pled and full models (above and below, respec-

tively) [7]. The gray histograms show the distri-

bution over the net linear input (i.e., the sum of

all filter outputs) across time. The nonlinearity

represents the probability of observing a spike

for each bin in this histogram (with error bars

showing ±1 SEM, computed by regarding the

spike count in each bin as a binomial random

variable). An exponential function (black), the

assumed nonlinearity for both models, provides

a reasonable approximation to these functions.

ability to incorporate statistical dependencies between neurons. The text of the main article presents

several pieces of evidence that the difference is primarily related to correlations. Firstly, the full and

uncoupled models predict the PSTH with roughly equal accuracy in all cells, indicating that the models

have the same average stimulus-response properties. That is, the coupled model does not describe the

nonlinear transformation from stimuli to spikes more accurately, once correlations have been averaged

out. Secondly, the fact that single-trial predictions correlate more highly with spike trains than the

cell’s true PSTH (as shown in fig. 3) demonstrates an improvement that must be due to correlations:

any model that ignores correlations gives the same prediction on every repeat of the stimulus, and

therefore cannot do better than the PSTH itself. Thus, capturing the correlation structure clearly play

an important role in the coupled model’s improved performance.

Nevertheless, we performed several control analyses to determine whether differences in the nonlinear

behavior of the full and uncoupled models might underlie some of our findings. First, we investigated

the significance of the difference in model architecture by fitting the parameters of the coupled model

to a set of artificial “shuffled data”; we refer to this as the “shuffle-trained model” (fig. S6). This model

had the same connectivity and the same number of parameters as the full model, and therefore the

same space of possible nonlinear input-output mappings. Shuffled data were generated by using each

5



cell’s true spike times in conjunction with simulated spikes from neighboring neurons, elicited by a

presentation of the same stimulus to the coupled model.1 These training data therefore preserved the

stimulus dependence of the population response but removed its noise correlation structure. Figure

S6 shows the coupling filters obtained for an example ON and OFF cell, compared to those estimated

for the full model. Unsurprisingly, the shuffle-trained model exhibited similar PSTH prediction to the

full and uncoupled models. It exhibited a negligible improvement in predicting spike times (fig. S6,

right), and a < 1% increase in Bayesian decoding performance (not shown), over the uncoupled model.

Therefore, without access to the correlation structure present in simultaneous activity, the full-model

architecture behaves like the independent model, and is unable to extract more information from the

population responses.

� !�

�

�

"

!

�
������

�
�

�

� ����

��
�
�����$��

�#�����	���
��$

� !�

���

�

���

�
�������

�
������ � ���
�

����

���

����

���

����

+


�
�
��
,
�
�
�
�
�
��

�
�
%�
�
�

�����������������������
��������������

Figure S6: Control analysis #1: coupled model trained using shuffled spike data. The coupled model

(assuming the same connectivity as the original coupled model) was fit to artificial “shuffled” data,

where the stimulus dependence of the spikes used for fitting was intact, but the correlation structure was

removed by shuffling. Left: coupling waveforms (blue) obtained for an ON and OFF cell fit to shuffled

data, compared with the original waveforms fit to the true (simultaneously recorded) data (red). Right:

improvement in spike timing prediction of the original full and shuffle-trained models over the uncoupled

model.

A second group of control analyses was performed using versions of the coupled and uncoupled models

with more complicated nonlinear properties (fig. S7). If the full model’s advantage over the uncoupled

model were due to richer stimulus-processing capabilities, rather than its ability to capture correlations,

1We were forced to use simulated data for the shuffled spike-times of neighboring cells due to the fact that we did not

have multiple repeats of a long-duration stimulus. We also simulated a full set of simultaneous data from the model to

ensure that fitting the full model to this data returned a consistent estimate of the full model parameters. Thus, any

stimulus-related features that are capturable by the model were accurately reproduced by this shuffling procedure.

6



one would expect to see the advantage disappear once once both models had access to a sufficiently

rich class of nonlinearities. We therefore fit the data using several more-complicated “control models”,

which included:

• a point process model with a flexible (instead of exponential) nonlinearity for each cell, parametrized

using cubic splines

• a stochastic, leaky integrate-and-fire model with post-spike current ([8], and compared in [9])

• a point process model with multiple stimulus filters (excitatory and suppressive), giving each cell

sensitivity to multiple dimensions of the stimulus space (cf. [10]).

In the third model, the conditional intensity depended on the squared outputs of additional excitatory

and suppressive filters, and was given by λ = λ0

(

∏

e

(1+(ke ·x)2)
)/(

∏

i

(1+(ki ·x)2)
)

, where λ0 is the

conditional intensity formulated in the original model, x is the stimulus and {ke} and {ks} are stimulus

filters providing quadratic excitatory and suppressive input, respectively. We used two excitatory and

two suppressive filters, and fit all parameters (including those governing λ0) via gradient ascent of the

likelihood function. Two versions of each of these control models were fit: one uncoupled, with each

cell conditionally independent of the others, and a second with coupling, allowing the model to capture

joint dependencies in the response.

For all three control models (fig. S7), the effects of incorporating coupling between cells were directly

analogous to the effects in the original model: PSTH prediction was equally accurate with and without

coupling (left panel), while spike-timing prediction (middle) and decoding performance (right) exhib-

ited significant improvements under coupling. Most importantly, the magnitude of the increase in

encoding and decoding performance due to coupling was relatively constant across models (i.e., 20%

more stimulus information preserved when the population response is decoded under a coupled model).

This suggests that the nonlinear stimulus-response properties and response correlation structure make

relatively independent contributions to the model’s performance. Moreover, these results show that

7



even relatively complicated nonlinear models that ignore correlations do not exceed the performance of

the (original) full model. Although not shown here, cross-correlations exhibited by these coupled and

uncoupled models are indistinguishable from those of the original full and uncoupled models, indicating

that changes in nonlinear stimulus processing do not enhance prediction of the response correlation

structure.
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Figure S7: Control analysis #2: comparison of coupled and uncoupled models with more complex

nonlinear stimulus processing. Models included: (1) a point process model with a flexible nonlinearity,

parametrized using cubic splines (red squares); (2) a stochastic, leaky integrate-and-fire model with post-

spike aftercurrent [8]; and (3) a point process model with additional excitatory and suppressive stimulus

kernels, allowing multi-dimensional dependence on the stimulus. Left: Average percent of the PSTH

variance accounted for by coupled and uncoupled variants of each model (open symbols = average over ON

cells; filled = average over OFF cells). Prediction improves moderately for the more complicated models,

but coupled and uncoupled models exhibit no significant difference. Middle: Spike-timing prediction

(log-likelihood), showing that coupling provides a similar improvement in single-trial spike prediction

across models. Right: Bayesian decoding of the population response (stimulus reconstruction) improves

slightly for more complex models, but the ≈ 20% improvement conferred by incorporating the response

correlation structure is preserved across models (IF model not used due to the computational cost of

decoding analysis).

Comparison to maximum-entropy model predictions

Recent work has suggested that the statistics of retinal ganglion cell population responses, both in

the presence and absence of stimulation, are well described by a second-order maximum-entropy (or

“max-ent”) model, which describes the maximum-entropy distribution over binary random variables

with fixed mean and covariance [1, 2]. To compare our results with these findings, we fit the second-

order max-ent model to the simultaneous responses of a population of seven cells and examined the

8



observed and predicted frequencies of 7-digit binary words, indicating which cells spiked in a 10 ms

window (for each cell: 0 = ‘no spikes’; 1 = ‘one or more spikes’). We compared RGC word frequen-

cies collected during 8 minutes of stimulation with those emitted by the (simulated) max-ent model

and coupled/uncoupled generalized linear point process models (fig. S8). The max-ent and coupled

point-process models match the observed frequencies with approximately equal accuracy, while the

uncoupled-model prediction is noticeably less inaccurate. The coupled model is therefore consistent

with predictions of the second-order max-ent model.
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Figure S8: Comparison of 7-neuron binary word frequencies with the predictions of a 2nd-order

maximum-entropy model [1, 2]. Left: Distribution over binary words, computed using simultaneous

responses of 7 ON cells (shown inset) in 10 ms bins. Binary words (shown along x axis) have been sorted

by their observed frequency in the actual RGC population response (black trace), and are compared with

observed word frequencies from the maximum-entropy (red), coupled (blue) and uncoupled model (gray).

Right: Analogous plots for a collection of 7 OFF cells. In both cases, the coupled model provides similar

accuracy to the max-ent model in predicting word frequencies of RGC population, while the uncoupled

model performs substantially less accurately.

However, the generalized linear model makes an important advance over the maximum-entropy model

by incorporating both stimulus dependence and the full time-course of response correlations. Stimulus

dependence is especially important, because it is essential for determining whether correlations affect

the stimulus-coding properties of the neural population. The max-ent model used here provides a

description of the marginal distribution over responses, P (r), while the point-process models describes

the conditional response distribution, P (r|stim); only the latter distribution captures the relationship

between correlations and stimulus encoding.
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More generally, the fact that P (r) can be well described by a second-order maximum entropy model

does not imply the same for P (r|stim). We can illustrate this with a simple example: consider 3

neurons encoding 2 discrete stimuli (‘A’ and ‘B’) according to the following rule: if A is presented, an

odd number of neurons spike, with each possible spike pattern (100, 010, 001, 111) occurring with equal

probability; if stimulus B is presented, an even number of neurons spike, again with all possible patterns

(000, 011, 101, 110) equally likely. A second-order max-ent model cannot represent the conditional

distributions P (r|A) and P (r|B), because third-order correlations are essential to this encoding rule—

at least one neuron must have access to both its neighbors’ responses when deciding whether or not to

spike. However, if A and B occur equally often, then all 8 spike patterns occur with equal probability,

so the marginal distribution P (r) is independent, and therefore consistent with a first-order maximum

entropy description.

When comparing the second-order maximum-entropy model and the generalized linear point-process

model, it is also worth noting that, although both models capture statistical dependencies using pair-

wise interactions between neurons, responses of the point process model are not necessarily maximum-

entropy for any set of constraints on the moments of the response distribution (e.g., 2’nd order corre-

lations). This means that the point-process model does not offer a breakdown of the total entropy by

order (i.e., 1st, 2nd, 3rd-order effects), but it might in principle capture higher-order correlations that

differ from a second-order maximum entropy prediction.

Connection to pairwise analyses and Poisson spiking model

Previous work on the importance of correlations in neural coding has focused primarily on pairs of

neurons, due in part to the large amounts of data needed for information-theoretic (i.e., model-free)

analyses of joint coding [3]. To provide a more direct link to these studies, we repeated the decoding

analysis shown in fig. 4 using isolated pairs of neurons. Consistent with earlier findings, we observed that

preserving the response correlation structure between pairs provides a ≤ 10% increase in information.

10



Our results therefore indicate that the full set of spatio-temporal correlations in a neural population

account for more information than is observed for isolated pairs.

Analysis of a full population is critical because pairwise analyses can provide little evidence about the

importance of correlations across an entire population. Pairwise measurements are blind to third and

higher-order response statistics, meaning there is no limit to the information that could be encoded

using higher-order features of the population response. Moreover, second-order pairwise correlations

can have radically different influences on the information content of the full population (fig. S9).

For an idealized example, consider a population of n neurons, where each neuron contributes I0 bits

independently, and the correlations between any two neurons contribute 0.2I0 bits, so that for any two

isolated neurons, the percent increase in information due to the correlations is (0.2I0)/(2I0)×100 = 10%.

Now if correlations between any pair of neurons contribute the same information as the correlations

between any other pair of neurons (i.e., complete dependence of the pairwise correlations), then the

increase due to correlations for the full population is (0.2I0)/(nI0) × 100 = (20/n)%, giving a 0.7%

increase for our population of 27 cells. On the other hand, if each set of pairwise correlations contributes

independent information, the increase due to correlations for the full population is (
(

n

2

)

0.2I0)/(nI0)×100

= 10(n − 1)%, giving a 260% increase for our population (fig. S9). The range of values consistent with

pairwise measurements is thus extremely large, and it can increase or decrease with the number of

neurons. Determining the importance of correlated spiking across a full population therefore goes

significantly beyond the implications of pairwise analyses.

Lastly, to connect with one of the standard models in the literature, we compared the encoding per-

formance of the generalized linear point-process model with the classic linear-nonlinear-Poisson (LNP)

model [11], which lacks both spike-history dependence and coupling between cells (fig. S10). The LNP

model predicts both the PSTH (left) and the timing of spikes (right) less accurately than either the

full or the uncoupled model, though it still provides more accurate Bayesian stimulus decoding than

an optimal linear decoder (fig. 4).

11



���%��� � %��� � %� 
�

�

!

(

-

��


�
��
��
�
�

�
�
�
�

�
�
+
�

/�
�9���$
��

��
��2�� 4�������

� �� �� ��
�

���

���

"��


�
��
��
�
�

�
�
�
�

�
�
+
�

:)��������
������/�
��
��/������
���

����
�����
&
�#��
�&
��
�������

 
�������
����;�� �#
�

���$2

Figure S9: Analysis of pairwise decoding. Left: To connect with previous literature [3], we performed

the same decoding analysis shown in figure 4 using only two neurons at a time. Each bar represents

the mean (±1SD) percent increase in information for decoding under the coupled model vs. under the

independent model, for five OFF pairs, five ON-OFF pairs, and five ON-ON pairs. Consistent with

earlier findings, incorporating the correlation structure leads to a ≤10% increase in stimulus information.

Right: Pairwise results alone reveal very little about the importance of correlations in a full population.

If including the correlations between two neurons elicits a 10% increase in information (black dot), the

2nd-order correlations in a population of n neurons can elicit an increase between 20/n% and 10(n−1)%

(gray region). Our results (red dot) pinpoint the value within this range for a modest-sized population.
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Figure S10: Comparison of predictive power of full model and an inhomogeneous Poisson (LNP) model,

which lacks both coupling and post-spike waveforms, and whose output is therefore a Poisson process

(c.f. fig. 3c-d in the main text; same conventions apply). The LNP model performs less accurately than

the models with spike history effects, as measured both by the PSTH variance accounted for (left) and

the log-likelihood of the observed spike data (right) [8].
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