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Abstract

Spatio-temporal databases deal with geometries changing over time. In general, geometries cannot only change in

discrete steps, but continuously, and we are talking about moving objects. If only the position in space of an object

is relevant, then moving point is a basic abstraction; if also the extent is of interest, then the moving region
abstraction captures moving as well as growing or shrinking regions. We propose a new line of research where

moving points and moving regions are viewed as 3-D (2-D space� time) or higher-dimensional entities whose

structure and behavior is captured by modeling them as abstract data types. Such types can be integrated as base

(attribute) data types into relational, object-oriented, or other DBMS data models; they can be implemented as

data blades, cartridges, etc. for extensible DBMSs. We expect these spatio-temporal data types to play a similarly

fundamental role for spatio-temporal databases as spatial data types have played for spatial databases. The paper

explains the approach and discusses several fundamental issues and questions related to it that need to be clari®ed

before delving into speci®c designs of spatio- temporal algebras.
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1. Introduction

In the past, research in spatial and temporal data models and database systems has mostly

been done independently. Spatial database research has focused on supporting the

modeling and querying of geometries associated with objects in a database [13]. Temporal

databases have focused on extending the knowledge kept in a database about the current

state of the real world to include the past, in the two senses of ``the past of the real world''

(valid time) and ``the past states of the database'' (transaction time) [38]. Nevertheless,



many people have felt that the two areas are closely related, since both deal with

``dimensions'' or ``spaces'' of some kind, and that an integration ®eld of ``spatio-temporal

databases'' should be studied1 and would have important applications. The question is,

what the term spatio-temporal database really means.

Clearly, when we try an integration of space and time, we are dealing with geometries
changing over time. In spatial databases, three fundamental abstractions of spatial objects

have been identi®ed: A point describes an object whose location, but not extent, is

relevant, e.g., a city on a large scale map. A line (meaning a curve in space, usually

represented as a polyline) describes facilities for moving through space or connections in

space (roads, rivers, power lines, etc.). A region is the abstraction for an object whose

extent is relevant (e.g., a forest or a lake). These terms refer to 2-D space, but the same

abstractions are valid in three or higher-dimensional spaces.

Now, considering points, the usual word for positions or locations changing over time is

move. Regions may change their location (i.e., move) as well as their shape (grow or

shrink). Hence we conclude that spatio-temporal databases are essentially databases about
moving objects.

Since lines (curves) are themselves abstractions or projections of movements, it appears

that they are not the primary entities whose movements should be considered, and we

should focus ®rst2 on moving points and moving regions. In the approach described in this

paper we will consider the fundamental properties of moving points and moving (and

evolving) regions and try to support their treatment in data modeling and querying, rather

than be driven by particular (existing) applications. On the other hand, if we succeed in

providing such basic support, then we may be able to initiate applications that so far have

never been thought of. Table 1 shows a list of entities that can move, and questions one

might ask about their movements.

Although we focus on the general case of geometries that may change in a continuous

manner (i.e., move), one should note that there is a class of applications where geometries

change only in discrete steps. Examples are boundaries of states, or cadastral applications,

where e.g., changes of ownership of a piece of land can only happen through speci®c legal

actions. Our proposed way of modeling is general and includes these cases, but for them

also more traditional strategies could be used, and we shall compare the approaches in the

paper.

Also, if we consider transaction time (or bitemporal) databases, it is clear that changes

to geometries happen only in discrete steps through updates to the database. Hence it is

clear that the description of moving objects refers ®rst of all to valid time. So we assume

that complete descriptions of moving objects are put into the database by the applications,

which means we are in the framework of historical databases re¯ecting the current

knowledge about the past3 of the real world. Transaction time databases about moving

objects may be feasible, but will not be considered initially.

There is also an interesting class of applications that can be characterized as artifacts

involving space and time, such as interactive multimedia documents, virtual reality

scenarios, animations, etc. The techniques developed here might be useful to keep such

documents in databases and ask queries related to the space and time occurring in these

documents.
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The purpose of this paper is to describe and discuss an approach to modeling moving

and evolving spatial objects based on the use of abstract data types. Essentially, we

introduce data types for moving points and moving regions together with a set of

operations on such entities. One needs also a number of related auxiliary data types, such

as pure spatial or temporal types, time-dependent real numbers, and so forth. This

collection of types and operations can then be integrated into any DBMS object algebra or

query language to obtain a complete data model and query language.

The goal of this ®rst paper on the approach is not yet to offer a speci®c design of such

types and operations or a formal de®nition of their semantics. This needs to be done in

further steps. Instead, here the goal is to give an outline of the work that should be done, to

justify the approach in the light of possible alternatives, and to discuss a number of basic

design choices that need to be made before delving into the speci®c designs.

There has been a large body of work on spatial and on temporal databases. We discuss

the basic approaches taken in these ®elds within Section 3. Not so many papers have

addressed the integration of space and time. We discuss this more speci®c research in

Section 4.

The paper is structured as follows: Section 2 explains the basic idea of spatio-temporal

data types in a bit more detail. Section 3 is devoted to discussing basic questions regarding

the approach as well as some fundamental design choices that need to be made. Section 4

discusses related work, and Section 5 offers conclusions and future work.

2. The basic idea

Let us assume that a database consists of a set of object classes (of different types or

schemas). Each object class has an associated set of objects; each object has a number of

attributes with values drawn from certain domains or atomic data types. Of course, there

may be additional features, such as object (or oid-) valued attributes, methods, object class

hierarchies, etc. But the essential features are the ones mentioned above; these are

common to all data models and already given in the relational model.

We now consider extensions to the basic model to capture time and space. As far as

objects are concerned, an object may be created at some time and destroyed at some later

time. So we can associate a validity interval with it. As a simpli®cation, and to be able to

work with standard data models, we can even omit this validity interval, and just rely on

time-dependent attribute values described next.

2.1. Spatio-temporal types and operations

Besides objects, attributes describing geometries changing over time are of particular

interest. Hence we would like to de®ne collections of abstract data types, or in fact many-
sorted algebras containing several related types and their operations, for spatial values

changing over time. Two basic types are mpoint and mregion. Let us assume that purely

spatial data types called point and region are given that describe a point and a region in the
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2-D-plane4 (a region may consist of several disjoint areas which may have holes) as well

as a type time that describes the valid time dimension. Then we can view the types mpoint
and mregion as mappings from time into space, that is

mpoint � time? point

mregion � time? region

More generally, we can introduce a type constructor t which transforms any given atomic

data type a into a type t(a) with semantics

t�a� � time?a
and we can denote the types mpoint and mregion also as t(point) and t(region),

respectively.

Avalue of type mpoint describing a position as a function of time can be represented as a

curve in the 3-D space �x; y; t� shown in ®gure 1. We assume that space as well as time

dimensions are continuous, i.e., isomorphic to the real numbers. (It should be possible to

insert a point in time between any two given times and ask for e.g., a position at that time.)

A value of type mregion is a set of volumes in the 3-D space �x; y; t�. Any intersection

of that set of volumes with a plane t � t0 yields a region value, describing the moving

region at time t0. Of course, it is possible that this intersection is empty, and an empty

region is also a proper region value.

We now describe a few example operations for these data types. Note that these are

purely for illustrative purposes; this is in no way intended to be a closed or complete

design. Such a complete design is being developed in �14�.

Figure 1. A moving point.
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Generic operations for moving objects are, for example:

t�a�6time ?a at

t�a� ?a minvalue;maxvalue

t�a� ? time start; stop

t�a� ? real duration

a ?t�a� const

At gives the value of a moving object at a particular point in time. Minvalue and

maxvalue give the minimum and maximum values of a moving object. Both functions are

only de®ned for types a on which a total order exists. Start and stop return the minimum

and maximum of a moving value's (time) domain, and duration gives the total length of

time intervals a moving object is de®ned. We shall also use the functions startvalue(x)
and stopvalue(x) as an abbreviation for at(x, start(x)) and at(x, stop(x)), respectively.

Whereas all these operations assume the existence of moving objects, const offers a

canonical way to build spatio-temporal objects: const(x) is the ``moving''5 object that

yields x at any time.

In particular, for moving spatial objects we may have operations such as

mpoint6mpoint ?mreal mdistance

mpoint6mregion ?mpoint visits

Mdistance computes the distance between the two moving points at all times and hence

returns a time changing real number, a type that we call mreal (``moving real'';

mreal � t�real�), and visits returns the positions of the moving point given as a ®rst

argument at the times when it was inside the moving region provided as a second

argument. Here it becomes clear that a value of type mpoint may also be a partial

function, in the extreme case a function where the point is unde®ned at all times.

Operations may also involve pure spatial or pure temporal types and other auxiliary

types. For the following examples, let line be a data type describing a curve in 2-D space

which may consist of several disjoint pieces; it may also be self-intersecting. Let region be

a type for regions in the plane which may consist of several disjoint faces with holes. Let

us also have operations

mpoint ? line trajectory

mregion ? region traversed

point6region ? bool inside

line ? real length
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Here trajectory is the projection of a moving point onto the plane. The corresponding

projection for moving regions is the operation traversed that gives the total area the

moving region ever has covered. Inside checks whether a point lies inside a region, and

length returns the total length of a line value.

2.2. Some example queries

The presented data types can now be embedded into any DBMS data model as attribute

data types, and the operations be used in queries. For example, we can integrate them into

the relational model and have a relation

flights �id: string; from: string; to: string; route: mpoint�

We can then ask a query ``Give me all ¯ights from DuÈsseldorf that are longer than

5000 kms'':

SELECT id

FROM flights

WHERE from � ``DUS'' AND length�trajectory(route)�45000

This query uses projection into space. Dually, we can also formulate queries projecting

into time. For example, ``Which destinations can be reached from San Francisco within 2

hours?'':

SELECT to

FROM flights

WHERE from � ``SFO'' AND duration(route)5� 2:0

Beyond projections into space and time, there are also genuine spatio-temporal questions

that cannot be solved on projections. For example, ``Find all pairs of planes that during

their ¯ight came closer to each other than 500 meters!'':

SELECT A.id, B.id

FROM flights A, flights B

WHERE A.id 54 B.id AND minvalue�mdistance(A.route, B.route)�50:5

This is in fact an instance of a spatio-temporal join.

The information contained in spatio-temporal data types is very rich. In particular,

relations that would be used in traditional or spatial databases can be readily derived. For

instance, we can easily de®ne views for ¯ight schedules and airports:
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CREATE VIEW schedule AS

SELECT id, from, to, start(route) AS departure, stop(route) AS arrival

FROM flights

CREATE VIEW airport AS

SELECT DISTINCT from AS code, startvalue(route) AS location

FROM flights

The above examples use only one spatio-temporal relation. Even more interesting

examples arise if we consider relationships between two or more different kinds of

moving objects. To demonstrate this we use a further relation consisting of weather

information, such as high pressure areas, storms, or temperature maps.

weather (kind: string; area: mregion�

The attribute ``kind'' gives the type of weather event, such as, ``snow-cloud'' or

``tornado'', and the ``area'' attribute provides the evolving extents of the weather

features.

We can now ask, for instance, ``Which ¯ights went through a snow storm?''

SELECT id

FROM flights, weather

WHERE kind � ``snow storm'' AND duration�visits(route, area)�40

Here the expression visits(route, area) computes for each ¯ight/storm combination a

moving point that gives the movement of the plane inside this particular storm. If a ¯ight

passed a storm, this moving point is not empty, that is, it exists for a certain amount of

time, which is checked by comparing the duration with 0. Similarly, we can ®nd out

which airports were affected by snow storms:

SELECT DISTINCT from

FROM airport, weather

WHERE kind � ``snow storm'' AND location inside traversed(area)

Finally, we can extend the previous query to ®nd out which airports are most affected by

snow storms. We can intersect the locations of airports with all snow storms by means of

visits and determine the total durations:
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SELECT code, SUM�duration�visits�const(location), area��� AS storm hours

FROM airport, weather

WHERE kind � ``snow storm''

GROUP BY code

HAVING storm hours 40

ORDER BY storm hours

3. Some fundamental issues and choices

Given this proposal of an approach to spatio-temporal modeling and querying, several

basic questions arise that need to be clari®ed before proceeding in this direction:

* How is this related to the approaches taken in spatial databases and in temporal

databases?
* Is it not suf®cient to simply plug in spatial data types into temporal databases?
* We have seen spatio-temporal data types that are mappings from time into spatial data

types. Is this realistic? How can we store them? Don't we need ®nite, discrete

representations?
* If we use discrete representations, what do they mean? Are they observations of the

moving objects?
* If we use discrete representations, how do we get the in®nite entities from them that

we really want to model? What kind of interpolation should be used?
* Finally, how does all this compare to the constraint database approach?

In the following subsections we discuss these questions.

3.1. The spatial vs. the temporal database approach

The proposed approach is in fact quite similar to what has been done in spatial databases so

far. There, a database is viewed as a collection of object classes; objects may or may not

have attributes of spatial data types. Research has then tried to identify ``good'' designs of

collections of types and operations, or algebras (e.g., [36], [34], [20]). As far as the DBMS

is concerned, spatial data types are in principle not different from other data types. Of

course, they need special support in indexing, join methods, etc., but this might also

happen to other data types. So the proposal of spatio-temporal data types directly

continues the spatial DB approach.

The obvious question is whether one could not equally well, or perhaps better, extend

the approach taken in temporal databases.

The following is surely a simpli®cation, but should in essence be true: in temporal

databases the emphasis has been on considering databases as containing collections of
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facts rather than objects. Hence a tuple in a relation is basically a fact. A normal database

contains facts that describe what is now believed in the database to be the current state of

the real world. To obtain temporal databases, tuples are extended with time stamps that

associate either a valid time interval (historical databases) or a transaction time interval
(rollback databases), or both (bitemporal databases) [32], [33]. A valid time interval

expresses when this fact was true in the real world; a transaction time interval shows when

the fact was believed in the database. Hence we get, for example, relations like the

following:

employee (name: string j salary: int k from j to j begin j end)

It is important to note that time stamps are system-de®ned and maintained attributes

rather than user-de®ned as in spatial databases. In a temporal database of some ¯avor

(e.g., historical), every relation has these (e.g., valid time) attributes. This makes sense,

since time is a universal concept that applies to all facts in a database. Because time is so

general that it affects all facts of the database, it de®nitely makes sense to let the system

deal with it as far as possible automatically. Hence the user does not have to specify time

attributes when creating a new relation schema, and in querying, a lot of effort has been

invested to make sure that these system-maintained attributes behave naturally. For

example, performing a join on two tables, the system automatically puts only tuples

together that are valid at the same time. Also, if the user is not interested in the time

aspects and does not mention them in a query, the behavior should be consistent with that

of a standard database (these issues are known as upward compatibility, snapshot

reducibility, support of legacy applications, etc. [4]).

Because a user does not declare and see explicit time attributes, there is no big incentive

to offer e.g., time intervals with a number of operations in the style of abstract data types

that would then be used like other data types in querying (although some work in this

direction exists [25]). Rather, special query language extensions are provided to allow the

user to refer to and describe relationships between the implicit time attributes.

If we try to extend this approach in a straightforward way to integrate space, we could

add a system-maintained spatial attribute (e.g., a region) to each tuple. But what would that

mean? To be consistent with the fact-based interpretation, it should mean that this is the

region in space where this fact is true. There may be a few applications with facts whose

truth varies over space. But the vast majority of facts is independent of space. Hence on the

whole, it does not seem the right approach to associate a system-de®ned spatial attribute

with each tuple.

We have discussed only the perhaps most popular approach of using tuple time stamps.

There is also work in temporal databases proposing attribute time stamps, that is, describe

the development of an attribute value by giving a set of (time-interval, value) pairs, or a

sequence of (time, value) pairs [6], [21], [11]. In fact, at an abstract level these approaches

view attribute values as functions from time into some domain, as we do here. Hence this

is not so far from our proposal of spatio-temporal data types. Also the time sequences
approach [35] appears much more closely related than tuple time stamps.
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3.2. Why not just use ``temporal databases with spatial data types''

Here the idea is quite simple: take any temporal data model or DBMS with its system-

maintained time attribute(s), and enhance it by offering spatial data types with operations

to be used as user-de®ned attributes, as in spatial databases. For example, we may have a

valid-time relation:

country (name: string j area: region k from j to)

Each tuple describes the extent of a country during a certain period of time. Whenever a

country's boundaries change, this is recorded in another tuple.

This is something like the cross product of temporal and spatial databases. Capabilities of

spatial and temporal systems are combined without any speci®c integration effort. This

approach is natural and reasonable, and it appears that its technology is already well-

understood, as techniques from the two ®elds can be used. However, it is limited to

certain classes of spatio-temporal applications and also has some other drawbacks, as we

will see. As far as data modeling is concerned, this kind of model can essentially describe

stepwise constant values. To understand its scope, let us ®rst introduce a classi®cation of

spatio-temporal applications.

3.2.1. Classes of applications. We characterize applications with respect to their

``shape'' in the 3-D space (2-D space, time). For example, (point, point) means a point in

space and a point in time.

(1) Events in space and timeÐ(point, point). Examples are archeological discoveries,

plane crashes, volcano eruptions, earthquakes (at a large scale where the duration is

not relevant).

(2) Locations valid for a certain period of timeÐ(point, interval). Examples are: cities

built at some time, still existing or destroyed; construction sites (e.g., of buildings,

highways); branches, of®ces, plants, or stores of a company; coal mines, oil wells,

being used for some time; or ``immovables'', anything that is built at some place

and later destroyed.

(3) Set of location eventsÐsequence of (point, point). Entities of class (1) when viewed

collectively. For example, the volcano eruptions of the last year.

(4) Stepwise constant locationsÐsequence of (point, interval). Examples are: the

capital of a country; the headquarter of a company; the accomodations of a traveler

during a trip; the trip of an email message (assuming transfer times between nodes

are zero).

(5) Moving entitiesÐmoving point. Examples are people, planes, cars, etc., see table 1.

(6) Region events in space and timeÐ(region, point). E.g., a forest ®re at large scale.

(7) Regions valid for some period of timeÐ(region, interval). For example, the area

closed for a certain time after a traf®c accident.
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(8) Set of region eventsÐsequence of (region, point). For example, the Olympic games

viewed collectively, at a large scale.

(9) Stepwise constant regionsÐsequence of (region, interval). For example, countries,

real estate (changes of shape only through legal acts), agricultural land use, etc.

(10) Moving entities with extentÐmoving region. For example, forests (growth); forest

®res at small scale (i.e., we describe the development); people in history; see table 1.

3.2.2. Suitability of this approach. As far as describing the structure of data is

concerned, the approach of using ``temporal databases with spatial data types'' (SDT-

TDB for short) can naturally describe application classes (1) through (4) and (6) through

(9). But it cannot capture any kind of movement, that is, classes (5) and (10). On the other

hand, our proposal of spatio-temporal data types is entirely general and can easily describe

all ten classes of applications.

If we consider operations on data, then SDT-TDBs have dif®culty to support queries

that refer to the development of an entity over time, for example, ``What was the largest

extent of a country ever?'' or ``Find travelers that move frequently!''. Such questions have

to be translated into operations on sets of tuples, and the ®rst step is always to retrieve all

tuples describing the entity. Apart from being inef®cient, de®ning operations on sets of

tuples and integrating these into a query language as well as into query processing is

dif®cult. Viewing the time-dependent geometry as an entity and an ADT as we propose

seems much cleaner and simpler.

There is also a problem if the object with the stepwise constant spatial attribute changes

frequently with respect to other attribute values. In that case, a fresh version of the tuple

needs to be created whenever the other attribute value changes. Traditional temporal

database research has assumed that attribute values have small representations. This is not

true for spatial entities, which may have quite large descriptions. Hence if we keep many

copies of the spatial attribute, just because another attribute changes, then a lot of storage

is wasted. One can try to avoid this by vertical decomposition of such relations, but this, of

course, has also its drawbacks, as joins are needed to put tuples together again.

In summary, this approach is valid and can support some applications, but also has its

problems. Spatio-temporal data types support in addition all kinds of movements, and

avoid the mentioned problems. So they seem preferable even for those applications that

can be treated with SDT-TDBs.

3.3. Abstract vs. discrete modeling

What does it mean to develop a data model with spatio-temporal data types? Actually, this

is a design of a many-sorted algebra. There are two steps:

1. Invent a number of types and operations between them that appear to be suitable for

querying. So far these are just names, which means one gives a signature. Formally,
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the signature consists of sorts (names for the types) and operators (names for the

operations).

2. De®ne semantics for this signature, that is, associate an algebra, by de®ning carrier
sets for the sorts and functions for the operators. So the carrier set for a type t contains

the possible values for t, and the functions are mappings between the carrier sets.

For a formal de®nition of many-sorted signature and algebra see [9] or [12]. Now it is

important to understand that one can make such designs at two different levels of

abstraction, namely as abstract or as discrete models.

3.3.1. Abstract models are simple. . . Abstract models allow us to make de®nitions in

terms of in®nite sets, without worrying whether ®nite representations of these sets exist.

This allows us to view a moving point as a continuous curve in the 3-D space, as an

arbitrary mapping from an in®nite time domain into an also in®nite space domain. All the

types that we get by application of the type constructor t are functions over an in®nite

domain, hence each value is an in®nite set.

This abstract view is the conceptual model that we are interested in. The curve described

by a plane ¯ying over space is continuous; for any point in time there exists a value,

regardless of whether we are able to give a ®nite description for this mapping (or relation).

In Section 2 we have in fact described the types mentioned under this view. In an abstract

model, we have no problem in using types like ``moving real'', mreal, and operations like

mpoint6mpoint ?mreal mdistance

since it is quite clear that at any time some distance between the moving points exists

(when both are de®ned). It is also easy to introduce an operation velocity:

mpoint ?mpoint velocity

This is just the derivative of the time-dependent vector �r�t� giving the position of the

moving point, that is, q
qt

�r�t�, usually denoted as _�r�t�, which is a time-dependent vector

again and hence matches the type mpoint.
De®ning formally an algebra for an abstract model looks as follows. As mentioned

above, we need to de®ne carrier sets for the types (sorts) and functions for the operators.

For a type t, we denote its carrier set as At and for an operator op the function giving its

semantics as fop. We consider the following example signature:

sorts point; time; real;mpoint;mreal

operators

mpoint6time ? point attime

mpoint6mpoint ?mreal mdistance
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Here attime is the operation that gives us the position of the moving point at the speci®ed

time. We ®rst de®ne the carrier sets:

Apoint :� IR2 [ f?g

Atime :� IR [ f?g

Areal :� IR [ f?g

Ampoint :� ff j f : Atime?Apoint is a functiong

Amreal :� ff j f : Atime?Areal is a functiong

So a point is an element of the plane over real numbers, or unde®ned.6 For the ``moving''

types one could also provide a single generic de®nition based on the type constructor t
introduced in Section 2:

Va [ fpoint; real; . . .g : At�a� :� ff j f : Atime?Aa is a functiong

Functions are de®ned as follows. Let r, s be values of type mpoint and t a time.

fattime �r; t� :� r�t�
fmdistance �r; s� :�

g : Atime?Areal such that g�t� � d�r�t�; s�t�� if r�t� 6�?6s�t� 6�?
? otherwise

�
where d(p, q) denotes the Euclidean distance between two points in the plane.

So abstract models are conceptually simple and their semantics can be de®ned relatively

easily. Again, this simplicity is due to the fact that we admit de®nitions in terms of in®nite

sets and functions without worrying whether ®nite representations exist.

3.3.2. . . . But only discrete models can be implemented. The only trouble with abstract

models is that we cannot store and manipulate them in computers. Only ®nite and in fact

reasonably small sets can be stored; data structures and algorithms have to work with

discrete (®nite) representations of the in®nite point sets. From this point of view, abstract

models are entirely unrealistic; only discrete models are usable.

This means we somehow need discrete models for moving points and moving regions as

well as for all other involved types (mreal, region, . . .). We can view discrete models as

approximations, ®nite descriptions of the in®nite shapes we are interested in. In spatial

databases there is the same problem of giving discrete representations for in principle

continuous shapes; there almost always linear approximations have been used. Hence, a

region is described in terms of polygons and a curve in space (e.g., a river) by a polyline.
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Linear approximations are attractive because they are easy to handle mathematically; most

algorithms in computational geometry work on linear shapes such as rectangles,

polyhedra, etc. A linear approximation for a moving point is a polyline in 3-D space; a

linear approximation for a moving region is a set of polyhedra (see ®gure 2). Remember

that a moving point can be a partial function, hence it may disappear at times, the same is

true for the moving region.

De®ning formally an algebra for a discrete model means the same as for the continuous

model: De®ne carrier sets for the sorts and functions for the operators. We consider a part

of the example above:

sorts point; time; real;mpoint

operators

mpoint6times ? point attime

Type mreal and operator mdistance have been omitted; for good reason, as we will see.

Carrier sets can be de®ned as follows:

Apoint :� Dpoint [ f?g where Dpoint � real6real

Atime :� Dtime [ f?g where Dtime � real

Areal :� real [ f?g
Ampoint :� f5�p1; t1; b1; c1�; . . . ; �pm; tm; bm; cm�4jm � 0;

�V1 � i � m : pi [Dpoint; ti [Dtime; bi [ bool; ci [ bool�;
�Vi; j [ f1; . . . ;mg : i5j) ti5tj�g

Figure 2. Discrete representations for moving points and moving regions.
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A few explanations are needed. Here by ``real'' and ``bool'' we mean data types offered

by a programming language. We have introduced names for the de®ned part of a carrier

set, e.g., Dpoint. A moving point is represented by a sequence of quadruples. The sequence

may be empty; this will mean that the position is unde®ned at all times. Each quadruple

contains a position in space pi and a time ti. It also contains a ¯ag bi which tells whether

the point is de®ned at times between ti and ti�1 �bi � true�. This allows for the

representation of partial functions (of the conceptual level). Finally, there is a ¯ag ci

which states whether between ti and ti�1 a stepwise constant interpretation is to be

assumed, i.e., the point stayed in pi, did not move �ci � true�, or linear interpolation, i.e.,

a straight line between pi and pi�1, is to be used �ci � false�. This representation has been

chosen in order to support all classes of applications for moving points (1) through (5) of

Section 3.2.1, e.g., unique events, stepwise constant locations, etc.

The intended meaning of the structure that we have just described needs of course to be

formalized. This is exactly the semantics of the operator attime:

Let r be a value of type mpoint and t a time value. Let r �5�p1; t1; b1; c1�; . . . ;
�pm; tm; bm; cm�4 for some m � 0.

fattime�r; t� :�
? if m � 0

? if m406�t5t1Vt4tm�
pi if m � 16�9i [ f1; . . . ;mg : t1 � t�
lin�pi; ti; pi�1; ti�1; t� if m � 26�9i [ f1; . . . ;mÿ 1g : �ti5t5ti�1�

6bi � true6ci � false�
pi if m � 26�9i [ f1; . . . ;mÿ 1g : �ti5t5ti�1�

6bi � true6ci � true�
? if m � 26�9i [ f1; . . . ;mÿ 1g : �ti5t5ti�1�

6bi � false�

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
where lin�p1; t1; p2; t2; t� is a function that performs linear interpolation (puts a line

through the two points �p1; t1� and �p2; t2� in 3-D space and returns the point p on the line

at time t).
One can observe that de®nitions for the discrete model are considerably more complex

than those for the abstract model. On the other hand, they can be translated into data

structures and algorithms which is not the case for the abstract model.

Apart from complexity, there are other dif®culties with discrete modeling. Suppose we

wish to de®ne the type mreal and the operation mdistance. What is a discrete

representation of the type mreal ? Since we like linear approximations for the reasons

mentioned above, the obvious answer would be to use a sequence of pairs (value, time) and

use linear interpolation between the given values, similarly as for the moving point. Then

an mreal value would look as shown in ®gure 3. (For 1-D values depending on time it is

more natural to use a horizontal time axis.)
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If we now try to de®ne the mdistance operator

mpoint6mpoint ? mreal mdistance

we have to determine the time-dependent distance between two moving points

represented as polylines. To see what that means, imagine that through each vertex of

each of the two polylines we put a plane t � ti parallel to the xy-plane. In three

dimensions this is hard to draw; so we show it just in the x and t dimensions in ®gure 4a.

Within each plane t � ti we can easily compute the distance; this will result in one of the

vertices for the resulting mreal value. Between two adjacent planes we have to consider

the distance between two line segments in 3-D space (see ®gure 4b). However, this is not

a linear but a quadratic function (moving along the time axis, the distance may decrease

and then increase again).

This is annoying, especially since the minimal distance between two moving points can

be much smaller than the distance measured in any of the planes t � ti. Hence using just

these measurements as vertices for the moving real and then use linear interpolation would

lead to quite wrong results. What can be done? One can either stick with linear

interpolation and then add as vertices the focal points of the parabolas describing the time-

dependent distance between two planes. In this way at least the minimal distance would

not be missed. However, then the discrete model would already be inconsistent in itself, as

Figure 3. Discrete model of a moving real.

Figure 4.

(a) (b)

(a) Laying planes through vertices of a moving point; (b) two segments passing in 3-D.
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the behavior of the distance between the two polylines is not correctly represented. An

alternative would be to de®ne the discrete model for the moving real in such a way, that it

contains parameters for quadratic functions between two vertices. But this immediately

raises other questions. Why just quadratic functions motivated by the mdistance operation,

perhaps other operations need other functions? Should we allow parameters for

polynomials? Up to what degree? Storing these parameters is expensive. And all kinds

of operations that we need on moving reals must then be able to deal with these functions.

We have discussed this example in some detail to make clear what kind of nasty

problems arise in discrete modeling that we simply do not see in abstract modeling. This is

certainly not the only example, we will discuss a similar problem below. Nevertheless,

only discrete models are (directly) implementable.

3.3.3. Both levels of modeling are needed. We conclude that both levels of modeling

are indispensable. For the discrete model this is clear anyway, as only discrete models can

be implemented. However, if we restrict attention directly to discrete models, there is a

danger that a conceptually simple, elegant design of query operations is missed. This is

because the representational problems might lead us to prematurely discard some options

for modeling.

For example, from the discussion above one might conclude that moving reals are a

problem and no such type should be introduced. But then, instead of operations minvalue,
maxvalue, etc. on moving reals one has to introduce corresponding operations for each

time-dependent numeric property of a moving object. Suppose we are interested in

distance between two moving points, speed of a moving point, and size and perimeter of a

moving region. Then we need operators mindistance, maxdistance, minspeed, maxspeed,
and so forth. Clearly, this leads to a proliferation of operators and to a bad design of a query

language. So the better strategy is to start with a design at the abstract level, and then to

aim for that target when designing discrete models.

3.4. Discrete models: observations vs. description of shape

Looking at the sequence of 3-D points describing a moving point in a discrete model, one

may believe that these are observations of the moving object at a certain position at a

speci®c time. This may or may not be the case. Our view is that it is, ®rst of all, an adequate

description of the shape of a continuous curve (i.e., an approximation of that curve). We

assume that the application has complete knowledge about the curve, and puts into the

database a discrete description of that curve.

What is the difference to observations? Observations could mean that there are far too

many points in the representation, for example, because a linear movement over an hour

happens to have been observed every second. Observations could also be too few so that

arbitrarily complex movements have happened between two recorded points; in that case

our (linear or other) interpolation between these points could be arbitrarily wrong. Hence

we assume that the application, even if it does make observations, employs some

preprocessing of observations and also makes sure that enough observations are taken.
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Note that it is quite possible that the application adds points other than observations to a

curve description, as it may know some physical laws governing the movements of this

particular class of objects.

The difference in view becomes even more striking if we consider moving regions. We

require the application to have complete knowledge about the 3-D shape of a moving

region so that it can enter into the database the polyhedron (or set of polyhedra) as a good

approximation. In contrast, observations could only be a sequence of region values. But

whereas for moving points it is always possible to make a straight line interpolation

between two adjacent positions, there is no way that a database system could, in general,

deduce the shape of a region between two arbitrary successive observations. For example,

two observations may look as shown in ®gure 5. This region has split and one of the

resulting parts has developed a hole.

Hence, it is the job of the application to make enough observations and otherwise have

some knowledge how regions of this kind can behave and then apply some preprocessing

in order to produce a reasonable polyhedral description. How to get polyhedra from a

sequence of observations, and what rules must hold to guarantee that the sequence of

observations is ``good enough'' may be a research issue in its own right. We assume this is

solved when data are put into the database.

3.5. Discrete models: linear vs. nonlinear functions for shape description

In a discrete model one can describe the shape of a continuous curve (e.g., a moving point)

by either linear functions (a polyline) or other functions. In Section 3.3.2 we have

explained why linear functions are attractive, and we have used linear interpolation in the

example model. However, it is also possible to use, for example, higher order polynomials,

and this has also certain advantages.

Technically, the model of Section 3.3.2 describes a moving point by a sequence of 3-D

points, and uses linear interpolation between two adjacent points. But this is entirely

Figure 5. Two observations of a moving region.
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equivalent to a model which decomposes the time axis into a sequence of time intervals,

and describes the curve within each time interval by giving (the parameters of ) a linear

function. That is, one interval could be described as ��t0; t00�; a; b; c; d�, meaning that the

curve within the interval �t0; t00� is r�t� � �x�t�; y�t�� with x�t� � at� b; y�t� � ct� d.

Similarly, one could use in the model (and later store in a data structure) parameters of

other functions.

Whereas in any case we are using a piece-wise approximation of the curve to be

described, an advantage of higher-order polynomials could be that less pieces are needed,

and that perhaps the approximation of the curve within each piece (time interval) could be

more precise. Also, linear approximations are a bit unnatural for describing movements.

Firstly, movements in most cases do not have sudden bends. Second, if we compute the

derivative of linear functions for operations like speed (returning an mreal) or velocity
(returning an mpoint), then we get stepwise constant results. If we take the derivative of

such a result again (acceleration), it is either 0 (within time intervals) or in®nite (at interval

boundaries). All of this is quite unnatural.

An interesting option might be to allow piece-wise description by (up to) cubic

polynomials. They have enough parameters (four) so that one can select independently

two slopes and two positions at interval boundaries (see ®gure 6). This allows one to

describe bends in such a way that the ®rst derivative (speed, velocity) is continuous.

Remember that it is the application's task to produce a good description of the curve,

hence we assume here that the application would determine the time intervals as well as

the parameters within each time interval and then put this into the database.

Whereas such a model would offer a more natural description of movement and speed, it

is not clear into which dif®culties it might lead in terms of de®nition of functions for other

operations and of algorithms. Note that the curve so described is the ``semantics'' of the

moving point, and all operations have to be formulated in terms of the positions on that

curve. For example, we have to compute the mdistance between two moving points on the

curves, or compute the part of the curve inside a polyhedron for the visits operation of

Section 2. As mentioned before, most algorithms in computational geometry deal with

linear shapes.

Figure 6. Fitting a curve at the boundaries of a time interval.
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3.6. Relationship with the constraint database approach

Following the seminal paper by Kanellakis, Kuper, and Revesz [23], [24], the constraint

database approach has gained a lot of interest, especially as a theoretically well-founded

basis for spatial modeling and querying. The basic idea is that a spatial object is a, usually

in®nite, point set in a k- dimensional space, in other words, a possibly in®nite k-ary

relation. One would like to describe manipulation of spatial objects (e.g., predicates,

operations of spatial data types) as queries on these in®nite relations described in one of

the well-studied formalisms for querying relational databases such as relational algebra or

calculus. Of course, directly manipulating in®nite relations is impossible (quite similar to

our discussion in Section 3.3); hence ®nite representations are needed. The idea is to

describe the points/tuples belonging to an in®nite relation by a formula of some logical

theory. Hence a spatial object is represented as a set

f�x1; . . . ; xk�jj�x1; . . . ; xk�g

where x1; . . . ; xk are real variables occurring free in formula. Formula is in general a

disjunction of conjunctions of constraints. Such a conjunction of constraints is called a

generalized tuple, as a whole a generalized relation. For example, a generalized tuple

may have the form x� 2y � 36x48 which can be viewed as a generalization of a

``classical'' tuple name � ``Smith''6age � 32, describing a single point. Various

classes of constraints with different expressive power have been studied, for example,

polynomial constraints [24], [29] or linear (polynomial) constraints (e.g., [39], [19], [3]).

Note that with linear constraints, each constraint represents a hyperplane (� ) or

halfspace (>,� ,<,� ); a conjunction of constraints can represent a point, part of a

hyperplane, or a convex polytope. Hence a generalized relation can represent basically

any linear shape, e.g., a union of convex polytopes.

For querying, for example a symbolic relational algebra can be de®ned [19] which

expresses the classical operations to be applied to the ``semantic'' in®nite relations in terms

of corresponding constraint manipulations. For example, sF�R�where F is a conjunction of

constraints, is applied to a generalized relation R by conjuncting F to each tuple in R.
How does this compare to the ADT approach used in spatial databases and also

proposed in this paper for ST data bases? With the ADT approach, one tries to identify

some basic abstractions (e.g., point, region) and to capture them in data types. One

considers operations that appear to be basic, and tries to maintain closure properties (e.g.,

union, intersection and difference of the underlying point sets). Topological, direction, or

distance relationships are introduced as far as they seem relevant. Semantics of types and

operations are de®ned using some ``unrestricted'' mathematical notation. Data structures

and algorithms for the operations are selected independently; they are not automatically

derived from the semantics de®nition. In a system, mentioning an operation in a query

leads rather directly to the selection of a corresponding algorithm for the query plan.

In contrast, constraint databases offer essentially a single type geometry represented as a

generalized relation; this type can represent arbitrary shapes in k dimensions. The way

operations are determined in designs of spatial algebras are criticized as being ad-hoc; here
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relational calculus or algebra are viewed as more appropriate theoretically well-founded

formalisms. In designing a spatial algebra one can identify an operation of interest, and

then describe its semantics with essentially ``unlimited expressive power'' (since arbitrary

mathematics can be used); on the other hand, the user of such a design is restricted to the

operations offered in formulating queries. In contrast, in constraint databases

manipulations are restricted to what the given formalism offers (e.g., linear calculus or

algebra in [39]). For example, one cannot express distance computations or connectivity

predicates [18]. But then, one has a clear picture of the expressive power of this language.

Another aspect is that users would like to formulate queries in terms of simple, natural

concepts and relationships such as inside or adjacent rather than encode these concepts in

operations of the constraint language.

Recently the trend in constraint database research has been to acknowledge that certain

operations are needed that cannot be expressed in the given formalism, and to add these as

external functions [3] or primitives [18], and also to add macro operations, which are

operations of interest at the user level which are expressible, but complex, in the formalism.

In conclusion, it seems that the two approaches can very well augment each other.

Constraint databases have advantages in their dimension-independence and more

systematic expressive power. The ADT approach offers a clear picture of what operations

are needed at the user level, can offer any kind of operation perceived as needed, and can

link these directly to ef®cient algorithms.

4. Related work

For several years researchers both in the spatial and in the temporal community have

recognized the need of a simultaneous treatment and integration of data with spatial and

temporal features in databases. A comprehensive bibliography on spatio-temporal

databases until 1994 is given in [2]. Many of its articles document the interaction of

space and time through application examples. But nevertheless, up to now research on

models for spatio-temporal databases is still in its infancy.

Most of the research on this topic has focused on the extension of specialized spatial or

temporal models to incorporate the other dimension. Most modeling approaches adopt the

snapshot view, i.e., represent space-time data as a series of snapshots. Gadia et al. [15]

propose time- and space-stamping of thematic attributes as a method to capture their time-

and space-varying values. The time dimension describes when an attribute value is valid,

and the spatial dimension expresses where it is valid. While each value has always a

temporal evolution, it is doubtful whether it always has a spatial aspect, as discussed in

Section 3.1. Worboys [41] de®nes spatio-temporal objects as so-called spatio-bitemporal

complexes. Their spatial features are given by simplicial complexes; their temporal

features are described by bitemporal elements attached to all components of simplicial

complexes. In [8] and [27] event-based approaches for ST databases are proposed. Events

indicate changes of the locations and shapes of spatial objects and trigger the creation of

new versions in the database. All these approaches are only capable of modeling discrete

or stepwise constant but not continuous temporal evolutions of spatial data.
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Yeh and Cambray [42], [43] emphasize some aspects also mentioned in our paper. Since

spatial data over time can be highly variable, they consider a continuous view of these data

as indispensable and a snapshot view as inappropriate. So-called behavioral time

sequences are introduced. Each element of such a sequence contains a geometric value, a

date, and a behavioral function, the latter describing the evolution up to the next element of

the sequence. Examples of such user or prede®ned functions are punctual functions, step

functions, linear functions, and interpolation functions. A 2-D object evolving in the

course of time is described by a 3-D object. Boundary representation is used to represent a

solid as a union of faces. While there are some similar ideas, they have no notion of

abstract spatio-temporal data types with operations.

An interesting proposal that directly addresses moving objects is given in [37]. Here a

moving object, e.g., a car or plane, is described by a so-called dynamic attribute. A

dynamic attribute contains a motion vector and can describe the current status of a moving

object (e.g., heading in a certain direction at a certain speed). An update to the database

can change this motion vector (e.g., when a plane takes a turn). In this model a query will

return different results when posed at different times; queries about the expected future are

also possible. This model is geared towards vehicle tracking applications; in contrast to

our proposal attributes do not contain the whole history of a moving object.

Work in constraint databases generally applies to spatio-temporal settings as arbitrary

shapes in multidimensional spaces can be described. Two papers that explicitly deal with

spatio-temporal examples and models are [18], [7].

Several papers in the GIS literature study storage schemes for stepwise changing region

values [22], [30], [31], [5]. The general idea is to use a start version and then record the

changes.

Some work addresses spatio-temporal modeling within multimedia documents. In [40]

the assumption is that objects are rectangles that appear for some time related spatially

and/or temporally with other objects. The temporal relationships are represented by a set

of operators that apart from the relationship maintain its causality. This model does not

cover motion and does not address arbitrary or changing object shapes. In [26] a model for

moving objects in a multimedia scene is proposed. Objects are represented in terms of their

trajectory, as discrete snapshots. A set of objects comprises a scene represented as a graph.

Edges between object nodes are labeled by spatio-temporal relationships. This model

focuses on considering whole scenes and also the evolvement of relationships between

objects. It also does not address changes in the shape of objects.

Computational geometry has also shown interest in time-varying spatial objects. For

instance, [1], [10], [16] deal with Voronoi diagrams of moving points. The task is to

maintain the Voronoi diagram when a set of points is moving continuously over time.

5. Conclusions and future work

We have proposed a new approach to the modeling and implementation of spatio-temporal

database systems based on spatio-temporal data types. This approach allows an entirely

general treatment of time-changing geometries, whether they change in discrete steps, or
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continuously. Hence in contrast to most other work it also supports the modeling and

querying of moving objects. Spatio-temporal data types can be used to extend any DBMS

data model, and they offer a clear implementation strategy as extension packages to

extensible DBMSs.

We feel that the paper opens up a new direction of research. As a ®rst step, it is of crucial

importance to clarify the underlying assumptions and to understand the available design

options. Besides proposing the approach as such, this is the main contribution of this

paper.

The next steps in this approach are the design of an abstract model, then a discrete

model based on it, investigation of ef®cient data structures and algorithms for the discrete

model, and implementation. We recently completed the systematic design and formal

de®nition of a system of data types and operations at the abstract level [14]. We plan to

de®ne a part of this design as a discrete model. Our own choice is to use linear descriptions

for the mpoint and mregion types as well as for the spatial types (line, region) but to use

(square roots of ) quadratic functions for the representation of moving reals. In this way we

can use the standard computational geometry algorithms for linear shapes, but have

representations of time-dependent distances as well as perimeters and sizes of regions, that

are consistent with the linear shapes on which they are based. As far as the design of data

structures and algorithms and implementation are concerned, similar work has been done

earlier for spatial databases in the ROSE algebra [20], [17].
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Notes

1 This is in fact the goal of the EU-TMR-Project CHOROCHRONOS under which this work was done.

2 However, this does not mean that line features changing over time are entirely irrelevant; they should

certainly be included into modeling in the long run. In fact, in the continuation of this work [14] we did
include moving lines into the model, because they are also needed for reasons of closure under operations.

3 For certain kinds of moving objects with predetermined schedules or trajectors (e.g., spacecraft, air planes,

trains) the expected future can alse be recorded in the database.

4 We restrict attention to movements in 2-D space, but the approach can, of course, be used as well to describe

time-dependent 3-D space.

5 Actually, const(x) does not move at all!

6 We include the value(unde®ned) into all domains to make the functions associated with operators complete.

This is more practical than the system return an error when evaluating a partial function.
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