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Abstract

Recent years have witnessed remarkable success of deep
learning methods in quality enhancement for compressed
video. To better explore temporal information, existing meth-
ods usually estimate optical flow for temporal motion com-
pensation. However, since compressed video could be se-
riously distorted by various compression artifacts, the es-
timated optical flow tends to be inaccurate and unreliable,
thereby resulting in ineffective quality enhancement. In addi-
tion, optical flow estimation for consecutive frames is gener-
ally conducted in a pairwise manner, which is computational
expensive and inefficient. In this paper, we propose a fast yet
effective method for compressed video quality enhancement
by incorporating a novel Spatio-Temporal Deformable Fusion
(STDF) scheme to aggregate temporal information. Specifi-
cally, the proposed STDF takes a target frame along with its
neighboring reference frames as input to jointly predict an
offset field to deform the spatio-temporal sampling positions
of convolution. As a result, complementary information from
both target and reference frames can be fused within a sin-
gle Spatio-Temporal Deformable Convolution (STDC) oper-
ation. Extensive experiments show that our method achieves
the state-of-the-art performance of compressed video quality
enhancement in terms of both accuracy and efficiency.

1 Introduction

Nowadays, video content has become a major fraction of
digital network traffic and is still growing (Wien 2015). To
transmit video under limited bandwidth, video compression
is indispensable to significantly reduce the bit-rate. How-
ever, compression algorithms, such as H.264/AVC (Wiegand
et al. 2003) and H.265/HEVC (Sullivan, Ohm, and Wiegand
2013), often introduce various artifacts in the compressed
video, especially at low bit-rate. As shown in Figure 1, such
artifacts may considerably diminish video quality, resulting
in degradation of Quality of Experience (QoE). The dis-
torted contents in low-quality compressed video may also
reduce performance of subsequent vision tasks (e.g., recog-
nition, detection, tracking) in low-bandwidth applications
(Galteri et al. 2017; Lu et al. 2019). Thus, it’s crucial to study
on compressed video quality enhancement (VQE).
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Figure 1: Illustration of compression artifacts. Videos are
compressed by the latest H.265/HEVC coding algorithm.

During the past decades, extensive works have been con-
ducted on artifacts removal or quality enhancement for sin-
gle compressed image. Traditional methods (Foi, Katkovnik,
and Egiazarian 2007; Zhang et al. 2013) reduced artifacts by
optimizing the transform coefficients for specific compres-
sion standard, thus they are hard to extend to other compres-
sion schemes. With the recent advances in Convolutional
Neural Networks (CNNs), CNN-based methods (Dong et al.
2015; Tai et al. 2017; Zhang et al. 2017; 2019) have also
emerged for image quality enhancement. They usually learn
a non-linear mapping to directly regress the artifact-free im-
age from a large amount of training data, leading to impres-
sive results with high efficiency. However, these methods
cannot be directly extended to compressed video since they
treat frames independently and thus fail to exploit temporal
information.

On the other hand, there is only limited study on qual-
ity enhancement for compressed video. Yang et al. first pro-
posed Multi-Frame Quality Enhancement (MFQE 1.0) ap-
proach to leverage temporal information for VQE (Yang et
al. 2018). Specifically, high quality frames in compressed
video are utilized as reference frame to help enhancing qual-
ity of neighboring low quality target frame via a novel
Multi-Frame CNN (MF-CNN). Recently, an upgraded ver-
sion MFQE 2.0 (Guan et al. 2019) was introduced to further
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improve the efficiency of MF-CNN, and achieved state-of-
the-art performance. In order to aggregate information from
target frame and reference frames, both MFQE methods
adopt a widely used temporal fusion scheme that incorpo-
rates dense optical flow for motion compensation (Kappeler
et al. 2016; Caballero et al. 2017; Xue et al. 2017). How-
ever, this temporal fusion scheme may be suboptimal in the
context of VQE task. Since compression artifacts could seri-
ously distort video contents and break pixelwise correspon-
dances between frames, the estimated optical flow tends to
be inaccurate and unreliable, thereby resulting in ineffective
quality enhancement. In addition, optical flow estimation
needs to be repeatedly performed for different reference-
target frame pairs in a pairwise manner, which involves sub-
stantially increased computational cost to explore more ref-
erence frames.

To address the aforementioned issues, we introduce a
Spatio-Temporal Deformable Fusion (STDF) scheme for
VQE task. Specifically, we propose to learn a novel Spatio-
Temporal Deformable Convolution (STDC) to aggregate
temporal information while avoiding explicit optical flow
estimation. The main idea of STDC is to adaptively deform
the spatio-temporal sampling positions of convolution so as
to capture the most relevant context and exclude the noisy
content for quality enhancement of the target frame. To this
end, we adopt a CNN-based predictor to jointly model the
correspondance across target and reference frames, and ac-
cordingly regress those sampling positions within a single
inference pass. The main contributions of this paper are sum-
marized as follows:

• We propose an end-to-end CNN-based method for VQE
task, which incorporates a novel STDF scheme to aggre-
gate temporal information.

• We analytically and experimentally compare the proposed
STDF to prior fusion schemes, and demonstrate its higher
flexibility and robustness.

• We quantitatively and qualitatively evaluate the proposed
method on VQE benchmark dataset and show that it
achieves state-of-the-art performance in terms of accuracy
and efficiency.

2 Related Work

Image and Video Quality Enhancement. Over the past
decade, an increasing number of works have focused on
quality enhancement for compressed image (Foi, Katkovnik,
and Egiazarian 2007; Jancsary, Nowozin, and Rother 2012;
Chang, Ng, and Zeng 2013; Zhang et al. 2013; Dong et
al. 2015; Guo and Chao 2016; Zhang et al. 2017; 2019).
Among them, CNN-based end-to-end methods achieve the
recent state-of-the-art performance. Specifically, Dong et al.
first introduced a 4-layer AR-CNN (Dong et al. 2015) to
remove various JPEG compression artifacts. Later, Zhang
et al. managed to learn a very deep DnCNN (Zhang et
al. 2017) with residual learning scheme for several image
restoration tasks. Most recently, Zhang et al. proposed an
even deeper network RNAN (Zhang et al. 2019) with resid-
ual non-local attention mechanism to capture long-range de-
pendencies between pixels and set up a new state-of-the-art

of image quality enhancement. These methods tend to ap-
ply large CNNs to capture discriminative features within an
image, resulting in a large amount of computations and pa-
rameters. On the other hand, MFQE 1.0 (Yang et al. 2018)
pioneered on applying multi-frame CNN to take advantage
of temporal information for compressed video quality en-
hancement, where high quality frames are utilized to help
enhancing quality of the adjacent low quality frames. To ex-
ploit long range temporal information, Yang et al. later in-
troduced a modified convolutional long short-term memory
network (Yang et al. 2019) for video quality enhancement.
Most recently, Guan et al. proposed MFQE 2.0 (Guan et al.
2019) to upgrade several key components of MFQE 1.0 and
achieved state-of-the-art performance in terms of accuracy
and speed.

Leveraging Temporal Information. It is crucial to lever-
age complementary information across multiple frames for
video related tasks. Karpathy et al. first introduced sev-
eral convolution based fusion schemes to combine spatio-
temporal information for video classification (Karpathy et
al. 2014). Kappeler et al. later investigated those fusion
schemes for low-level vision tasks (Kappeler et al. 2016),
and managed to improve accuracy by compensating motion
across consecutive frames with a Total Variation (TV) based
optical flow estimation algorithm. Caballero et al. further re-
placed the TV based flow estimator with CNN to enable end-
to-end training (Caballero et al. 2017). Since then, temporal
fusion with motion compensation has been widely adopted
for various vision tasks (Xue et al. 2017; Yang et al. 2018;
Kim et al. 2018; Guan et al. 2019). However, these methods
heavily rely on accurate optical flow which is hard to obtain
due to general problems (e.g., occlusion, large motion) or
task-specific problems (e.g., compression artifacts). To cope
with this, works have been conducted to bypass explicit op-
tical flow estimation. Niklaus, Mai, and Liu proposed Ada-
Conv (Niklaus, Mai, and Liu 2017) to adaptively generate
convolution kernels by implicitly utilizing motion cues for
video frame interpolation. Shi et al. introduced ConvLSTM
network to exploit contextual information from a long range
of adjacent frames (Shi et al. 2015). In this work, we pro-
pose to combine motion cues with convolution to efficiently
aggregate spatio-temporal information, which also omits the
explicit estimation of optical flow.

Deformable Convolution. Dai et al. first proposed to aug-
ment regular convolution with learnable sampling offsets
to model complex geometric transformations for object de-
tection (Dai et al. 2017; Zhu et al. 2019). Later, several
works (Bertasius, Torresani, and Shi 2018; Tian et al. 2018;
Wang et al. 2019) extended it along temporal extent to im-
plicitly capture motion cues for video-related applications,
and achieved better performance than traditional methods.
However, these methods perform deformable convolution in
a pairwise manner, thus fail to fully explore temporal corre-
spondances across multiple frames. In this work, we propose
STDC to jointly consider a video clip rather than splitting it
into several reference-target frame pairs, leading to more ef-
fective use of contextual information.
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Figure 2: Overview of the proposed framework for compressed video quality enhancement. Given a compressed video clip with
2R + 1 concatenated frames, an offset prediction network is first adopted to generate deformable offset field. With this offset
field, spatio-temporal deformable convolution is then performed to fuse temporal information and produce fused feature maps.
At last, QE network is used to compute the enhancement residual map, and the final enhanced result can be obtained by adding
the residual map back to the compressed target frame. Herein, temporal radius R=1, and deformable kernel size K=3.

3 Proposed Method

3.1 Overview

Given a compressed video which is distorted by compres-
sion artifacts, the goal of our method is to remove those
artifacts and accordingly enhance the video quality. To be
specific, we conduct the enhancement separately for each

compressed frame I
LQ
t0

∈ R
H×W at time t0

1. In order to
leverage temporal information, we take the preceding and
succeeding R frames as reference to help enhancing quality

of each target I
LQ
t0

. The enhanced solution Î
HQ
t0

∈ R
H×W

can then be expressed as

Î
HQ
t0

= Fθ({I
LQ
t0−R, · · · , I

LQ
t0

, · · · , ILQ
t0+R}) (1)

where Fθ(·) represents the proposed quality enhancement
model and θ are the learnable parameters.

Figure 2 demonstrates the framework of our method,
which is composed of a Spatio-Temporal Deformable Fu-
sion (STDF) module and a Quality Enhancement (QE)
module. The STDF module takes both target frame and
reference frames as input, and fuse contextual informa-
tion via a spatio-temporal deformable convolution, where
the deformable offsets are adaptively generated by an off-
set prediction network. Then, with the fused feature maps,
the QE module incorporates a fully convolutional enhance-
ment network to compute the enhanced result. Since both
STDF module and QE module are convolutional, our uni-
fied framework can be trained in an end-to-end manner.

1For simplicity, we assume enhancement is performed on lumi-
nance channel only. Thus we represent all frames as 2D matrices.

3.2 STDF Module

Spatio-Temporal Deformable Convolution. For a com-

pressed video clip {ILQ
t0−R, · · · , I

LQ
t0

, · · · , ILQ
t0+R}, the most

straightforward temporal fusion scheme, i.e., Early Fusion
(EF) (Karpathy et al. 2014), can be formulated as multi-
channel convolution applied directly on the compressed
frames as

F (p) =

t0+R∑

t=t0−R

K2∑

k=1

Wt,k · ILQ
t (p + pk) (2)

where F is the resulting feature map, K represents the size

of convolution kernel, Wt ∈ R
K2

is the kernel for t-th
channel, p indicates arbitrary spatial position and pk rep-
resents the regular sampling offsets. For example, pk ∈
{(−1,−1), (−1, 0), · · · , (1, 1)} for K=3. Despite the high
efficiency, EF may easily introduce noisy content and reduce
the performance of subsequent enhancement due to tempo-
ral motion, as shown in Figure 3. Inspired by Dai et al. (Dai
et al. 2017), we address this issue by introducing a novel
Spatio-Temporal Deformable Convolution (STDC) to aug-
ment the regular sampling offset with extra learnable offset

δ(t,p) ∈ R
2K2

as

pk ← pk + δ(t,p),k (3)

It is worth noting that the deformable offset δ(t,p) are
position-specific, i.e., individual δ(t,p) will be assigned for
each convolution window centered at spatio-temporal posi-
tion (t, p). Thus, spatial deformations as well as temporal
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Figure 3: Visualization of EF and our STDC. Herein, red
points represent the sampling positions of 3× 3 convolution
window centered at green points. The STDC can adapt to
both large temporal motion (ball) and the small one (head),
and accordingly captures the relevant context for quality en-
hancement.

dynamics within the video clip can be simultaneously mod-
eled, as shown in Figure 3. Since the learnable offsets can
be fractional, we follow Dai et al. (Dai et al. 2017) to apply
the differentiable bilinear interpolation to sample sub-pixel

I
LQ
t (p + pk).

Unlike previous VQE methods (Yang et al. 2018; Guan et
al. 2019) which perform explicit motion compensation be-
fore fusion to alleviate the effect of temporal motion, STDC
implicitly combines motion cues with position-specific sam-
pling while fusion. This leads to higher flexibility and ro-
bustness because adjacent convolution windows can sample
contents independently, as shown in Figure 4.

Joint Deformable Offset Prediction. Different from op-
tical flow estimation that solely handles one reference-target
frame pair at a time, we propose to take the whole clip into
consideration and jointly predict all deformable offsets at
once. To this end, we apply an offset prediction network

Fθop(·) to predict an offset field ∆ ∈ R
(2R+1)×2K2×H×W

for all spatio-temporal positions in the video clip as

∆ = Fθop([I
LQ
t0−R, · · · , I

LQ
t0

, · · · , ILQ
t0+R]) (4)

where frames are concatenated together as input. Since con-
secutive frames are highly correlated, offset prediction for
one frame can benefit from the other frames, leading to more
effective use of temporal information than pairwise scheme.
In addition, joint prediction is more computational efficient
because all deformable offsets can be obtained in a single
inference pass.

As shown in Figure 2-(a), we adopt a U-Net based net-
work (Ronneberger, Fischer, and Brox 2015) for offset pre-
diction to enlarge receptive field so as to capture large
temporal dynamics. Convolutional and deconvolutional lay-
ers (Zeiler and Fergus 2014) with stride of 2 are used for
downsampling and upsampling respectively. For convolu-
tional layer with stride of 1, zero padding is used to re-
tain feature size. For simplicity, we set the filter number

(a) Motion Compensation before Convolution

(b) Spatio-Temporal Deformable Convolution

Figure 4: Comparison between motion compensation based
convolution and spatio-temporal deformable convolution.
Herein, 3× 3 convolution is used for demonstration.

of all (de)convolutional layers to C1. Rectified Linear Unit
(ReLU) is adopted as activation function for all layers except
the last one which is followed by linear activation to regress
the offset field ∆. We do not use any normalization layer in
the network.

3.3 QE Module

The main idea of QE module is to fully explore complemen-
tary information from fused feature maps F and accordingly

generate the enhanced target frame Î
HQ
t0

. In order to take ad-
vantage of residual learning (Kim, Lee, and Lee 2016), we
first learn a non-linear mapping Fθqe(·) to predict the en-
hancement residual as

R̂HQ
t0

= Fθqe(F ) (5)

The enhanced target frame can then be generated as

Î
HQ
t0

= R̂HQ
t0

+ I
LQ
t0

(6)

As illustrated in Figure 2-(c), we implement Fθqe(·)
through another CNN which consists of L convolutional lay-
ers of stride 1. All layers except the last one have C2 con-
volutional filters followed by ReLU activation. The last con-
volutional layer outputs the enhancement residual. Without
bells and whistles, such plain QE network is able to achieve
satisfactory enhancement results.

3.4 Training Scheme

Since STDF module and QE module are fully-convolutional
and thus differentiable, we jointly optimize θop and θqe in an
end-to-end fashion. The overall loss function L is set to the
Sum of Squared Error (SSE) between the enhanced target

frame Î
HQ
t0

and the raw one I
HQ
t0

as

L = ‖ÎHQ
t0

− I
HQ
t0

‖22 (7)

Note that, as there is no ground-truth for deformable off-
sets, learning for offset prediction network Fθop(·) is to-
tally unsupervised and fully driven by the final loss L,
which is different from previous works (Yang et al. 2018;
Guan et al. 2019) that incorporate auxiliary losses to con-
strain optical flow estimation.
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QP Test Videos†
Image QE Methods Video QE Methods

Dong et al. Zhang et al. Zhang et al. Yang et al. Guan et al. Ours Ours Ours

AR-CNN DnCNN RNAN‡ MFQE 1.0 MFQE 2.0 STDF-R1 STDF-R3 STDF-R3L

37

Class A
Traffic 0.27 / 0.50 0.35 / 0.64 0.40 / 0.86 0.50 / 0.90 0.59 / 1.02 0.56 / 0.92 0.65 / 1.04 0.73 / 1.15
PeopleOnStreet 0.37 / 0.76 0.54 / 0.94 0.74 / 1.30 0.80 / 1.37 0.92 / 1.57 1.05 / 1.66 1.18 / 1.82 1.25 / 1.96

Class B

Kimono 0.20 / 0.59 0.27 / 0.73 0.33 / 0.98 0.50 / 1.13 0.55 / 1.18 0.66 / 1.32 0.77 / 1.47 0.85 / 1.61
ParkScene 0.14 / 0.44 0.17 / 0.52 0.20 / 0.77 0.39 / 1.03 0.46 / 1.23 0.41 / 1.05 0.54 / 1.32 0.59 / 1.47
Cactus 0.20 / 0.41 0.28 / 0.53 0.35 / 0.76 0.44 / 0.88 0.50 / 1.00 0.59 / 1.06 0.70 / 1.23 0.77 / 1.38
BQTerrace 0.23 / 0.43 0.33 / 0.53 0.42 / 0.84 0.27 / 0.48 0.40 / 0.67 0.55 / 0.89 0.58 / 0.93 0.63 / 1.06
BasketballDrive 0.23 / 0.51 0.33 / 0.63 0.43 / 0.92 0.41 / 0.80 0.47 / 0.83 0.60 / 0.99 0.66 / 1.07 0.75 / 1.23

Class C

RaceHorses 0.23 / 0.49 0.31 / 0.70 0.39 / 0.99 0.34 / 0.55 0.39 / 0.80 0.41 / 0.98 0.48 / 1.09 0.55 / 1.35
BQMall 0.28 / 0.69 0.38 / 0.87 0.45 / 1.15 0.51 / 1.03 0.62 / 1.20 0.75 / 1.44 0.90 / 1.61 0.99 / 1.80
PartyScene 0.14 / 0.52 0.22 / 0.69 0.30 / 0.98 0.22 / 0.73 0.36 / 1.18 0.52 / 1.49 0.60 / 1.60 0.68 / 1.94
BasketballDrill 0.23 / 0.48 0.42 / 0.89 0.50 / 1.07 0.48 / 0.90 0.58 / 1.20 0.64 / 1.19 0.70 / 1.26 0.79 / 1.49

Class D

RaceHorses 0.26 / 0.59 0.34 / 0.80 0.42 / 1.02 0.51 / 1.13 0.59 / 1.43 0.63 / 1.51 0.73 / 1.75 0.83 / 2.08
BQSquare 0.21 / 0.30 0.30 / 0.46 0.32 / 0.63 -0.01 / 0.15 0.34 / 0.65 0.75 / 1.03 0.91 / 1.13 0.94 / 1.25
BlowingBubbles 0.16 / 0.46 0.25 / 0.76 0.31 / 1.08 0.39 / 1.20 0.53 / 1.70 0.53 / 1.69 0.68 / 1.96 0.74 / 2.26
BasketballPass 0.26 / 0.63 0.38 / 0.83 0.46 / 1.08 0.63 / 1.38 0.73 / 1.55 0.80 / 1.54 0.95 / 1.82 1.08 / 2.12

Class E
FourPeople 0.40 / 0.56 0.54 / 0.73 0.70 / 0.97 0.66 / 0.85 0.73 / 0.95 0.83 / 1.01 0.92 / 1.07 0.94 / 1.17
Johnny 0.24 / 0.21 0.47 / 0.54 0.56 / 0.88 0.55 / 0.55 0.60 / 0.68 0.65 / 0.71 0.69 / 0.73 0.81 / 0.88
KristenAndSara 0.41 / 0.47 0.59 / 0.62 0.63 / 0.80 0.66 / 0.75 0.75 / 0.85 0.84 / 0.83 0.94 / 0.89 0.97 / 0.96

Average 0.25 / 0.50 0.36 / 0.69 0.44 / 0.95 0.46 / 0.88 0.56 / 1.09 0.65 / 1.18 0.75 / 1.32 0.83 / 1.51

32 Average 0.19 / 0.17 0.33 / 0.41 0.41 / 0.62 0.43 / 0.58 0.52 / 0.68 0.64 / 0.77 0.73 / 0.87 0.86 / 1.04

27 Average 0.16 / 0.09 0.33 / 0.26 - / - 0.40 / 0.34 0.49 / 0.42 0.59 / 0.47 0.67 / 0.53 0.72 / 0.57

22 Average 0.13 / 0.04 0.27 / 0.14 - / - 0.31 / 0.19 0.46 / 0.27 0.51 / 0.27 0.57 / 0.30 0.63 / 0.34
† Video resolution: Class A (2560×1600), Class B (1920×1080), Class C (832×480), Class D (480×240), Class E
(1280×720).
‡ Patch-wise enhancement is performed for RNAN method due to memory restriction.

Table 1: Quantitative results of ∆PSNR (dB) / ∆SSIM (×10−2) on test videos at 4 different QPs.

Method
Processing Speed @ Different Resolution

#Param(K)
120p 240p 480p 720p 1080p

DnCNN 191.8 54.7 14.1 6.1 2.6 556
RNAN 5.6 - - - - 8957

MFQE 1.0 - 12.6 3.8 1.6 0.7 1788
MFQE 2.0 - 25.3 8.4 3.7 1.6 255

STDF-R1 141.9 38.9 9.9 4.2 1.8 330
STDF-R3 132.7 36.4 9.1 3.8 1.6 365
STDF-R3L 96.6 23.8 5.9 2.5 1.0 1275

Table 2: Quantitative results of speed (FPS) and amount
of parameters. Results of speed are measured on Nvidia
GeForce GTX 1080 Ti GPU.

4 Experiments

4.1 Datasets

Following MFQE 2.0 (Guan et al. 2019), we collect a to-
tal of 130 uncompressed videos with various resolutions
and contents from two databases, i.e., Xiph (Xiph.org) and
VQEG (VQEG), where 106 of them are selected for train-
ing and the rest are for validation. For testing, we adopt
the dataset from Joint Collaborative Team on Video Cod-
ing (Ohm et al. 2012) with 18 uncompressed videos. These
testing videos are widely used for video quality assessment
with around 450 frames per video. We compress all the
above videos by the latest H.265/HEVC reference software
HM16.5 2 under Low Delay P (LDP) configuration, as in
previous work (Guan et al. 2019). The compression is con-

2https://hevc.hhi.fraunhofer.de

ducted at 4 different Quantization Parameters (QPs), i.e., 22,
27, 32, 37, in order to evaluate performance under different
compression levels.

4.2 Implementation Details

The proposed method is implemented based on PyTorch
framework with reference to MMDetection toolbox (Chen
et al. 2019) for deformable convolution. For training, we
randomly crop 64 × 64 clips from raw and the correspond-
ing compressed videos as training samples. Data augmen-
tation (i.e., rotation or flip) is further used to better ex-
ploit those training samples. We train all models using
Adam optimizer (Kingma and Ba 2014) with β1 = 0.9,
β2 = 0.999 and ǫ = 10−8. Learning rate is initially set
to 10−4 and retained throughout training. We train 4 mod-
els from scratch for the 4 QPs respectively. For evaluation,
as with previous works, we only apply quality enhancement
on Y-channel (i.e., luminance component) in YUV/YCbCr
space. We adopt incremental Peak Signal-to-Noise Ratio
(∆PSNR) and Structural Similarity (∆SSIM) (Wang et al.
2004) to evaluate quality enhancement performance, which
measure the improvement of the enhanced video from the
compressed one. We also evaluate the complexity of a qual-
ity enhancement approach in terms of parameters and com-
putational cost.

4.3 Comparison to State-of-the-arts

We compare the proposed method with state-of-the-art im-
age/video quality enhancement methods, AR-CNN (Dong
et al. 2015), DnCNN (Zhang et al. 2017), RNAN (Zhang
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Compressed Frame Compressed AR-CNN DnCNN RNAN MFQE 2.0 STDF-R1 STDF-R3 Raw

Figure 5: Qualitative results at QP 37. Note that enhancement is only conducted on luminance component for all methods.
Video index (from top to bottom): BasketballPass, Kimono, FourPeople, Cactus.

et al. 2019), MFQE 1.0 (Yang et al. 2018) and MFQE
2.0 (Guan et al. 2019). For fair comparison, all image qual-
ity enhancement methods are retrained on our training set.
Results of video quality enhancement methods are cited
from (Guan et al. 2019). Three variants of our method with
different configurations (refer to previous section for details)
are evaluated. 1) STDF-R1 with R=1, C1=32, C2=48, L=8.
2) STDF-R3 with R=3, C1=32, C2=48, L=8. 3) STDF-R3L
with R=3, C1=64, C2=64, L=16.

Quantitative Results. Table 1 and Table 2 present the
quantitative results of accuracy and model complexity re-
spectively. As can be observed, our method consistently out-
perform all compared methods in terms of average ∆PSNR
and ∆SSIM on the 18 test videos. More specifically, at QP
37, our STDF-R1 outperforms MFQE 2.0 on most of the
videos, with faster processing speed and comparable param-
eters. We note that our STDF-R1 simply takes the preced-
ing and succeeding frames as reference, unlike MFQE 2.0
which utilizes high quality neighboring frames, thereby sav-
ing the computational cost for searching those high qual-
ity frames in advance. As temporal radius R increases to 3,
our STDF-R3 manages to leverage more temporal informa-
tion, and thus further improves the average ∆PSNR to 0.75
dB, which is 34% higher than MFQE 2.0, 63% higher than
MFQE 1.0 and 70% higher than RNAN. Due to the high ef-
ficiency of the proposed STDF module, the overall speed of
STDF-R3 is still faster than that of MFQE 2.0. Furthermore,
∆PSNR of the enlarged model STDF-R3L reaches 0.83 dB,
showing there is still room for improvement of our method
by optimizing network architecture. Similar results can be
found for ∆SSIM as well as other QPs.

Qualitative Results. Figure 5 provides the qualitative re-
sults on 4 test videos. It can be seen that compressed frames
are seriously distorted by various compression artifacts (e.g.,
ringing in Kimono and blurring in FourPeople). Although

image quality enhancement methods can decently reduce
those artifacts, the resulting frames usually become over-
blurred and lack of details. On the other hand, video quality
enhancement methods achieve better enhancement results
with the help of reference frames. Compared to MFQE 2.0,
our STDF models are more robust to compression artifacts
and can better explore spatio-temporal information, thereby
leading to better restoration of structural details.

Quality Fluctuation. It is observed that dramatic quality
fluctuation exists in compressed video (Guan et al. 2019),
which may severely break temporal consistency and degrade
QoE. To investigate how our method can help with this, we
plot PSNR curves of 2 sequences in Figure 6. As can be
seen, our STDF-R1 model can effectively enhance most of
the low quality frames and alleviate quality fluctuation. By
enlarging the temporal radius R to 3, our STDF-R3 model
manages to take advantage of adjacent high quality frames,
leading to better performance than other compared methods.
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Figure 6: PSNR curves of 2 test sequences at QP 37. Top:
BQSquare. Bottom: PartyScene.
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4.4 Analysis and Discussions

In this section, we conduct ablation study and further anal-
ysis. For fair comparison, we only ablate the fusion scheme
and fix the QE network to L=8, C2=48. All models are
trained following the same protocol and ∆PSNR/∆SSIM
are averaged over all test videos from Class B to E at QP 37.
Float-point operations (FLOPs) computed on 480p video is
used to evaluate the computational cost.

Effectiveness of STDF. To demonstrate the effectiveness
of STDF for temporal fusion, we compare it with two
previous fusion schemes, i.e., early fusion (EF) (Karpathy
et al. 2014) and early fusion with motion compensation
(EFMC) 3 (Yang et al. 2018; Guan et al. 2019). Specifi-
cally, for EFMC scheme, we select two CNN-based opti-
cal flow estimators for motion compensation. 1) EF STMC,
a lightweight Spatial Transformer Motion Compensation
(STMC) network used in MFQE 2.0 (Guan et al. 2019). 2)
EF FlowNetS, a larger network used in FlowNet (Dosovit-
skiy et al. 2015). We train models under different temporal
radius R to evaluate the scalability.

Figure 7 presents the comparative results. We can observe
that all methods with reference frames outperform the sin-
gle frame baseline, demonstrating the effectiveness of using
temporal information. For R=1, STDF significantly outper-
forms both EF and EFMC in terms of ∆PSNR with com-
parable computational cost, which suggests STDF can make
better use of temporal information. As R further increases,
it is intriguing that ∆PSNR of EF STMC deteriorates in-
stead, and that of EF FlowNetS only has marginal improve-
ment. We think the reason is twofold. First, it is difficult
for optical flow estimator to capture large temporal mo-
tion, which results in ineffective use of the added reference
frames. Second, the training samples with different motion
intensity may confuse the optical flow estimator, especially
for EF STMC which has relatively low capacity. In contrast,
the proposed STDF takes the whole video clip into consid-
eration, forcing the offset prediction network to simultane-
ously learn motion with various intensity. Thus, ∆PSNR of
STDF consistently improves as R increases. In addition, the
computation of STDF increases much slower than that of
EF STMC and EF FlowNetS as R increases, which demon-
strates the higher efficiency of STDF.

Effectiveness of STDC. The proposed STDC features
position-specific sampling for temporal fusion, which en-
ables higher flexibility and robustness than traditional fu-
sion scheme with motion compensation (EFMC). To ver-
ify this, we introduce a variant of our method that replaces
STDC with EFMC. Specifically, the optical flow estima-
tor in EFMC is modified from the offset prediction net-
work, where the output layer of the network is revised for
flow estimation instead of offset prediction. According to
Table 3, although parameters and FLOPs slightly improve
when replacing STDC with EFMC, the overall ∆PSNR at
R=1 and R=3 drops by 0.04 dB and 0.08 dB respectively.
This demonstrates the effectiveness of the proposed STDC.

3EFMC scheme applies optical flow based motion compensa-
tion to mitigate temporal motion before early fusion.
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Figure 7: Comparison of temporal fusion schemes.

Fusion Scheme R ∆PSNR ∆SSIM #Param(K) FLOPs(G)

EFMC & Joint
1 0.60 0.0104 308.17 159.22
3 0.66 0.0116 313.94 163.82

STDC & Pairwise
1 0.59 0.0105 313.95 245.10
3 0.65 0.0117 316.25 409.49

STDC & Joint
1 0.64 0.0117 329.84 176.47
3 0.74 0.0133 364.51 204.08

Table 3: Ablation study on convolution and offset prediction.

Effectiveness of Joint Offset Prediction. Joint predic-
tion scheme is introduced to generate deformable offsets for
STDC. To demonstrate its effectiveness, we replace it with
pairwise prediction scheme. Specifically, we modify the in-
put and output layers of offset prediction network, and con-
duct offset prediction separately for each reference-target
pair. From Table 3 we can see that ∆PSNR and ∆SSIM with
pairwise scheme are reduced, while FLOPs is greatly in-
creased, which shows the proposed joint prediction scheme
can better exploit temporal information with high efficiency.

5 Conclusion

We have presented a fast yet effective method for com-
pressed video quality enhancement, which incorporates a
novel spatio-temporal deformable convolution to aggregate
temporal information from consecutive frames. Our method
performs favorably against previous methods in terms of
both accuracy and efficiency on benchmark dataset. We be-
lieve the proposed spatio-temporal deformable convolution
can also extend to other video related low-level vision tasks,
including super-resolution, restoration and frame synthesis,
for efficient temporal information fusion.
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