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Abstract

Purpose Overview of geographically explicit momentary

assessment research, applied to the study of mental health

and well-being, which allows for cross-validation, exten-

sion, and enrichment of research on place and health.

Methods Building on the historical foundations of both

ecological momentary assessment and geographic

momentary assessment research, this review explores their

emerging synergy into a more generalized and powerful

research framework.

Results Geographically explicit momentary assessment

methods are rapidly advancing across a number of com-

plimentary literatures that intersect but have not yet con-

verged. Key contributions from these areas reveal

tremendous potential for transdisciplinary and translational

science.

Conclusions Mobile communication devices are revolu-

tionizing research on mental health and well-being by

physically linking momentary experience sampling to

objective measures of socio-ecological context in time and

place. Methodological standards are not well-established

and will be required for transdisciplinary collaboration and

scientific inference moving forward.

Keywords Ecological momentary assessment (EMA) �
Geographic momentary assessment (GMA) �
Geographically explicit ecological momentary assessment

(GEMA) � Geographic information systems/science (GIS) �
Spatio-temporal determinants of health � mHealth

Introduction

The stuff of the mind is the stuff of the world, and so

the investigation of the rich structure of the world

provides a clearly observable and empirically tract-

able—if not royal—road into the hidden countries of

the mind.

Tooby & Cosmides, 1992

The Psychological Foundations of Culture

Lifespan disparities in excess of 10 years between

residents of neighborhoods characterized the lowest

versus the highest levels of socio-economic status (SES)

have persisted in the United States for decades [1, 2].

Findings from three large longitudinal studies [2–5],

together spanning the period from 1979 to 2014, indicate

that lifespan disparities are largely due to neighborhood

residents’ moment-to-moment mental health and well-

being, insofar as these factors drive behavioral deci-

sions—whether to exercise or smoke cigarettes, what to
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eat and drink, and whether to continue pursuing an

education. These studies also converge to suggest that

neighborhood characteristics promote and protect against

these behavioral health determinants—especially within

low-SES areas. Adjusting for a range of

demographic factors, Chetty et al. [1] found that low-

income residents of otherwise affluent and highly edu-

cated cities such as New York and San Francisco were

protected from the loss of as many as 5-years of life

relative to low-income residents of less-affluent cities

such as Detroit, Michigan or Gary, Indiana. The mech-

anisms behind this finding are undoubtedly complex,

exposing how little we know about the way neighbor-

hoods shape subjective experience and ultimately deter-

mine the psychological and physical health of their

residents.

This paper presents an overview of the way ecological

momentary assessment (EMA [6–9]) methodologies have

been used to study the interplay between individuals’

experience and their evolving environmental surroundings,

with specific emphasis on the measurement of mental

health and well-being. With traditional roots in real-time

experience sampling [10–12], EMA primarily involves

administration of self-reported survey items in real-life

settings (i.e., collected as part of subjects’ ongoing activi-

ties of daily living). More recently, technological advances

have led to the development of geographic momentary

assessment (GMA) methods, which are founded on the

notion that individuals can be characterized by a spatio-

temporal probability distribution—time spent amongst a

set of places, each with their own geographic boundaries

and temporal characteristics (e.g., duration and cyclic

regularity of visits) [13–16]. Combined within a common,

geographically explicit ecological momentary assessment

(GEMA) framework,1 EMA and GMA dovetail with a

number of socio-ecologic theoretical models [18–23]—to-

gether providing an explicitly geographic measurement

framework that can be leveraged to study the way people

and places reciprocally determine each other over time

[24]. This GEMA framework is more than the raw Carte-

sian coordinates that distinguish it from traditional EMA,

and is often most useful for the study of ‘‘places’’ imbued

with meaning by subjects—representing each subject’s

personal eco-system, itself populated by an array of spa-

tially weighted geographic correlates with known socio-

contextual significance.

Neighborhoods to neurons: ecological momentary
assessment of mental health

The rise of EMA methodology in the behavioral health

sciences is largely due to the fact that it documents sub-

jective experiences, including symptoms of mental distress,

in natural environments. The primal brain structures

designed to protect us from threats via affective signals like

fear, disgust, and anger evolved within ancestral environ-

ments [21, 25, 26]. The adapted human mind is prepro-

grammed to identify fearful stimuli, and given that

emotional reactivity becomes conditioned under chronic

exposure to environmental conditions, cultural anthropol-

ogists and environmental psychologists have written

extensively on the idea that study of structural and cultural

environments can improve our understanding of mental

health [27–30]. This includes the evolution of addictive and

maladaptive eating behaviors, which are exacerbated by

modern ‘‘toxic’’ environmental conditions, often inten-

tionally designed to cue deeply ingrained desires for con-

sumption [31, 32].

Standard diagnostic practice within psychiatry and

clinical psychology is based on structured psychometric

interviews that assess the frequency and severity of affec-

tive and behavioral symptoms over a specified period of

time—generally the past 2-weeks for acute symptoms. This

approach requires respondents—sometimes in acute dis-

tress—to describe complex patterns of symptom expres-

sion. A limitation of this is that retrospective recall often

diverges from reality, as evidenced by EMA research on

symptom fluctuation [33, 34], and mobile interventions

[35–38]. Clinical researchers have utilized EMA to study a

range of psychopathological symptom profiles. Most work

has focused on symptoms related to additive disorders [8]

or depression [39, 40], but studies have also assessed

symptoms in patients suffering from anxiety [41],

schizophrenia and psychosis [42–44], chronic pain [45],

attention deficits [46], eating disorders [47], and person-

ality disorders [48].

An ongoing challenge is that while symptom variation

across socio-ecological circumstances is at least as

important as their basic frequency and duration, self-re-

ported EMA surveys are not well-suited for systematic

documentation of symptom fluctuation over both time and

place. EMA protocols often include survey items that

assess certain socio-ecologic circumstances, but the full

range of structural and cultural factors that could be

involved extend well beyond what an individual could be

expected to perceive, much less report with fidelity (e.g.,

ambient light and air quality; neighborhood disorder; local

social norms) [49]. Even if complete information were

available to respondents, the affective neuroscience

1 This framework separates EMA-only and GMA-only research from

GEMA studies that implement both. The combination of EMA and

GPS tracking was referred to as GMA in one previous paper [17],

which is included within the GEMA section of this review.
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literature now strongly supports Zajonc’s (1980 [50]) dic-

tum that ‘‘preferences need no inferences’’, suggesting that

humans generally lack conscious, introspective awareness

of the cognitive underpinnings of their feelings [51–53].

Geographically explicit EMA (GEMA) integrates EMA

with GMA methods and thus geographic information sys-

tem (GIS) science, allowing for cross-validation and

enrichment of research on place, well-being, and health.

This is accomplished with mobile geographic location

technologies that physically link participants to their cur-

rent position in two-dimensional space. This geographic

link operationalizes the ‘‘ecological’’ aspect of EMA, such

that geographic locations can be quantified precisely and

then attached to corresponding sources of socio-ecologic

data. Setting the stage for this methodological integration,

health-related GMA research has advanced rapidly over the

past 10-years, including considerable work that focuses on

momentary measurements of individuals’ geographic

location.

Geographic momentary assessment (GMA)

Mere mobility

The physical touch-point between individuals and their

surroundings and thus the foundational nexus of all person-

place dynamics is their geographic location—shifting over

time between periods of stability and periods of movement.

The basic science of human mobility extends back through

decades of work on international migration and macro-

economic trends [54, 55], and has recently been reignited

by new geographic location technologies and resultant

sources of data. Even with as little as the timing and

location of cell-tower transmissions, for example, compu-

tational social scientists have shown that passive observa-

tion of call-data records from cellular telephone providers

can be used to predict individual movement patterns and

even identify social networks [56–59]. This important work

is establishing precise metrics for the study human

mobility, although it suffers in some ways from an aggre-

gated, macro perspective some have used to question its

societal impact [60, 61].

The use of geographically explicit human mobility data

for the study of health was pioneered around the turn of the

century by environmental exposure scientists interested in

individual-level patterns of exposure to air and water pol-

lution [62–69]. While exposure science work of this kind

has focused almost exclusively on biological exposures to

environmental pathogens—sometimes referred to as the

‘‘exposome’’—there is growing recognition that linking

purely chemical conceptions of the exposome to the

broader ecosphere or ‘‘eco-exposome’’ can foster

transdisciplinary perspectives and possibly novel insights

regarding health and place [70–72]. For example, behav-

ioral scientists interested in effects of the built environment

on physical activity levels have also contributed a great

deal to research on geographically explicit measures of

mobility and place [73–81], and extensions of this work are

beginning to link individual mobility data to a range of

geographic features correlated with diet and drug-use

[82–86].

While their eventual convergence seems inevitable,

computationally oriented disciplines founded on big-data

analytics are too often disconnected from disciplines con-

sidered the standard-bearers of research on place and

health. A field that some refer to as spatio-temporal epi-

demiology has grown from roots in sociology, geography,

public health, and statistics, [87, 88] while other well-

established fields such as psychiatry, clinical psychology,

and environmental exposure science continue to emphasize

connections between socio-ecological circumstances and

mechanisms operating below-the-skin [38, 70]. Division

between disciplines notwithstanding, it is encouraging that

all share strong conceptual and methodologic interest in the

way that individuals’ geographic location meanders over

time, providing the foundation for a common ecologic

framework for the design and implementation of health

research.

Geographic correlates

Long before interest grew in the way street networks affect

physical activity patterns, urban planners and sociologists

had recognized the symbiotic relationship between pedes-

trian traffic and municipal development [89, 90]. For

instance, Jane Jacobs described the way ‘‘short blocks’’

within cities determine the flow of residents and thus cat-

alyze opportunities for retail businesses to emerge and

grow [90]. Street network structures and the associated

access that pedestrians have to risk and protective factors in

their local area—often referred to as an area’s walkabil-

ity—provides an example of the way geographically dis-

tributed determinants of health can be linked to the well-

being and health of local residents [91, 92]. Even in the

absence of data on individual travel routes, indices of

walkability can be a useful approximation of potential

opportunities for access, and can thus provide a means to

quantify differential access to risk and protective factors

within and between neighborhoods.

A useful example concerns walking routes to and from

school, which has been identified as an important Industry

vector for the sale of retail products. In New York City,

which consistently ranks among the most walkable US

cities, as many as 61 % of six graders walk or bike to

school [92, 93]. As adolescent decision-making autonomy
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grows in combination with a developing system of atti-

tudes, beliefs, and emotional self-regulatory control, ado-

lescents’ point-of-sale purchase decision-making is heavily

influenced by retail access and marketing [94–96]. For

example, point-of-sale food options vary across neighbor-

hoods [97, 98], and the location of neighborhood food

sources has been associated with adolescents’ food intake

[80, 99–101] and overweight status [102–107].

Most studies of this kind correlate cross-sectional survey

data with neighborhood data from within an arbitrary

geometric area around schools [108, 109], or within

walkable activity-spaces estimated with spatial network

analytics [103, 107, 110, 111]. Similar approaches have

been used to examine associations between product con-

sumption and the corresponding geographic density of

retail tobacco [112–121] and alcohol outlets [122–124]. A

key assumption here is that the spatial concentration of

health-risk and protective factors sufficiently approximates

and is thus representative of individual-level exposure

levels. An alternative is that observed associations between

product landscape densities and use patterns are not driven

by individual-level point-of-sale interactions per se, but by

unobserved, shared determinants of both product avail-

ability and use among those who reside in different

neighborhoods [125].

Studies contrasting the uncertainty of GIS-based expo-

sure estimates have found that approximated activity space

methods do not correspond well with real-time exposure

data [69, 80, 81, 126–129]. For example, our group has

developed methods for direct comparison of retail product

exposure estimates based on residential approximation

versus continuous observation of geospatial contact

[130, 131]. Results of one analysis indicate that as much as

55.2 % of the variance in real-time exposures was not

explained by residential density levels, suggesting that

purely residence-based analyses misclassify large amounts

of exposure data. Thus, while latent conceptualizations of

neighborhood walkability and risk factor access can enrich

our understanding of health and place, caution must be

taken when drawing inference about underlying mecha-

nisms in the absence of data on actual person-place

dynamics.

Geographically explicit ecological momentary
assessment (GEMA)

Whether and how exposures to retail products and other

neighborhood risk and protective factors impact residents’

behavior remains poorly understood [101, 108]. Access to

products may affect behavioral decision-making in a way

that is incidental—operating by cueing spontaneous pur-

chase decisions—or as a matter of convenience,

influencing deliberate decisions to selectively seek out one

product or another. One way to investigate this would be to

examine actual mobility routes in conjunction with EMA

purchase reports, in an attempt to identify cases wherein

subjects deviate from their established routes when seeking

products. Note that this leverages within-subject data to

ascertain the geospatial context of product purchases and

draw inferences about geographic correlates, an approach

not possible with cross-sectional or macro-aggregated data.

Alternatively, a mixed-methods approach that has subjects

annotate a map of the places they visit could be used, alone

or supplemented by EMA reports regarding intentional

versus spontaneous purchases [132, 133].

Quantifying the interactive influence of geographically

dispersed neighborhood factors on health is not possible

with layered density approaches alone. Neighborhood

walkability may increase activity and reduce overweight,

while it might simultaneously expose kids to air pollution

and retail products in a way that varies from neighborhood

to neighborhood [65, 134]. Interactions of this kind happen

at the individual level, and it is at that nexus point that

multilevel influences can be contrasted more directly. A

recent, policy-oriented example comes from Pearson et al.,

working in Washington, DC, who incorporated geograph-

ically explicit information on local smoke-free policies and

socially imposed smoking restrictions alongside continuous

GMA of participant locations and EMA reports of cigarette

and electronic cigarette use [132].

A handful of research groups have implemented full-

scale GEMA protocols for the study of addictive drug-use

behaviors [82, 83, 132, 135–138]. Among the most con-

sistent findings from this body of work is the central role

played by motivational drive states like drug-use craving

[82, 135, 136, 138, 139]. This supports the notion that

neighborhood product density plays a direct role, triggering

craving and thus purchase-decisions, rather than simply

enabling purchases that were planned ahead of time.

Considered within a broader socio-ecologic framework, a

cued-craving model of neighborhood influence is likely an

over-simplification, as the presence of craving implies an

established and often firmly engrained pattern of use. It has

been observed that predictors of behavioral maintenance

and cessation are often different than predictors of initia-

tion [140, 141], spawning new questions about the impact

of neighborhood factors on drug-use initiation over the

course of early childhood and adolescence.

Extending beyond the retail product landscape, GEMA

can be used to construct a geo-social tapestry that includes

local policies, park conditions, crime, and other systems

level economic factors that cannot be captured by EMA

alone. In a series of GEMA studies, Preston et al. supple-

mented standard measures of drug craving and use with

information about neighborhood conditions and
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physiological correlates like stress [17, 142]. Findings

extend other EMA work on precipitants of drug use,

incorporating the ways that stressful neighborhood settings

underlie and can moderate their effects [143, 144].

Regarding etiology, available evidence suggests that the

formation of maladaptive, cued associations with a specific

substance or product depends on self-regulatory processes

[145–147], in the sense that individuals facing stressful

environmental conditions are more likely to utilize coping

resources that are readily available within the same eco-

logic system that exacerbated their distress in the first

place.

Mobile communication devices will continue to revo-

lutionize research on mental health and well-being by

linking momentary experiences to objective measures that

can be collected unobtrusively [135, 148–150].

Notable examples come from recent research on symptoms

of depression and anxiety [149, 151]. Pentland et al.

[149, 150] and Mohr et al. [148, 152] have demonstrated

that passive sensing of GPS and other cell-phone usage

metrics can be used to classify symptom severity. Beyond

mere classification, Madan et al. [150] confirmed that

Bluetooth-detected social interactions and movement pat-

terns were associated, and that in some cases EMA-re-

ported stress levels actually preceded stress-related

behaviors such as travel to locations known to provoke

anxiety.

Psychosocial stress is known to increase vulnerability to

environmental pathogens [153, 154], but there has been

less emphasis on the feedback loop whereby environmental

exposures exacerbate stress and cognitive function more

broadly. Air pollution exposure has been linked to symp-

toms of stress and depressed mood [155–159], raising the

prospect that ecologic measurement of emotional well-

being could be leveraged to investigate the cognitive

impact of exposure to air pollution. For example, Bullinger

et al. [158] implemented a geographically explicit daily

diary protocol with small samples of healthy adults from

polluted and non-polluted regions of Bavaria, assessing

self-reported mood (including stress and ‘‘annoyance’’)

along with a range of ambient pollutant concentrations and

weather conditions each day over a 2-month period.

Though a small preliminary study, results suggested time-

lagged effects of elevated pollutant exposure on depressed

mood and elevated stress.

GEMA methods have also been utilized by physical

activity researchers, although the focus of mobile survey

reports in these studies have most often been restricted to

behavioral assessments associated with physical activity

patterns [84–86, 160–163]. Regardless, it is interesting to

consider whether the same mechanisms believed to drive

the well-known connection between physical activity and

subjective well-being (e.g., cardio-pulmonary function)

[164–168], may also explain the potentially detrimental

impact of exposure to air pollution on mental health [154].

Studies are needed to explicitly measure the degree that a

positive association between exercise and psychological

well-being may be diluted by simultaneous exposure to

particulate matter in the air. This is an example of a

transdisciplinary research question involving multivariate

geographic correlates that could be readily addressed with

GEMA methods. The ability to systematically contrast

geographic correlates that may produce countervailing

effects with unknown population-level impact is among the

key advances offered by the GEMA framework.

Risk and resilience: neighborhood effects

Researchers and community stakeholders have long sus-

pected that impoverished neighborhood conditions have a

detrimental impact on the mental health of residents

[169, 170]. Only recently have longitudinal studies begun

to systematically document the way chronic exposure

accrues within environments that are devoid of resources

and periodically traumatic [110, 171, 172]. This literature

operationalizes neighborhood disorder via systematic

measurement of street-level conditions, including damage

to buildings and other structures, litter, and criminal

activity [173]. Viewed through this lens, retail outlets are

not simply isolated drug-use cues or access points, but are

elements of a broader ecologic system [146, 147, 152].

Alcohol retailers, for instance, cue and enable drinking,

while they also potentiate deviant behaviors, interpersonal

violence, and crime [169, 170, 174–177].

Longitudinal documentation of neighborhood disorder

and mental health has revealed significant person-level

variation in resilience to neighborhood stressors that is due

to both the type and severity of stressors involved

[178–180]. This familiar pattern is consistent with other

ecological exposures work, once again highlighting the

need for GEMA research designed to connect multi-level

sources of information extending down from neighborhood

conditions to ongoing subjective experience. It would be

useful, for instance, to investigate the real-world circum-

stances under which residents experience feelings of safety,

control, and freedom to improve their circumstances, all of

which have been linked to protection against substance

misuse and other mental health problems [181–185].

Ecological research on the effects of natural and man-

made disasters on neighborhoods provides a contrasting

perspective on neighborhood conditions and mental health,

results of which suggest that the effects of severe resi-

dential damage are similar to effects of poverty and

neighborhood disorder [186–188]. One study assessing the

impact of Hurricane Sandy used tablets to conduct 1000
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probability-based household surveys, randomly selected to

represent the population of residents located within a

geographic catchment extending along the entire coastal

area affected by the storm. Findings indicate that children

residing in homes that were damaged by the storm were

particularly susceptible, with rates of depressive symptoms

2–4 times that of children from homes that incurred no

damage [159]. It is noteworthy that researchers in this area

often focus on psychological resilience and recovery

[189, 190], and have developed instruments for assessing

individual susceptibility to environmental adversity

[22, 191], resources that may be useful to implement within

GEMA research on the mental health of those in low-re-

source, disordered communities more broadly.

Discussion

Advances in GEMA methods correspond with novel

transdisciplinary ‘‘team’’ science approaches to mobile

health (mHealth) research and practice more generally

[192]. EMA, like any self-report method, is subject to the

limitations of human respondents’ perceptual filters. People

cannot report that which they are unaware [49], and what

they do report is a subjective account of ecological context.

Geographic momentary assessment (GMA) of real-time

locations provides an objective relational connection to

place, and thereby a rapidly expanding array of data,

promising to transform environmental and health research

and practice in the years to come.

Within a combined GEMA framework, relational data

of this kind can enrich our perspective in absolute terms

while also cross-validating EMA responses. EMA situa-

tional reports need not be relied on as objective ecologic

measures, and instead can be valued precisely because they

are free to diverge from other sources of cross-referenced

ecologic data. National Oceanic and Atmospheric Associ-

ation weather archives may indicate that it was ‘‘mostly

sunny’’ on the afternoon of a certain day within a certain

zipcode, but what is more interesting is the variation

among subject reports at that same moment—some of

whom, perhaps those who are characterologically pes-

simistic or just feeling down, may interpret the sky as

‘‘partly cloudy’’.

Methodological considerations

Careful consideration of the distinction between traditional

EMA and GEMA reveals a number of implications that

extend well beyond the basic idea that EMA surveys can be

linked to geographic coordinates. First of all, because the

inherent purpose of GEMA is research on the multivariate

association between geographic correlates and subjective

experience, researchers must consider sources of both real

and spurious spatial autocorrelation, or the clustering of

similar values as a function of their geographic proximity.

Statistical inference in the presence of spatial autocorre-

lation requires valid information about the spatio-temporal

distribution of the variables involved [193, 194]. Even

when geographically explicit, a research protocol that only

collects location information within EMA reports is blind

by design to subjects’ baseline exposure to geographic

correlates when EMA reports are not completed (i.e., the

vast majority of the time). Without person-level data on the

baserate of geographic exposures, inference regarding

associated EMA reports can be misleading [195], for the

same reasons that the predictive power of a diagnostic

survey instrument (e.g., a brief depression screener) is

directly related to the baseline prevalence of the disease

within the group being tested. For example, given a

hypothetical sample of depression ratings that are consis-

tently elevated, drawn from two cities that have very dif-

ferent ambient air pollution levels, failure to account for

spatial autocorrelation might lead one to conclude that air

pollution is linked to depression in one city but not the

other; that is, that air pollution and depression are associ-

ated in the polluted city, when in fact we know a priori that

the subjects from both cities were equally depressed

regardless.

One way EMA researchers have drawn inference about

place-based, situational correlates is by contrasting random

or otherwise time-based EMA reports (the within-subject

control) with reports that are associated with a correlated

event of interest (the within-subject case)—such as a drug-

use event [140, 196, 197]. When an additional stream of

data that is spatially distributed is incorporated it becomes

necessary to evaluate the degree to which corresponding

EMA reports are themselves spatially representative. Just

as probability-based sampling ensures that opinion survey

respondents are representative of the spatially distributed

population from which they are drawn, ideally the timing

and frequency of GEMA reports are reasonably propor-

tionate to the underlying baserate that an individual spends

time in the context of geographic correlates under study.

GEMA protocols that include continuous geolocation

monitoring provide complete geographic exposure infor-

mation and thus the ability to account for person-level

baserates. When necessary, GEMA methods can even be

used to oversample EMA reports accordingly via real-time

geographic survey-prompting procedures.

Data security and privacy will remain important con-

siderations for the foreseeable future [198–201]. While the

research subject consent process is central, the inherently

identifiable nature of individual geographic mobility data

presents new ethical challenges, particularly regarding
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participants’ access to, understanding of, and control over

their own information [202]. Nonetheless, there are data

security and processing methods that can substantially

minimize risks by ‘‘masking’’ and ultimately removing

geographic information altogether. Encryption and geo-

graphic masking procedures that remove geolocation pre-

cision from raw location data provide security protection

during the data collection, processing, and analysis phases

the research. Perhaps more importantly, location coordi-

nates can be pre-processed in a way that allows selective

extraction of research-relevant indicators while sensitive

location information is stored separately and ultimately

destroyed. For example, participants’ geographic location

data can be used to generate exposure counts that are

completely devoid of geographic or otherwise identifiable

information. Thus, geographic precision can be tailored

such that the spatial resolution of location coordinates is

the minimum level required to address a research question

deemed to have a societal impact that is significant and

commensurate to the risks of the research.

Conclusions

Not unlike the data on geographic variation in lifespan

[1, 2], international surveillance data indicate that markers

of well-being like subjective happiness are much more

prevalent in some nations than others, varying significantly

between municipal areas [203–205]. Geographically

explicit, real-time reports of well-being are also being

aggregated from social media such as Twitter, confirming

patterns observed via conventional surveys [206–208].

More intriguing, geographically referenced photos shared

on the Internet are emerging as a public health surveillance

tool [209–211], and together, these new geographically-

explicit indicators suggest that not only does subjective

well-being vary as a function of place, but that the temporal

dynamics of this association unfold differently over the

course of the day [206, 207, 210].

For cultural anthropologists and geographers, as well as

sociologists, urban planners, and others who specialize in

the study of the way places have been developed by people,

it is natural to focus on dynamic interactions between

people and places, including the intersection of place and

health. Yet the traditional frame of reference is spatially

and temporally macro, documenting the relatively slow

evolution of local health related-norms, for example, or the

differential impact of large-scale public policies that unfold

over years or decades. The existence of macro-level trends

notwithstanding, the meso- and in some cases micro-level

dynamic processes nested within the cyclic daily routines

of individuals can increasingly be captured by modern

technologies, and it is interesting to consider the degree to

which variance in population health outcomes will be

better accounted for by a geographically explicit mea-

surement framework that weighs the reciprocal push and

pull of both the macro and the micro [19, 212].
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