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The estimation of EEG generating sources constitutes an Inverse Problem (IP) in

Neuroscience. This is an ill-posed problem due to the non-uniqueness of the solution

and regularization or prior information is needed to undertake Electrophysiology Source

Imaging. Structured Sparsity priors can be attained through combinations of (L1

norm-based) and (L2 norm-based) constraints such as the Elastic Net (ENET) and

Elitist Lasso (ELASSO) models. The former model is used to find solutions with a

small number of smooth nonzero patches, while the latter imposes different degrees

of sparsity simultaneously along different dimensions of the spatio-temporal matrix

solutions. Both models have been addressed within the penalized regression approach,

where the regularization parameters are selected heuristically, leading usually to

non-optimal and computationally expensive solutions. The existing Bayesian formulation

of ENET allows hyperparameter learning, but using the computationally intensive Monte

Carlo/Expectation Maximization methods, which makes impractical its application to the

EEG IP. While the ELASSO have not been considered before into the Bayesian context.

In this work, we attempt to solve the EEG IP using a Bayesian framework for ENET

and ELASSO models. We propose a Structured Sparse Bayesian Learning algorithm

based on combining the Empirical Bayes and the iterative coordinate descent procedures

to estimate both the parameters and hyperparameters. Using realistic simulations and

avoiding the inverse crime we illustrate that our methods are able to recover complicated

source setupsmore accurately andwith amore robust estimation of the hyperparameters

and behavior under different sparsity scenarios than classical LORETA, ENET and

LASSO Fusion solutions. We also solve the EEG IP using data from a visual attention

experiment, finding more interpretable neurophysiological patterns with our methods.

The Matlab codes used in this work, including Simulations, Methods, Quality Measures

and Visualization Routines are freely available in a public website.

Keywords: EEG source imaging, inverse problem, sparsity regularization, sparse Bayesian learning, empirical

Bayes, elastic net, mixed norms, elitist lasso

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2017.00635
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2017.00635&domain=pdf&date_stamp=2017-11-16
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:eduardo@cneuro.edu.cu
mailto:pedro.valdes@neuroinformatics-collaboratory.org
mailto:pedro.valdes@neuroinformatics-collaboratory.org
https://doi.org/10.3389/fnins.2017.00635
https://www.frontiersin.org/articles/10.3389/fnins.2017.00635/full
http://loop.frontiersin.org/people/396071/overview
http://loop.frontiersin.org/people/496064/overview
http://loop.frontiersin.org/people/437256/overview
http://loop.frontiersin.org/people/94680/overview
http://loop.frontiersin.org/people/54366/overview


Paz-Linares et al. Bayesian ENET/ELASSO EEG Source Imaging

INTRODUCTION

Electrophysiological Source Imaging (ESI) constitutes a relatively
inexpensive and non-invasive approach to study neural activity
with a high temporal resolution. ESI is a classic example of
an Inverse Problem (usually referred to as EEG IP), given
the little amount of data available as compared to the large
number of parameters needed to model the spatially distributed
whole brain activity this problem is ill-posed in the Hadamard
sense (Hadamard, 1923). Its mathematical properties are in the
first place determined by the forward model, i.e., the equation
relating the electrical potential measured at the scalp (V) and
the originating Primary Current Density (PCD) J created by the
electrical activity of large neuronal masses in every time t, which
is a Type I Fredholm Integral Equation1:

V (re, t) =

∫

K (re, r) ·J (r, t) dr3 (1)

Here, the kernel K (re, r) is called Electric Lead Field (ELF),
and maps the space of brain generators r to the position of the
measuring electrodes re. The ELF can be computed by using
the quasistatic approximation of Maxwell equations and a model
of the geometric and electrical properties of the head (Riera
and Fuentes, 1998). The EEG IP is then defined as estimating
the parameters J given measurements V and a known ELF.
In practice, discretization of Equation (1) leads to a linear
system:

V = KJ + ε (2)

where the unknown parameters (J) constitute an S × T matrix
(T is the number of time instants and S is the number of
spatial generators, i.e., voxels) that represents the discretized
PCD. V and ε are N × T matrices, representing the measured
EEG and the measurement noise in N electrodes (generally no
more than 128), usually distributed according to a standard
system (Klem et al., 1999). It need be noted that the discretized
ELF, K, is an N × S ill-conditioned matrix due to the large
correlations among its columns. Since the region of potential
brain generators is usually of thousands of voxels, then N << S
and the system of linear Equation (2) is highly underdetermined,
i.e., it does not have a unique solution. This discretization and
dimensionality reduction affects the accuracy of reconstructed
solutions. Additionally, the forward model by itself consists in an
oversimplification of the real generator space of EEG data and
electromagnetic properties of the head. Therefore, some authors
have suggested to test the inverse solutions with a different head
model than the one used for simulations, in order to evaluate
the methods in typical real data scenarios, when the individual
MRI and head model is not available. This would allow the study
to avoid committing the so-called “Inverse Crime” (Kaipio and
Somersalo, 2004).

1For the mathematical notation used in this paper see Appendix G in

Supplementary Materials.

TABLE 1 | Different models for Tikhonov Regularization and their corresponding

penalty functions.

Model Penalty function

a) Ridge ‖J‖22
b) LORETA ‖LJ‖22
c) LASSO ‖J‖1

d) LASSO Fusion ‖LJ‖1

e) MPLS
∑

k λkψk (J)

f) Fused LASSO λ1
∑S−1

i=1

∥

∥Ji,·
∥

∥

1 + λ2
∑S−1

i=1

∥

∥Ji+1,· − Ji,·
∥

∥

1

g) ENET λ1 ‖J‖2 + λ2 ‖J‖1

h) ENETL λ1 ‖LJ‖2 + λ2 ‖LJ‖1

i) Smooth LASSO λ1 ‖LJ‖2 + λ2 ‖J‖1

j) MXN ‖J‖p,q =

(

∑T
t=1

(

∑S
i=1

∣

∣Ji,t
∣

∣

p
)

q
p

)
1
q

k) GLASSO
∑S

s=1

(

∑T
t=1

∣

∣Ji,t
∣

∣

2
)

1
2

l) ELASSO
∑T

t=1

(

∑S
i=1

∣

∣Ji,t
∣

∣

)2

Sparsity Regularization with L1/L2 Norms
Models: The Elastic Net and the Elitist
Lasso
A well-known way to find a unique solution to the EEG IP is
through Tikhonov Regularization (Tikhonov and Arsenin, 1977).
It uses additional or prior information on the parameters, which
is usually introduced in the form of mathematical constraints and
it is closely related to Penalized Least Squares (PLS), which is
generally expressed as:

Ĵ = argminJ
{

‖V − KJ‖22 + λP (LJ)
}

(3)

The first term in the cost function in (3) is the residual of
the model and the second summarizes the imposed constraints
(penalty terms). The regularization parameter λ controls the
relative weight of the penalty function P. The matrix L adds
information about the correlation structure of the parameter
matrix. In the context of the EEG IP, it has taken the form
of the identity matrix (independent PCD in each voxel) or the
Laplacian operator (discrete second derivative) for requiring
spatial smoothness of the PCD.

A well-known example of Tikhonov Regularization is the
Ridge method (Hoerl and Kennard, 1970), where the penalty
function is the L2 norm of the parameters, Table 1a. Particular
cases of this method have given rise to several well-established
inverse solutions such asMinimum-Norm,WeightedMinimum-
Norm and Low Resolution Electromagnetic Tomography
(LORETA), Table 1b. Their advantages and disadvantages have
been thoroughly studied (Pascual-Marqui, 1999).

Sparse PCDs have also been searched through methods based
on such as the Least Absolute Shrinkage Selection Operator
(LASSO) (Tibshirani, 1996), Table 1c, and its version LASSO
Fusion (Land and Friedman, 1996), Table 1d, which use the L1
norm as the penalty function.

In the last years, sparsity constraints based on L1/L2 norm
have become very popular to achieve a high spatial resolution,
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in reconstructing and differentiating sources of brain activity,
associated to different cerebral functions/states. This constraint
can also fit better with physiological knowledge about brain
activity in particular experimental and real-life situations.
However, its mathematical treatment is not straightforward and
strongly depends on the models and algorithmic approaches.

A special example consists in algorithms performing smooth
and sparse estimations in separate steps (Liu et al., 2005; Palmero-
Soler et al., 2007) to explicit combining models as the sum of L1
and L2 penalty functions while using iterative algorithms to solve
it (Nagarajan et al., 2006; Valdés-Sosa et al., 2009; Tian and Li,
2011).

These L1/L2 models have been included in a framework called
Multiple Penalized Least Squares (MPLS) (Valdés-Sosa et al.,
2006; Vega-Hernández et al., 2008), Table 1e, which consists in
a generalization of formula (3) to multiples penalty terms with
their corresponding lambdas.

The Elastic Net in the Context of Multiple Penalized

Least Squares Models
A very promising approach in the context of MPLS is based on
a flexible model, combining L1/L2 norms, called the Elastic Net
(ENET) (Zou and Hastie, 2005), Tables 1g,h. Solving this model
is of particular interest for incorporating together the advantages
of the L2 norm (Ridge) and L1 norm (LASSO) family models.
Other particular examples of MPLS’ are the Fused LASSO
(Tibshirani et al., 2005), Table 1f, based only in the L1 norm, and
the smooth LASSO (Hebiri, 2008), Table 1i, combining L1 and
L2 norms

For minimizing the PLS’s (or its MPLS generalization) cost
function in (3), considering models such as the Elastic Net, many
algorithms exhibit advantages in the convergence time. Some
Important examples are general modified Newton-Raphson
algorithms, such as Local Quadratic Approximation (LQA) (Fan
and Li, 2001) andMajorization-Minorization (MM) (Hunter and
Li, 2005), without a considerable loss of speed in computations.

In a seemingly different approach combining L1/L2 norms,
some authors have used the idea of structured sparse penalization
based on mixed-norms (MXN) models (Kowalski and Torrésani,
2009a,b), Table 1j. In this context using the L1 norm of a vector
whose elements are obtained as the L2 norms of other vectors is
known as Group Lasso (GLASSO) (Yuan and Lin, 2006; Kowalski
and Torrésani, 2009a,b), Table 1k. An important application
of the GLASSO penalty is for example the Focal Vector Field
reconstruction (Haufe et al., 2008) where sparsity is imposed on
the amplitude of the PCD but keeping smoothness in the 3 spatial
components (x, y, z) that defines the direction of this vector
magnitude. The penalization function is then the L1 norm of the
vector formed by the L2 norms of the PCD vector in each voxel.

The Elitist Lasso in the Context of Mixed-Norm

Models
With the same goal, a model based on the L2 norm of a vector
whose elements are obtained as the L1 norms of other vectors,
has been called Elitist Lasso (ELASSO) (Kowalski and Torrésani,
2009a,b), Table 1l. This type of penalization was extended to the
spatio-temporal context, consisting in the application of an L1

norm along the first dimension of the parameter matrix, and
an L2 norm along the second dimension (Ou et al., 2009). This
model presents similarities with respect to the MPLS models
discussed above, particularly the ENET, therefore it is a suitable
candidate among the MXN models for taking advantages of
algorithmic solutions developed for those ones.

Although originally a second-order cone programming was
used (Ou et al., 2009), it has been shown that these models for
imposing structured sparsity can be estimated by a generalized
shrinkage operator (Kowalski and Torrésani, 2009b). However,
the regularization approach using MXN as a penalty function
becomes a convex, non-differentiable, irrational, and non-
separable (along columns or rows) optimization problem, which
makes the inference process computationally very expensive.

More recently, efficient proximal operators and gradient-
based based algorithms have been developed to compute a
solution to the spatio-temporal EEG IP, by using special cases
of mixed-norms (e.g., FISTA, Beck and Teboulle, 2009; Gramfort
et al., 2012, 2013).

Limitations of the Regularization Approach
The estimated solutions using the algorithms discussed above, for
the MPLS and MXN formulations of L1/L2 norms, become very
sensitive to the set of constraints selected to regularize them and
to the values of the regularization parameters. Within the state-
of-the-art literature, usually the regularization parameters are
selected ad hoc, or via heuristic information criteria, as Akaike
Information Criteria (AIC), Bayesian Information Criteria (BIC)
and Generalized Cross Validation (GCV). These procedures
lead to compute the Inverse Solution for a large set of values
of the regularization parameters, in order to evaluate the
information criteria, thus being computationally expensive, in
many cases non-optimal and usually leading to an inadequate
balance of the constraints. Critical examples are the Multiple
Shrinkage Problem of MPLS models, such as the ENET (Zou and
Hastie, 2005; Vega-Hernández et al., 2008), and the selection of
regularization parameters for the MXNmodels in Gramfort et al.
(2012, 2013) and Gramfort et al. (2014).

Bayesian Inference and Sparse Bayesian
Learning
As dealing with the regularization parameters estimation in the
Classical Inference approach constitutes an important limitation,
other approaches have been proposed within the Bayesian
framework (Schmidt et al., 1999; Trujillo-Barreto et al., 2004;
Wipf et al., 2006). The Bayesian Inference have emerged as
an alternative formulation, which is more general and can
incorporate models, equivalent to the Tikhonov Regularization.

This framework addresses the EEG IP in terms of finding the
posterior pdf of the parameters (J) using the Bayes rule:

p (J|V ,α,β) ∝ p (V|J,β) p (J|α) (4)

Where p (V| J,β) is the likelihood, p (J |α) is the parameters’
prior and (α,β) are hyperparameters. The prior plays a similar
role as a penalty function in the classical framework. As a
particular case, the maximum a posteriori estimate in this
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formalism leads to a fully equivalent solution to the optimization
problem in Equation (3), when the likelihood is a Gaussian (with
mean KJ and unit variance) and the prior has the following
exponential form (using α = λ):

p (J|α) =
1

z
e−αP(LJ) (5)

An important advantage of the Bayesian framework is that in a
second level of inference (MacKay, 2003) one can estimate the
hyperparameters of interest, typically variances and/or precisions
of the likelihood and the priors. One way to achieve this is
by using the Empirical Bayes procedure, where the aim is to
maximize the posterior of hyperparameters:

(

α̂, β̂
)

= argmax(α,β)p (α,β|V) (6)

This approach has been widely developed in the last years,
especially with sparse priors, which has been called Sparse
Bayesian Learning (SBL). An important example is the Relevance
Vector Machine (RVM) (Tipping, 2001; Schmolck and Everson,
2007), consisting in estimating sparse parameter vectors (with
a Gaussian prior) while learning the hyperparameters (with
a Gamma prior). Although theoretically Bayesian Learning
methods are more robust for computing the inverse solution,
fast and efficient inference algorithms have been currently
developed only for simple models (Tipping and Faul, 2003).
Bayesian formulations of the ENET (Li and Lin, 2010) or
multiple variants of LASSO in the MPLS family (Kyung et al.,
2010) have been developed previously, by using scale Gaussian
mixtures (Andrews andMallows, 1974). Although scale Gaussian
mixtures constitute a considerable improvement for computing
these models still involves the use of computationally intensive
Expectation-Maximization (EM) and/or Monte Carlo (MC)
algorithms, which are impractical for the EEG IP due its high
dimensionality.

Objectives
In this work we propose a new method based on an Empirical
Bayes formalism to promote Structured Sparsity through two
models based on mixtures of L1/L2 norms penalization functions
(Laplace/Normal priors):

• The Elastic Net (ENET) (Zou and Hastie, 2005; Vega-
Hernández et al., 2008).

• The Elitist Lasso (ELASSO) (Kowalski and Torrésani,
2009a,b).

Although we develop the theory for ENET and ELASSO models,
the whole methodology can be generally applied to other types
of Laplace/Normal priors. The algorithm can be considered as
a Sparse Bayesian Learning method since it allows to estimate
the regularization (hyper-) parameters that control sparsity and
perform variable selection, while at the same time avoiding
Monte Carlo estimations or EM type algorithms.

The aims of this study are to present the theory and an
insightful validation of the methods as electrophysiological
source localization methods with a large set of simulations and

real EEG visual Event Related Potentials. We also compare
the performance of these models with other well-established
methods in the ERP synthetic data and discuss the theoretical and
experimental differences. The Matlab codes used in this work,
including Simulations, Methods, and Quality Measures are freely
available upon request to the authors.

METHODS

Hierarchical Elastic Net Model
The Bayesian formulation of the ENET can be interpreted as a
Laplace/Normal prior model2, with associated hyperparameters

(α1,α2) that are inversely related to the variances of the Normal
and Laplace pdfs:

p (J |α1,α2 ) =
1

z
e
−
∑

t

(

α1,t‖J·,t‖
2
2+α2,t‖J·,t‖1

)

(7)

Where α1,t and α2,t represents the tth element of the
hyperparameters vectors (α1,α2), the notation J·,t refers to the
tth column of J, and z is the normalization constant.

Since the squared L2 norm and the L1 norm are separable as a
sum of terms depending on the individual components, this prior
introduces stochastic independence in the whole spatio-temporal
map of the parameters, i.e., Equation (7) can be factorized over
voxels and time points (indexed by i and t, respectively) with
corresponding normalization constants zi,t :

p (J |α1,α2 ) =
∏

t,i

1

zi,t
e−α1,tJ

2
i,t−α2,t|Ji,t| (8)

This prior can be expressed as a scale Gaussian mixture
(Andrews and Mallows, 1974), with a mixing pdf corresponding
to a Truncated Gamma on the new hyperparameter γ . This
formulation can be found in the Bayesian literature with different
parametrizations (Kyung et al., 2010; Li and Lin, 2010). In our
case, it is convenient to reorganize the variances and mixing
distribution as detailed in the following Lemma.

Lemma 1 [Proof in Appendix A (Supplementary Materials)]:
Let Ji,t be the random variable distributing with pdf
1
zi,t

e−α1,tJ
2
i,t e−α2,t|Ji,t|, where zi,t is a normalization constant.

Then the following equality holds:

1

zi,t
e−α1,tJ

2
it−α2,t|Ji,t| =

∫ +∞

0
N
(

Ji,t
∣

∣0,Λi,t

)

TGa

(

γi,t

∣

∣

∣

∣

1

2
, 1,
(

kt ,∞
)

)

dγi,t (9)

Λi,t =
1

2α1,t
Λi,t , Λi,t =

(

1−
kt

γi,t

)

(10)

kt =
α22,t

4α1,t
(11)

Where TGa
(

γi,t
∣

∣

1
2 , 1,

(

kt ,∞
) )

is the Truncated Gamma pdf,
with lower truncation limit kt .

2Note that this mixture of Laplacian and Gaussian distributions is not the Normal-

Laplace distribution described in Reed (2006).

Frontiers in Neuroscience | www.frontiersin.org 4 November 2017 | Volume 11 | Article 635

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Paz-Linares et al. Bayesian ENET/ELASSO EEG Source Imaging

FIGURE 1 | Directed network describing the instantaneous relationship

between data (V·,t ), parameters (J·,t ) and hyperparameters (βt, γ·,t, α1,t, kt ) in
the Elastic Net model.

With this particular formulation of the ENET prior we
change the relevant hyperparameters from the old regularization
parameters (α1,α2) to (α1, k). The first one acts as the scale
of variances of Ji,t (Equation 10), and the second acts as
the lower truncation limit of the pdf for γi,t . Although this
makes more challenging the interpretation of the influence of
the hyperparameters, it speeds the Empirical Bayes algorithm
(described in section Structured SBL algorithm for the Elastic Net
and Elitist Lasso models) and ensures its convergence. Given that
k is now directly learned (without estimating α2, independently
of α1), it is necessary to impose a convenient gamma prior
for this hyperparameter. For α1 we can just choose a non-
informative prior. Applied to the EEG IP stated in Equation (2),
this new Bayesian ENET model can be analytically described by
the following set of pdfs, see also the schematic representation in
Figure 1.
Likelihood:

V·,t ∼ N
(

V·,t

∣

∣KJ·,t ,βtI
)

(12)

Prior of parameters:

J·,t ∼ N
(

J·,t
∣

∣0, diag
(

3·,t

))

(13)

Prior of hyperparameters:

γ·,t ∼
∏

i
TGa

(

γi,t

∣

∣

∣

∣

1

2
, 1,
(

kt ,∞
)

)

(14)

βt ∼ non-informative, log p(βt) = const (15)

α1,t ∼ non-informative, log p(α1,t) = const (16)

kt ∼ Ga (τ + 1, υ) , τ > 0, υ > 0 (17)

Here βt plays the role of the noise variance and τ and υ are the
scale and shape parameters of the Gamma prior for kt .

In the original Bayesian ENET model the parameter’s prior
(8) controls the degree of sparsity/smoothness through variable
selection according to the values of α1 and α2 directly, i.e.,
when α1 ≪ α2 we have that p (J |α1,α2 ) ≈ La(J |0, α2),
promoting sparse solutions, and when α2 ≪ α1 we have that

p (J |α1,α2 ) ≈ N
(

J
∣

∣

∣
0, 1

2α1

)

, which promotes smoothness for

not-too-large values of α1. In our formulation of the ENETmodel
the variable selection is performed in a similar fashion in the
hyperparameters level, but in this case when k is large (α1 ≪ α2
for finite α1) we have by Equation (14) that γ ≈ k, which implies
by Equation (10) that 3 → 0, finally promoting sparsity; and
when k is small (α2 ≪ α1), 3 → 1

2α1
by Equation (10) so that in

Equation (13) we have that p
(

J
∣

∣γ ,α1, k
)

≈ N
(

J
∣

∣

∣
0, 1

2α1

)

.

Hierarchical Elitist Lasso Model
Here, we propose a Bayesian formulation of the Elitist Lasso
model using the following multivariate pdf :

p (J) =
1

Z
e−α‖J‖

2
1,2 (18)

where α is a hyperparameter that controls simultaneously the
level of spatial and temporal sparsity. This prior can be easily
written for each time point separately by decomposing the

mixed-norm as ‖J‖21,2 =
∑

t

∥

∥J·,t
∥

∥

2

1
. However, the penalization

over one spatial component Ji,t cannot be separated from the
remaining components Jj,t

(

j 6= i
)

. We then propose to rearrange
∥

∥J·,t
∥

∥

2

1
in the form

(

δi,t +
∣

∣Ji,t
∣

∣

)2
, for any index i, where δi,t =

∑

j 6=i

∣

∣Jj,t
∣

∣ is a magnitude carrying the dependence on the other

components of the vector parameters. This allows us to derive
a hierarchical Bayesian model for this formulation based on the
theory of Markov Random Fields.

Definition 1: Let x be a random vector or random matrix,
which has joint pdf of the form p (x) =

(

1
Z

)

e−P(x), where P (x)
can be decomposed as

∑

(i,j)∈J Pij

(

xi, xj
)

; J is a set of pairs of

index and Z is a normalization constant. Then we say that x is
a “Pair-wise Markov Random Field” (pMRF), and the functions
{

Pij

(

xi, xj
)}

are defined as potentials.
Definition 2: Let x be a random vector or random matrix.

Let xH denote a subset of elements of x, which has conditional
joint pdf of the form p

(

xH
∣

∣xHC

)

= e−αP(x)
/

Z, where xHC

is the complement of xH in x, P (x) can be decomposed
as
∑

(i,j)∈J Pij

(

xi, xj
)

, J ⊆
{(

i, j
)

: xi
∨

xj ∈ xH
}

, and Z is a

normalization constant. Then we say that
(

xH, xHC

)

is a “Pair-
wise Conditional Markov Random Field” (pCMRF). [Note that
any couple of sets

(

xH, xHC

)

from a pMRF constitutes a pCMRF;
see the proof of Lemma 2 (a) in Appendix B (Supplementary
Materials)].

In our case, the random vector consisting in a column of the
spatio-temporal matrix J constitutes a pMRF, since its prior can
be written as:

p
(

J·,t
∣

∣α
)

=
1

z
e−α‖J·,t‖

2
1 (19)

Where the exponent can be decomposed as:

∥

∥J·,t
∥

∥

2

1
=
∑

i
J2i,t +

∑

i>j
2
∣

∣Ji,t
∣

∣

∣

∣Jj,t
∣

∣ ; (i, j = 1, . . . , S) (20)

Hence the potentials of the Definition 1 are proportional to:

Pij =

{

J2i,t , i = j

2
∣

∣Ji,t
∣

∣

∣

∣Jj,t
∣

∣ , i 6= j
(21)
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pMRFs underlies manymodels of the Statistical Physics approach
(Kindermann and Snell, 1980) and also learning algorithms
(Murphy, 2012). In the case of the model described by Equations
(19–21), we can reformulate the prior in a hierarchical model
at the parameters level. For this, we need to use some relevant
properties posed in the following Lemma.

Lemma 2 [Proofs in Appendix B (Supplementary Materials)]:
The following properties can be verified for the conditional
probabilities in the pCMRF associated to the Elitist Lasso model
of Equation (19).

(a)
p
(

Ji,t
∣

∣JiC ,t ,α
)

= p
(

Ji,t
∣

∣δi,t ,α
)

=
1

Zi,t
e−αJ

2
i,t e−2αδi,t|Ji,t| (22)

Where δi,t =
∑

j 6=i

∣

∣Jj,t
∣

∣ and Zi,t is a normalization constant.

(b)
p
(

δ·,t
)

=
1

Z
e−α‖W

−1δ·,t‖
2
1 I
RS

+

(

δ·,t
)

(23)

Where I
RS

+
(δ·,t) is the indicator function of the region RS

+ =
{

x ∈ RS
: xi ≥ 0, i = 1, . . . , S

}

, the matrix W can be expressed
as the subtraction of the identity matrix from a ones-matrix:
W = 1S×S − IS×S , and Z is a normalization constant.

(c)
p
(

Ji,t
∣

∣α
)

=

∫

p
(

J·,t
∣

∣α
)

dJiC ,t =

∫

∏

i
p
(

Ji,t
∣

∣δi,t ,α
)

p
(

δ·,t
∣

∣α
)

dJiC ,tdδ·,t (24)

Using the properties (a,b) we show that taking the conditional
pdf (22), instead of Equation (19), leads to a simpler model,
separable in the parameters level. This implies considering δi,t
as new hyperparameters, which inherit the multivariate behavior
(spatial correlation structure) of J in the original model. As
proved in Appendix B (Supplementary Materials), using a
Dirac conditional distribution for this hyperparameters given
the parameters, we can reformulate the non-separated model
of Equation (19) into a hierarchical model that factorizes over
different components of the parameters. Property (c) validates
the use of the new model proposed in (a,b), showing that
the marginal pdf of the parameters in the original model is
identical to the marginal prior in the new one. Although this
approximation is algebraically simpler, its effect might be related
to other known approximations such as the mean field or a more
general one in the Variational Bayes approach (Friston et al.,
2007; Trujillo-Barreto et al., 2008). Also, it could be seen as a local
ENET approximation of the ELASSO penalty, since the latter can
then be explicitly re-written as a sum of an L2 and L1 norms of
the parameters. Indeed, realizing that Equation (22) represents
a combination of Normal and Laplace priors for Ji,t , a further
transformation of the Bayesian mixed-norm model is possible,
combining the results in Lemma 1 and Lemma 2 and dealing with
α and 2αδi,t as hyperparameters, similarly to α1 and α2 in the
ENET model. The resulting prior of parameters is given below,
the analogous schematic representation is showed in Figure 2:

J·,t ∼ N

(

J·,t

∣

∣

∣

∣

∣

0, diag
(

3·,t

)

)

(25)

FIGURE 2 | Directed network describing the instantaneous relationship

between data (V ), parameters (J), and hyperparameters (β, γ , δ, α) in the Elitist

Lasso model. Note that alpha affects all time points simultaneously, i.e., it is

just one hyperparameter controlling the same level of sparsity for all time

points.

3i,t =
1

2α
3i,t , 3i,t =

(

1−
αδ2i,t

γi,t

)

(26)

And the priors of hyperparameters are:

γ·,t ∼ TGa

(

γi,t

∣

∣

∣

∣

1

2
, 1,
(

αδ2i,t ,∞
)

)

(27)

δ·,t ∼
1

Z
e−α‖W

−1δ·,t‖
2
1 I
RS

+

(

δ·,t
)

(28)

βt ∼ non-informative, log p(βt) = const

α ∼ non-informative, log p (α) = const (29)

Similarly to ENET, the matrix diag
(

3·,t

)

can be interpreted as
an effective prior variance of the parameters. However, here,
the degree of sparsity in variable selection is twofold. On one
hand, through the regularization parameter α, which is unique
for the whole spatio-temporal map and imposes the same
degree of sparsity to each column (time point) of parameters.
On the other hand, the hyperparameters δi,t controls sparsity
locally, so that when δi,t is large we will have γi,t ≈ αδ2i,t , by
Equation (27), and the effective prior variances will tend to zero
3i,t → 0, by Equation (26), promoting higher degree of sparsity
independently of α.

Structured SBL Algorithm for the Elastic
Net and Elitist Lasso Models
For the Elastic Net and Elitist Lasso models the joint distribution
of data, parameters, and hyperparameters in the spatio-temporal
EEG IP admits the following factorization:

p (V , J,2) =
∏

t
p
(

V·,t , J·,t ,2t

)

(30)
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Where2 represents the hyperparameters of both Elastic Net and

Elitist Lasso:2t =

{

γ ·,t ,α1,t , kt ,βt ; ENET
γ·,t , δ·,t ,α,βt ; ELASSO

Each factor in Equation (30) is the product of the likelihood, prior
of parameters and priors of the hyperparameters:

p
(

V·,t , J·,t ,2t

)

= N
(

V·,t

∣

∣KJ·,t ,βtI
)

N
(

J·,t

∣

∣

∣
0, diag

(

3·,t

)

)

It is straightforward to derive an explicit formula for the
maximum a posteriori estimate of the parameters J, from the
data likelihood and its conjugated normal prior pdf, by using
the result in formula [C1] of Appendix C (Supplementary
Materials). The Empirical Bayes procedure then consists in
minimizing the negative log-posterior of hyperparameters;
see formula [C2] in Appendix C (Supplementary
Materials).

L = − log p (2|V) :

L =
1

2

∑

t

{

log |βtI| +
1

βt

∥

∥V·,t − Kµ·,t

∥

∥

2

2
+ log

∣

∣diag
(

3·,t

)∣

∣+

+ µJ
·,t

(

diag
(

3·,t

))−1
µ·,t + log

∣

∣

∣
6

−1
t

∣

∣

∣
− 2 log p (2t)

}

(31)

In Equation (31) µ·,t and 6t represents the corresponding
instantaneous parameter’s posterior mean and covariance. It
is important to note that these estimates are equivalent to
the classical Minimum Norm Estimates in the regularization
approach, when the hyperparameters are known or comprised
into one hyperparameter that can be estimated through heuristic
methods (e.g., minimizing information criteria or the generalized
cross-validation function) (Hämäläinen and Ilmoniemi, 1994;
Pascual-Marqui, 2002; Sánchez-Bornot et al., 2008; Vega-
Hernández et al., 2008). However, here, with the Empirical Bayes
approach, the estimation of hyperparameters is carried out by
optimizing the posterior pdf of hyperparameters in Equation (31)
(also known as Type II Likelihood). As hyperparameters control
the level of sparsity, with an iterative algorithm, even simple
models can lead to solutions totally different to the MNE
solutions (MacKay, 1992, 2003; Schmidt et al., 1999; Friston et al.,
2002, 2008; Trujillo-Barreto et al., 2004; Wipf et al., 2006).

The Type-II Likelihood in Equation (31) will take different
forms depending on the model choice (ENET or ELASSO),
since they use different expressions for the effective prior
variances, according to Equations (10) and (26). In both cases,
the hyperparameters’ priors follow from Equations (14) to (17)
and (27) to (29), respectively:
ENET:

− log p (2t) =
∑

i

[

log

∫ ∞

kt

Ga

(

x

∣

∣

∣

∣

1

2
, 1

)

dx− logGa

(

γi,t

∣

∣

∣

∣

1

2
, 1

)]

− log p
(

α1,t
)

− log p
(

kt
)

− log p (βt)

ELASSO:

− log p (2t) =
∑

i

[

log

∫ ∞

αδ2i,t

Ga

(

x

∣

∣

∣

∣

1

2
, 1

)

dx− logGa

(

γi,t

∣

∣

∣

∣

1

2
, 1

)

]

+ logZ + α
∥

∥W−1δ·,t
∥

∥

2

1
− log p (α)− log p (βt)

To minimize the non-convex function L we use an iterative
algorithm based on the coordinate descent strategy (Tipping,
2001; Wipf and Nagarajan, 2009), regarding the arguments
{

µ, 3, α,α1, k, β
}

, where we replaced γ by 3 in Equation (31)

using Equations (10) and (26). We use the matrix 6t , which is a
non-linear function of the hyperparameters, for the estimation
of parameters and hyperparameters in the next step. In the
particular case of the mixed-normwe do not minimizeL over the
hyperparameter δ, due to the non-differentiability, but instead
we just update it by using its relationship with parameters given
in Lemma 2, (a). Appendix D (Supplementary Materials) shows
the update formulas -and their derivations- based on the matrix
derivative of L with respect to hyperparameters in each model.

Hereinafter, these methods for structured sparse Bayesian
learning (SSBL) will be called ENET-SSBL and ELASSO-SSBL.
The pseudo codes for the corresponding algorithms are given
in Appendix F (Supplementary Materials). For implementation
details and a further comprehension of our algorithms check
Appendix E (Supplementary Materials).

RESULTS

Simulation Study and Quality Measures
We evaluate the proposed methods by reconstructing the spatio-
temporal PCD from simulated EEG data. We selected 3 sources,
called Occipital “O,” Motor “M” and Temporal Lobe “TL”
patches, with different spatial extension with regard to the
geodesic distance in the surface: 30, 20, and 10mm radius,
respectively, as shown in Figure 3, top panel. The simulation
was set up in a cortical surface of 6003 possible generators
extracted from the MNI template brain (http://www.bic.mni.
mcgill.ca). We generated 4 different spatial configurations using
these patches to explore situations with different hemispherical
distribution of the three sources: Simulation 1 with all sources
in the left (L) hemisphere (O-L, M-L, TL-L); Simulation 2 where
the occipital source is changed to the right (R) hemisphere (O-
R, M-L, TL-L); Simulation 3 changing the TL source to the right
(O-L, M-L, TL-R); and Simulation 4 moving both O and TL to
the right hemisphere (O-R, M-L, TL-R). Time courses of 1 s,
using a 200Hz sampling frequency (201 time points), were also
simulated for each patch, as shown in Figure 3, bottom panel.
Time courses for patches O and TLwere slowwaves of 1 and 3Hz,
respectively. The frequency ratio (1/3Hz) was chosen in order
to reach enough variability along time in the relative intensity
of these sources. The time course for patch M corresponded to
a narrow Gaussian pulse that appears at six different time points
when the other two patches showed qualitatively different relative
intensity. This course became sparse after thresholding it to set all
time points with intensity below 0.1% of the maximum equal to
0. In general, this set up of temporal courses (one sparse and two
smooth in time) for each source allows not only to test the ability
of the inverse methods to correctly estimate the time course of
activations but also to model many different combinations of
number and extension of simulated sources, i.e., their effective
sparsity. Figure 3 shows that there are time points when all
sources are active (e.g., t1 = 0ms), others where only one (e.g.,
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FIGURE 3 | Simulated spatio-temporal sources. Top: Left and right views of

the simulated activation patches in generators space (red). Five simulated

patches with different geodesic spatial extension (Occipital “O” 30mm,

Temporal Lobe “TL” 20mm, Motor “M” 10mm) in the Left and only Occipital

and Temporal Lobe in the Right hemisphere. Bottom: Left: Simulated time

evolution of sources, for the “O” (∼1Hz cosine, yellow), the “TL” (∼3Hz

cosine, blue), and the “M” (narrow Gaussian pulse signal). We highlight some

time points of interest (t1 = 0ms, t2 = 280ms, t3 = 375ms, t4 = 845ms)

where relative intensity of sources lead to qualitatively different scenarios.

Right: Spatial representation of the electrodes in the plane according to the

120–130 system.

t2 = 280ms) or two (e.g., t3 = 375ms) are active or even those
when none of them are active (e.g., around 845ms). Different
amplitudes in the time courses imply different amplitudes of
corresponding active voxels in each source, effectively changing
the extension of each source and the general sparsity of the
map. With this type of simulation, we can explore the behavior
of the performance of inverse solutions, and their estimated
hyperparameters with the different levels of sparsity, directly
by looking at them along time points. Note that this can also
be considered a challenging non-ideal scenario for the methods
proposed here, given the presence simulations with simultaneous
sources of different extensions, also following different temporal
courses.

The ELF was computed for 120 sensors disposed on the scalp
(selection of Biosemi 128 electrodes cap), using the BEMmethod
for the individual headmodel (volume conduction), with 4 layers:
scalp, outer skull, inner skull, gray matter (Valdés-Hernández
et al., 2009). The spatio-temporal scalp electric potential (EEG)
was computed as the product of the ELF and the simulated
PCD, corrupted by adding biological noise in the sources,
following an autoregressive process with spectral peak between
8 and 12Hz (Alpha rhythm). We also add sensors noise as a
Gaussian white process, such that both sources and electrodes
noise were adjusted to obtained a signal-to-noise ratio of 6 dB.
We generated 100 trials for each of the 4 simulated spatio-
temporal sources by adding 100 samples of the biological and

sensors noise in order to avoid a biased interpretation of the
results due to a good choice of noise by chance. To avoid
the “Inverse Crime” which recognizes that usually EEG source
localization is done using standard (approximate) electrodes
positions, head geometry, tissue conductivities, etc., instead of
the real individual head model, some authors have proposed to
use an ELF with decreased spatial resolution of the generators
space for computing the solutions (Kaipio and Somersalo, 2004).
Remarkably, we use a more challenging approach consisting
in computing the solutions using an ELF obtained from a
different subject (i.e., changing the locations of the generators
corresponding to similar anatomical areas and also the geometry
of the whole head model).

For comparison purposes, we computed the LORETA, ENETL
and LASSO Fusion solutions using classical regularization
approach (Hunter and Li, 2005; Sánchez-Bornot et al., 2008;
Vega-Hernández et al., 2008). Computations were done by using
the Elastic Net linear regression software package GLMNET
(Qian et al., 2013; https://web.stanford.edu/~hastie/glmnet_
matlab/). The regularization parameters for these three methods
were computed as those minimizing the GCV function in
a suitable interval made up of 100 values. All these inverse
solutions used a graph Laplacian matrix, which introduces prior
information about neighbors’ structure in the generators space.
All codes used in this work, including simulations, inverse
solutions, quality measures and visualization of the results are
freely available upon request to the authors.

For a quantitative evaluation of the solutions, we computed
some quality measures based on the comparison with the true
simulated one. There are two distances: the Dipole Localization
Error, DLE, which measure how far are the estimated local
maxima from the simulated ones and the more general Earth
Mover’s Distance between simulated and estimated solutions
(Grova et al., 2006; Haufe et al., 2008; Molins et al., 2008). The
lower these measures are, the better the match between estimated
and simulated PCD. Two other performance measures offer were
derived from a Receiver Operating Characteristic (ROC) analysis:
the “area under the curve” (AUC), which is a measure of how
good is the estimated solution for resembling the simulated one
using any threshold, and the source retrieval index (F1-score)
which measures a compromise between the fraction of simulated
sources correctly estimated as active (recall or sensitivity) and
the fraction of estimated sources that were simulated as active
(precision) (Bradley et al., 2016; Hansen, 2017). Importantly, we
did not threshold the estimated solutions for computing any of
the distance measures. ROC analysis finds the AUC using the
binarized simulated solution (nonzero sources will be set to 1)
and the non-thresholded solutions. None of the inverse methods
tested here incorporates any thresholding, thus making all voxels
to have nonzero values. In order to compute the F1-score, we
allow the ROC analysis to select the optimal operating point
of the ROC curve (using perfcurve function in Matlab) and use
the corresponding threshold to compute the recall (sensitivity)
and precision. F1-score is the geometric mean between these
two measures. This means that the methods will be compared
according to their best performance individually. Here, we report
AUC and F1 as percentages where the highest 100% values
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are achieved only by a perfect reconstruction of the simulated
sources.

Bayesian Elastic Net and Elitist Lasso Solutions
The inverse solution was computed with the ENET-SSBL and
ELASSO-SSBL algorithms for the 100 trials of each simulated
configuration. A typical trial was selected as the one ranking
in the place 50 (median) after ordering all trials according to
their best overall performance using all quality measures (sum
of all rankings). Figure 4 shows the simulated and estimated
spatial maps by both methods for the selected typical trials of
each simulation, in the three time points of interest: t1, when all
sources are similarly active; t2 when the M source is maximum
and the other two are close to zero and t3, when only the largest
(O) and the smallest (TL) patches were nonzero.

Figure 5 shows the time evolution of the average activation
of those voxels belonging to each patch, from both ENET-
SSBL and ELASSO-SSBL solutions obtained in each simulated
configuration (rows). These time courses are normalized between
−1 and 1 for better visualization. Note that, despite being one
trial in themedian of the performance distribution, they resemble
the original simulated time courses but without achieving the
same level of smoothness for TL and O, or sparsity for M.

Finally, we computed the quality measures for each solution
obtained using the two proposed methods from each of the
100 trials of each spatio-temporal simulation. Table 2 shows the
average and standard deviation values across the 100 trials for
all measures in the three time points of interest. We highlighted
in bold the better values for each comparison. It is easy to see
that even if it looks that ELASSO-SSBL gives better values in
the majority of comparisons, the mean values of the measures
are closer than the sum of their standard deviations, suggesting
that both methods have similar performance according to these
measures.

Comparison of Loreta, Elastic Net, Lasso Fusion and

SSBL Solutions
Figure 6 shows the simulated and estimated solutions using
LORETA, ENETL, LASSO-Fusion, ENET-SSBL and ELASSO-
SSBL in the same style as in Figure 4. In this case, the average
and standard deviation maps across 100 trials are shown only for
the first simulated configuration. The std maps are normalized by
the maximum of the matching mean map, to better show those
regions with high variability, which usually correspond to the
regular appearance of spurious sources. In general, the proposed
methods show the lowest variability and smaller regions of high
variance -unrelated to true sources- than all other tested methods
(especially in the sparsest t2).

Figure 7 shows the corresponding time evolution of the mean
(curves) and std (error bars) of activations of voxels belonging to
the different patches. In this case, we left the curves to show the
scale of estimated solutions, in order to compare among different
methods. Note that the estimation of the M patch is consistently
biased with all methods, although the five narrowGaussian pulses
are clearly distinguished.

Consequently, we computed the quality measures EMD, DLE,
AUC and F1-Score for all trials of Simulation 1. Figure 8 shows

the time evolution of the mean value of each quality measure
for all methods. The sensitivity to the sparsity level in different
time points is evident for all methods and all measures, especially
showing the worst behavior around those time points where
the M patch becomes active. However, it is clear that our two
proposed methods offer the best average quality measures among
all methods at all time points.

The mean and std values of all quality measures for the
three time points t1, t2 and t3 in Simulation 1 are shown in
Table 3A. Analogously to Table 2, we highlighted in bold the
best performance for each row. In the average values, it is clearer
that the ELASSO-SSBL achieves the best results overall, showing
similar values as ENET-SSBL, but noticeably better than those
of the other solutions. In order to test if these results were
not driven by the particular selection of the spatial simulated
patches, we ran 100 simulated trials with three similar patches but
with randomized positions and extensions, without overlapping.
Table 3B shows the corresponding mean and std values of the
quality measures across these pseudo-random repetitions. It is
easy to check that most of the values are very similar (within
the std window) to those obtained in our particular simulated
configuration, except for the F1-score which showed a much
lower performance for all methods in this case. For each of
these performancemeasures, we carried out non-parametric rank
tests (Wilcoxon Rank-SumTest, Gibbons and Chakraborti, 2011)
between each pair of source localization methods, using all 100
trials of every time point of every of the four simulations. We
then counted how many times (out of the 804 simulations, 201
time points× 4 simulations) eachmethod was significantly better
than another. Results are shown in Table 4. In this case, the
two methods proposed here are almost always significantly better
than any of the other methods in more than 50% of cases for all
quality measures (except for the AUC comparison with ENETL).

Estimated Hyperparameters and Sensitivity to

Sparsity Levels
One key point of this study is to test the ability of the
proposed algorithm to correctly learn adequate values of the
hyperparameters, and at the same time, check if the estimated
hyperparameters effectively control the sparsity level of the
solutions. In Figure 9 we show the time evolution of the average
(curves) and standard deviation (error bars) of the logarithm
of the two hyperparameters ENET-SSBL, the two regularization
parameters of ENETL and the regularization parameters of
Lasso Fussion and LORETA. The regularization parameters
were found automatically by cross-validation performed by
the GLMNET toolbox. It is interesting to see that only the
learned hyperparameters of ENET-SSBL, which are optimized
for each time separately, closely follows the level of sparsity of
the simulated solution (red curve); LORETA shows changes of
the variance of the parameter, but LASSO Fusion and ENETL
give very similar values for all time points (i.e., different levels
of sparsity). The level of sparsity was computed as 1 minus
the L1 norm of the solution in each time point, normalized
by the maximum value along time. For visualization purposes,
the curves was adjusted to fit in the same range of the
hyperparameters/regularization parameters shown in each panel.
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FIGURE 4 | Simulated and estimated spatial maps with SSBL algorithm for the two proposed models ENET and ELASSO. Inverse solutions for a typical trial of each

of the 4 simulated configurations (Sim1, Sim2, Sim3, and Sim4) at three time points with different sparsity. Bipolar color map shows the solution within a window of ±

the maximum absolute value, gray color corresponds to zero values. A logarithmic scale has been set for a better visualization.
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FIGURE 5 | Estimated temporal courses with SSBL algorithm for the two proposed models ENET and ELASSO. The curves show the normalized temporal courses of

the average activation across all voxels belonging to each of the three simulated spatial patches: Occipital (yellow), Temporal Lobe (blue), and Motor (red). These

correspond to the same typical trials as Figure 4, for each of the 4 simulated configurations (Sim1, Sim2, Sim3, and Sim4).

TABLE 2 | Mean and standard deviation of the quality measures Earth Mover’s Distance (EMD), Distance Localization Error (DLE), Area Under receiver operating Curve

(AUC), and F1-Score (F1), across 100 trials, at time points t1 = 0ms, t2 = 280ms, and t3 = 375ms of Simulations 1, 2, 3, and 4, for both algorithms ENET-SSBL and

ELASSO-SSBL.

Simulation 1 Simulation 2 Simulation 3 Simulation 4

ENET-SSBL ELASSO-SSBL ENET-SSBL ELASSO-SSBL ENET-SSBL ELASSO-SSBL ENET-SSBL ELASSO-SSBL

EMD t1 176 ± 50.1 170.6 ± 38 156 ± 58.1 105.3 ± 49.1 186.8 ± 46.5 192 ± 40.3 138.8 ± 54.2 90.9 ± 26.1

t2 124.1 ± 42.7 125.2 ± 46.9 136.4 ± 69.2 110.7 ± 52.7 122.8 ± 55.1 124.5 ± 55.8 136.8 ± 73.9 111.6 ± 45.8

t3 143.6 ± 55.9 142.2 ± 56.3 146.9 ± 68.6 118.6 ± 52 143.6 ± 55.8 149.3 ± 57.1 153.6 ± 82.2 117.7 ± 61

DLE t1 1.77 ± 0.43 1.48 ± 0.42 2.78 ± 0.6 2.73 ± 0.71 2.06 ± 0.78 2.03 ± 0.86 2.81 ± 0.64 3.24 ± 0.59

t2 3.03 ± 0.86 2.92 ± 0.93 3.77 ± 0.97 3.76 ± 1.09 3.45 ± 0.98 3.19 ± 0.89 4.2 ± 1.09 4.13 ± 1.09

t3 2.09 ± 0.99 1.9 ± 1.12 3.21 ± 1.08 2.83 ± 1.34 2.57 ± 1.32 2.41 ± 1.32 3.96 ± 1.39 3.85 ± 1.69

AUC t1 93.9 ± 1 94.1 ± 0.7 91 ± 1.4 91.4 ± 1.2 92.8 ± 1.4 93.1 ± 1.4 91.5 ± 1.1 91.4 ± 1.3

t2 90.1 ± 2.9 90.2 ± 3.5 86.6 ± 5.6 85.8 ± 5.9 88.6 ± 4.1 89 ± 3.5 85.9 ± 4.2 85.3 ± 4.9

t3 93.7 ± 4.3 93.9 ± 3.9 90.2 ± 4.5 89.9 ± 6.1 93.6 ± 3.6 93.7 ± 4.3 90.7 ± 3.8 90.6 ± 5.4

F1 t1 61.5 ± 10.2 67.6 ± 7.3 35.2 ± 14.2 38.1 ± 14.1 60.7 ± 9.8 67.3 ± 6.5 37.3 ± 14 40.2 ± 12.3

t2 37.8 ± 16.8 40 ± 19.4 28.3 ± 17.5 25.4 ± 18 37.5 ± 17.5 38.8 ± 20 26.2 ± 17.5 24.4 ± 18.5

t3 50.7 ± 20.1 50.8 ± 25.1 34.1 ± 18 36.4 ± 19.5 54 ± 22.7 56.4 ± 23.8 35.6 ± 17 37.4 ± 17.6

Best results between ENET-SSBL and ELASSO-SSBL algorithms are highlighted in bold, while the best results among all simulations (along rows) are underlined.
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FIGURE 6 | Simulated (first row) and estimated spatial maps with the different inverse methods. Each rectangle shows the mean (Upper part) and the standard

deviation (Lower part) maps across 100 trials for the first simulated configuration (Sim1), at the three time points of interest corresponding to different sparsity

scenarios. Bipolar color map shows the solution within a window of ± the maximum absolute value, gray color corresponds to zero values. A logarithmic scale has

been set for a better visualization.
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FIGURE 7 | Estimated temporal courses with the different source localization

methods for the first simulated configuration. The temporal courses

correspond to the average activation across all voxels belonging to each of the

three simulated spatial patches: Occipital (yellow), Temporal Lobe (blue) and

Motor (red). The mean curves and standard deviation (error bars) across all

trials are shown (without normalization).

In the case of ELASSO-SSBL, the corresponding estimated values
for the single hyperparameter was 5.18 ± 0.07. Typically, the
SSBL algorithm for bothmethods reached convergence in around
15 iterations, 3.2 s (ENET-SSBL) and 4.2 s (ELASSO-SSBL) for
obtaining a single inverse solution, in an Intel Core i5 CPU, at
1.70GHz and 4GB of RAMmemory.

We finally compute the real sparsity level of estimated
solutions with the different methods and compare it with that
of the simulated PCD in Simulation 1. Figure 10 shows the
time evolution of the average L1 norms across the 100 trials of
solutions for the different methods, together with that of the
simulated solution (dashed curve). In this case, the L1 norm
measures the level of activation, since it is usually minimized
for sparse solutions, (i.e., it is an inverse measure of sparsity)
and allows an easier relative comparison with the activation level

of the simulated sources without normalization. Interestingly,
all methods are able to resemble the change in sparsity of the
simulation along time, although the ELASSO-SSBL solutions
showed consistently closer values to the true ones among all other
methods.

Real Data Study of a Visual Attention
Experiment
EEG recordings using 30 electrodes (sampling frequency 128Hz)
were gathered from right-handed healthy subjects in a visual
attention experiment devoted to study attentional modulation of
early visual evoked potential, as explained in (Makeig et al., 1999,
2004; Makeig, 2002). Briefly, a sequence of geometric figures
is presented as stimulus where the fixation point is defined as
a cross and the subjects are requested to discriminate when
a specific configuration appears in the attended location, by
means of the physical action of pressing a button. The ethical
clearance of this experiment was guaranteed by the Office of
Naval Research according to the authors in the original paper
(Makeig et al., 1999). The EEG recorded the brain activity for 25
to 75 repetitions of the stimulus, in 80 subjects, during a 3 s-long
time window (1 s pre-stimulus and 2 s post-stimulus). Then, it
is averaged over repetitions to cancel the background oscillatory
activity. Figure 11 shows the 30 electrode’s voltage time series
(384 time points) of the Grand Average (average across subjects)
Visual Evoked Potential, marking the stimulus onset (A) and the
two time instants selected to compute the inverse solutions. These
corresponded to the global maximum negative peak (B: 281ms
post-stimulus) and global maximum positive peak (C: 430ms
post-stimulus). Themedian reaction times (i.e., when the subjects
pressed a button) was about 350ms.

To compute the ELF, we used an MNI standard brain
and head model, defining a grid of 3244 generators (voxels)
within the volume of the gray matter, the brainstem and the
thalamus. The solutions were obtained by using the three
orthogonal components of the Lead Field (three degrees of
freedom), and also the same for the Laplacian matrix. The final
sources maps were found as the L2 norm of each voxel of
the estimated PCD. The ENET-SSBL and ELASSO-SSBL inverse
solutions were compared with LORETA, one of the most used
and well-studied solution. The results are visualized with the
Neuronic Tomographic Viewer (http://www.neuronicsa.com/),
using the maximum intensity projection view (i.e., projecting
brain activations to three orthogonal planes). Figures 12, 13
show in color scale the solutions estimated with LORETA, ENET-
SSBL and ELASSO-SSBL for the maximum negative and positive
peak potentials (B and C time points, as marked in Figure 11),
respectively.

Solutions for the ENETL and for the LASSO Fusion models
were also estimated with the MM algorithm. Figure 14 is a
reproduction of Figure 3 in Vega-Hernández et al. (2008),
and shows the ENETL solution with a set of regularization
parameters, where λ is chosen via GCV for different fixed values
of α (0.1; 0.01; 0.001). These values correspond to different ratios
between regularization parameters (α2/α1 = (1 − α)/α) from 9
(low sparsity) to 999 (high sparsity).
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FIGURE 8 | Mean curves along time of the quality measures Earth Mover’s Distance (EMD), Distance Localization Error (DLE), area under receiver operating curve

(AUC), and F1-Score, across 100 trials of Simulation 1 from estimated solutions with LORETA, ENETL, LASSO Fusion, ENET-SSBL, and ELASSO-SSBL.

DISCUSSION

Analysis of the Algorithms ENET-SSBL and
ELASSO-SSBL
The Bayesian formulation of the ENET model proposed here
is similar to Li and Lin (2010), and allows variable selection
using the second level of inference for hyperparameters learning.
Distinctively, we reformulate the hyperparameters as a scale
factor (α1) of the parameters variances and the truncation
coefficient (k) of the Truncated Gamma pdf that intervenes in
variable selection. This allows the application of the Empirical
Bayes procedure to estimate parameters and hyperparameters
within an iterative coordinate descent algorithm, similar to
the original RVM (Tipping, 2001; Wipf and Nagarajan, 2009).
With this result, we avoid the Double Shrinkage Problem of
the classical ENETL (Zou and Hastie, 2005; Vega-Hernández
et al., 2008) and the use of computationally intensive MC/EM
algorithms (Kyung et al., 2010; Li and Lin, 2010). Differently from
the original RVM, here the hyperparameters (α1, k) controls the
global degree of sparsity, while γ acts in variable selection over
voxels individually. A possible extension of our algorithm could
be derived from assuming different values of the hyperparameters
over individual voxels or groups of voxels (region of interest), to
impose a variable degree of spatial sparsity.

Our Bayesian formulation of the ELASSO model (Kowalski
and Torrésani, 2009b) pursues a similar constraint of spatial
sparsity and temporal smoothness in the parameters matrix as
previous works (Haufe et al., 2008; Ou et al., 2009; Gramfort
et al., 2012). However, this model represents a non-separable
Markov Random Field in the spatial dimension of parameters
(Kindermann and Snell, 1980; Murphy, 2012) that can be
reorganized into a Normal/Laplace hierarchical model at the

parameters level. This is done through the introduction of a
new hyperparameter (δ) which implicitly impose the spatial
correlation structure among the parameters. This approximation
allows to perform variable selection and learning of the
hyperparameters by means of Empirical Bayes in ELASSO
model, which has not been previously reported in the literature.
Interestingly, this approximation might be related to others
that has been used in the Bayesian context -such as those in
Variational Bayes and Mean Field approximation (Friston et al.,
2007; Trujillo-Barreto et al., 2008)—while it could also be seen
as a local ENET approximation of the ELASSO penalty. This
interesting relationship and its possible algorithmic relevance
should be explored in future studies.

One interesting theoretical result in this work is that both
ENET and ELASSO models can be expressed as particular cases
of combined Normal/Laplace priors. Therefore, our algorithmic
approach might be useful for many other models (including
Group LASSO, Smooth LASSO, combinations of ENET and
ELASSO, and others). Some of them have been tackled in the
Bayesian Approach, but only using MC/EM algorithms.

Analysis of Simulations
We tested the performance of the proposed methods in a
simulated scenario where activations were not completely sparse
in space nor completely smooth in time, thus challenging the
assumptions of the models and exploring their capacity to adapt
in non-ideal conditions. We also use a completely different brain
and head model (based on the Lead Field of different subjects)
for simulating the data and reconstructing the PCD, avoiding the
inverse crime in more unfavorable conditions than the reported
before in the literature. Finally, we have added noise in both
the level of sources and sensors, as have been suggested in the
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TABLE 3 | Mean and standard deviation across trials of the quality measures Earth Movers Distance (EMD), Distance Localization Error (DLE), Area Under receiver

operating Curve (AUC), and F1-Score (F1) at the time points t1 = 0ms, t2 = 280ms, and t3 = 375ms for all studied methods.

ENET-SSBL ELASSO-SSBL ENETL LASSO Fusion LORETA

(A) RESULTS ACROSS THE 100 TRIALS OF SIMULATION 1

EMD t1 176 ± 50.1 170.6 ± 38 249.2 ± 139.2 259.2 ± 131.2 458.3 ± 86.8

t2 124.1 ± 42.7 125.2 ± 46.9 165.8 ± 137.9 170.3 ± 124 252.8 ± 84.4

t3 143.6 ± 55.9 142.2 ± 56.3 231.1 ± 183.3 235.4 ± 158.2 360.3 ± 144.8

DLE t1 1.77 ± 0.43 1.48 ± 0.42 2.34 ± 0.73 2.51 ± 0.63 4.74 ± 0.81

t2 3.03 ± 0.86 2.92 ± 0.93 3.67 ± 1.34 3.83 ± 1.32 4.9 ± 1.06

t3 2.09 ± 0.99 1.9 ± 1.12 3.37 ± 1.2 3.37 ± 1.14 4.33 ± 1.08

AUC t1 93.9 ± 1 94.1 ± 0.7 92.2 ± 2.1 91.4 ± 2 84.6 ± 2.8

t2 90.1 ± 2.9 90.2 ± 3.5 85.3 ± 8 85.4 ± 7.7 74.5 ± 9.2

t3 93.7 ± 4.3 93.9 ± 3.9 88.3 ± 9.9 88 ± 10.1 78.8 ± 12

F1 t1 61.5 ± 10.2 67.6 ± 7.3 42.2 ± 14.3 37.5 ± 14.1 30.8 ± 13.5

t2 37.8 ± 16.8 40 ± 19.4 33.5 ± 18.5 36 ± 16.7 31.3 ± 20.9

t3 50.7 ± 20.1 50.8 ± 25.1 42.4 ± 14.7 42.9 ± 14.3 46.8 ± 10.1

(B) RESULTS ACROSS THE 100 TRIALS OF RANDOMIZED SIMULATION

EMD t1 158.2 ± 72.7 146.5 ± 54.5 240.6 ± 139.3 239.5 ± 142.4 369.8 ± 133.8

t2 116 ± 58 109.8 ± 52.1 161.6 ± 98.4 160.4 ± 95.4 207.4 ± 105.1

t3 105.6 ± 61.8 104.8 ± 58.2 161.9 ± 101.4 167.1 ± 102.1 181.8 ± 82.6

DLE t1 2.72 ± 1.23 2.53 ± 1.17 3.87 ± 1.63 4.07 ± 1.65 5.07 ± 2.21

t2 4.12 ± 1.86 3.93 ± 1.47 5.61 ± 2.03 5.44 ± 2.03 6.24 ± 2.29

t3 3.52 ± 1.82 3.53 ± 1.86 5.51 ± 2.72 5.65 ± 2.72 5.55 ± 3.33

AUC t1 93.2 ± 4.4 93.5 ± 4.3 92.4 ± 4 92.3 ± 4 86.8 ± 6.8

t2 86.7 ± 10.2 87.8 ± 7.2 83.7 ± 10.6 84 ± 10.8 77.1 ± 11.9

t3 92.5 ± 5.6 92.4 ± 6 89.6 ± 10 89.9 ± 10.4 85.2 ± 14.3

F1 t1 48.2 ± 15.4 49.4 ± 15.2 45.9 ± 15.8 45.7 ± 15.8 45.8 ± 13.2

t2 37.5 ± 16 36.8 ± 16.8 38.7 ± 17 39.9 ± 16.2 42.8 ± 14.2

t3 44.1 ± 18.5 44.5 ± 18 46.6 ± 13.1 45.4 ± 14.5 48.4 ± 13.9

Best results among algorithms (along rows) are highlighted in bold.

literature (Haufe et al., 2013; Haufe and Ewald, 2016). As there is
no ground truth for the EEG IP, we cannot know if this option
is a more realistic situation or more challenging than typical
adding of only sensors white noise. Similarly, it is not easy to use
real EEG background signals as only “noise” (Kobayashi et al.,
2003; Stephen et al., 2003), since it might carry information
about other active sources that can obscure the important results
about the ability to recover controlled real sources. In any case,
using both sources of noise is not modeled directly by any of the
methods studied here, thus becoming an additional challenge for
the reconstruction.We also here always reported results obtained
from 100 repetitions with different noise in every spatio-temporal
configuration, for avoiding bias in interpretation due to a random
“good” choice of the simulated noise.

In the analysis of our simulations, on one hand, ENET-
SSBL was able to recover spatially patch-wise smooth solutions
(Figures 4, 6), by accordingly tuning the degree of sparsity
through the values of the hyperparameters, consistently with the

theory (Figure 9). We also found a monotonous convergence
pattern of the target likelihood function L for this solution in
a single trial. The estimated values of hyperparameters were
sensitive to the time-varying degree of sparsity, so that the
values of the hyperparameters (α1 and α2) behaved consistently
with the theory (Figure 9). They are higher when the degree of
sparsity is higher. Noticeably, in 400 simulations (100 trials with
SNR of 6dB for 4 different combinations of the three sources
across hemispheres), the learning procedure of the proposed
algorithm showed to be very robust, showing low standard
deviation values in all time points. This is a very promising
property -given that the EEG IP is also a very ill-conditioned
problem- and it should thus be more thoroughly explored in
future studies. On the other hand, the ELASSO-SSBL was also
consistent with the theory, showing a monotonous convergence
pattern. In Figure 4, the maps of ENET-SSBL and ELASSO-
SSBL obtained for a typical trial (ranking in the median of
the quality measures) are very similar, with the latter being
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TABLE 4 | Statistical comparison of quality measures among all inverse methods, across all 100 trials at every time point for the 4 simulated configurations, using the

non-parametric rank test.

ENET-SSBL ELASSO-SSBL ENETL LASSO Fusion LORETA ENET-SSBL ELASSO-SSBL ENETL LASSO Fusion LORETA

EMD DLE

ENET-SSBL – 2.1 69.8 69.7 90.2 – 1.5 87.1 88.9 97.5

ELASSO-SSBL 49.8 – 77.61 79.9 92.2 39.7 – 90.4 91.7 99.3

ENETL 2.6 0.1 – 0.1 85.3 1.9 0.4 – 4.6 86.7

LASSO Fusion 2.0 0.2 0.3 – 84.8 2.1 0.4 0 – 82.3

LORETA 1.4 0.1 0 0.1 – 0 0 0 0.124 –

AUC F1-Score

ENET-SSBL – 3.2 81.6 82.1 100 – 0 45.5 51.0 45.1

ELASSO-SSBL 41.2 – 85.7 85.7 100 46.6 – 58.5 66.7 57.3

ENETL 1.6 0.1 – 6.1 100 21.0 14.9 – 13.7 26.7

LASSO Fusion 1.1 0.2 0.2 – 100 14.2 9.0 0 – 19.2

LORETA 0 0 0 0 – 36.7 29.6 44.2 51.5 –

Each cell shows the percentage in which the method in the row significantly outperforms the method in the column across all 804 (201 × 4) cases. Highest percentages along each
column are highlighted in bold to show easily show the best algorithm.

FIGURE 9 | Hyperparameters estimates with the different source localization methods for the four simulated configuration. Blue curves represent the mean temporal

behavior and standard deviation (error bars) across 400 trials of the logarithmic values of estimated hyperparameters with the different methods. These values were

found with the ENET-SSBL algorithms and GLMNET toolbox by generalized cross validation. The red trace corresponds to the normalized sparsity level along time,

i.e., the percentage of non-active voxels in the simulations.

slightly sparser in some of the simulations. The average time
courses of the reconstructed sources in voxels belonging to
simulated patches were similar to the original simulated ones,
but much noisier (Figure 5). The occipital source seemed to
be easier to recover, while the motor one was mostly absent,
and it was very difficult to estimate its amplitude with either
method.

The proposed methods were also compared in average with
those estimated with the known methods LORETA, ENETL and
LASSO Fusion (Hunter and Li, 2005; Sánchez-Bornot et al.,
2008; Vega-Hernández et al., 2008). This was illustrated for the
first simulated configuration, which is challenging as all three
sources are active in the same hemisphere (Figure 6). LORETA
showed the smoothest average maps, also with higher variance
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FIGURE 10 | Temporal behavior of the average activation level (i.e., L1-norm) of simulated (dashed) and estimated solutions with the different methods. These curves

are obtained from averaging all 100 trials of Simulation 1. We use the L1-norm as a measure of activation (since sparsity is related to its minimization), therefore those

curves better resembling the curve of the simulated solution can be interpreted to represent solutions with a more similar level of sparsity to the sparsity of true sources.

FIGURE 11 | Time series of the Visual Evoked Potential for all electrodes. A,

Reference time point (t = 0ms) of stimulus onset. B, Global negative maximum

potential (t = 281ms). C, Global positive maximum potential (t = 430ms).

in all regions not involving real activations, which suggests that
spurious sources are regularly shown by this solution. In the
case of ENETL and LASSO Fusion, the solutions were able to
recover the large patches (O and M) but missed the smaller
patch “TL” in the left hemisphere. ENET-SSBL and ELASSO-
SSBL did recover all sources better, although showing a higher
variance except in the sparser situation occurring at t2. The
non-normalized average time courses for the voxels belonging
to the three simulated patches (Figure 7) showed again that the
amplitude of the occipital patch (the largest in extension) is easier

to recover, while the other two smaller patches are systematically
underestimated by all methods. As expected, LORETA was the
solution that offered the more biased estimation, although with
the lowest variance in all patches.

A more general comparison in performance of the solutions
was done using the quality measures in Figure 8, showing
that ENET-SSBL and ELASSO-SSBL had smaller distances
(EMD and DLE) and higher performance measures (AUC
and F1-score) than ENETL, LASSO Fusion and LORETA.
Quantitatively, ELASSO-SSBL and ENET-SSBL have similar
results, but they both outperforms LORETA, ENETL, and
LASSO Fusion, consistently along all different sparsity scenarios
(Table 3). ELASSO-SSBL gives the best results for all time points
in almost all measures (highlighted in bold in Table 3A). In the
case of randomized simulations (Table 3B), LORETA showed the
highest F1 score for those time points where only one or two
sources were active with small amplitude. As these values are
computed using the optimal threshold for each solution, this can
be due to very low optimal thresholds that allow a very high recall
for LORETA thanks to its smooth behavior (Bradley et al., 2016).
However, these differences are not likely to be significant since the
standard deviation of F1-score is very high. The significant non-
parametric comparisons between all pair of methods according
to all quality measures (Table 4) showed that ELASSO-SSBL is
better than all other regularization methods in more than the
50% of all simulation cases. Particularly, DLE and AUC values
of ELASSO-SSBL are significantly better than those of the other
regularization methods (ENETL, LASSO Fusion, LORETA) in
more than 85%, while it is significantly worst in less than 1% of
the cases.

If we compare the two proposed models, we will find
that in general ELASSO-SSBL performed slightly better than
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FIGURE 12 | Maximum intensity projection of the PCD estimated with

LORETA, ENET-SSBL, and ELASSO-SSBL, at the global negative maximum

potential (time B in Figure 9). The three orthogonal planes are the coronal

(left), axial (center) and sagittal (right) views. R, L, A, P stand for Right, Left,

Anterior, Posterior, respectively.

ENET-SSBL (Figure 8 and Tables 2, 3), which might be due
to a better recover of the spatial extension of the simulated
patches. However, this difference is significant in about 40%
of the simulation cases (Table 4), which means that there are
many scenarios where they give similar results. This might
be interpreted as a higher performance of the spatio-temporal
assumptions in ELASSO-SSBL, which is able to adapt to
an adequate degree of sparsity by means of incorporating
information of the spatial patches across all time points into the
estimates of the regularization parameter.

Finally, computation times were similar in ENET-SSBL and
ELASSO-SSBL, but the latter is more memory demanding
because the estimation of the hyperparameter depends on
parameters of the whole spatio-temporal map. Convergence
was reached around 30 iterations of explicit estimators for
a computational complexity of O

(

N2
)

(N is the number of
electrodes). Although we did not use the MCMC algorithm for
our simulations, other studies in the literature report that these
methods take about 10 or 100 thousand iterations to converge,
(Jun et al., 2005, 2008; Nummenmaa et al., 2007; Li and Lin,
2010). The cost of MCMC in the EEG Inverse Problem is
determined by the Gibbs Sampler of the parameters posterior
distribution, that amounts to O

(

S2
)

(S is the number of spatial
generators).

The contrast between the superiority of ELASSO-SSBL in
these general results (Table 4) and the less evident superiority in
previous figures can be explained by the use of more challenging
situations and time points for presenting the first results. That,

FIGURE 13 | Maximum intensity projection of the PCD estimated with

LORETA, ENET-SSBL, and ELASSO-SSBL, at the global positive maximum

potential (time C in Figure 9). The three orthogonal planes are the coronal

(left), axial (center) and sagittal (right) views. R, L, A, P stand for Right, Left,

Anterior, Posterior, respectively.

together with the use of a completely different ELF to avoid the
“inverse crime,” the use of both physiological and sensors noise
sources and of simulations that do not follow the assumptions of
our models, would suggest that the Empirical Bayes algorithm for
the models proposed here is very robust to many of the typical
factors that influence practical ESI, thus becoming a promising
method to realistic experimental situations.

This robustness might be closely related to the efficacy in
adequately estimating the hyperparameters of the model, which
controls the levels of spatial sparsity and temporal smoothness.
Figure 9 shows that the hyperparameters learned by ENET-SSBL
closely follows the level of sparsity of the simulated solutions. The
estimated regularization parameters with LORETA (Figure 9)
also showed some correlation with the level of sparsity, especially
for its variance, but smaller than the correlation showed by
ENET-SSBL. Regularization parameters for ENETL and LASSO
Fusion did not show sensitivity to the changes in sparsity, which
could be explained by a wrong selection of the appropriate range
for these parameters in the heuristic GCV procedure used for its
estimation. Importantly, all methods showed in average a very
similar pattern of the level of activation of their solutions to
that of the simulated sources along time points (Figure 10). This
would contradict the logical suggestion that a correct learning of
the hyperparameters (i.e., following the sparsity of real sources)
leads to estimate solutions with similar sparsity. In this case, we
found that the level of activation for ENETL, LASSO Fusion and
ENET-SSBL were similar in average. However, ELASSO-SSBL
showed the smallest L1-norm of activated sources (highest degree

Frontiers in Neuroscience | www.frontiersin.org 18 November 2017 | Volume 11 | Article 635

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Paz-Linares et al. Bayesian ENET/ELASSO EEG Source Imaging

FIGURE 14 | Maximum intensity projection of the PCD estimated with ENETL

(using different ratio between regularization parameters) and LASSO Fusion at

the global negative maximum potential (time B in Figure 9). The three

orthogonal planes are the coronal (left), axial (center) and sagittal (right) views.

R, L, A, P stand for Right, Left, Anterior, Posterior, respectively. This figure is a

reproduction of results shown in Figure 3 in Vega-Hernández et al. (2008).

of sparsity) along all-time points and it was also the closest to the
real level of sparsity of the true simulation, resembling its shape
along all time points. This result is very interesting as this method
uses only one hyperparameter to control the level of sparsity for
all time points simultaneously. As expected, LORETA showed the
lowest sparsity along space/time, which usually conveys the cost
of introducing spurious sources.

Analysis of Real Data
In the analysis of real data, the maximum of the estimated
solution with the three methods (LORETA, ENET-SSBL and
ELASSO-SSBL) in the negative peak (time B in Figure 11), is
located in the occipital area of the right hemisphere (Brodmann
area 19), that corresponds to the visual cortex (Figure 12).
As expected, LORETA is the most disperse solution, such
that secondary activities appear not only in occipital areas
but also in the superior temporal cortex. ENET-SSBL showed
similar solutions than LORETA, but less disperse, such that
the secondary activities in temporal, frontal and centro-parietal
areas can be distinguished among them. Contrary to LORETA,
the secondary activation in the temporal cortex was not the

most intense, but the centro-parietal one in the motor cortex
(Brodmann area 4). The solution with the ELASSO-SSBLmethod
was the sparsest, showing only the main source in the right visual
area and a secondary centro-parietal activation (motor cortex).
Results from ENET-SSBL and ELASSO-SSBL are more consistent
with the neurophysiology of visual attention where pre-motor
activations in the occipital visual areas explain the processing
of visual information, while secondary activations in the motor
cortex are also expected related to the physical response (Hillyard
and Anllo-Vento, 1998; Di Russo et al., 2001).

A great similarity between ENET-SSBL and ENETL solutions
can be seen in the case when the ratio between regularization
parameters in the latter is 99, while the hyperparameters are
learned in the former (see Figures 12, 14). Although preliminary,
this suggests that the learning strategy might be an effective way
to find optimal intermediate levels of sparsity in real scenarios.
It would also be very useful since learning the hyperparameter
would offer a direct and justified way of estimating its optimal
value without the need of using heuristic methods and heavy
statistical post-processing as in Vega-Hernández et al. (2008).
This is especially important in the case of ENET, since it contains
two regularization parameters leading to a bi-dimensional
search space and the corresponding high computational
burden.

On the other hand, the ELASSO-SSBL solution distinguishes
from the very sparse but scattered LASSO Fusion solution
(Figure 14). Encouragingly, this suggests that with ELASSO-
SSBL the degree of sparsity can be adapted to show a few small
activated regions instead of many point sources, which is indeed
more realistic in cognitive experiments.

The inverse solutions in the later positive peak (time C in
Figure 11) showed similar patterns as those computed in the
negative peak with occipital and parieto-temporal activations
(Figure 13). Again, this is in agreement with research on the
neurological foundations of the visual evoked potentials, showing
that late positive potentials can be related to processing of other
cognitive aspects of visual information and attention, as well
as post-motor responses, whose sources are likely to be found
in the superior anterior temporal lobe (Makeig et al., 1999,
2004; Bonner and Price, 2013). However, in this case the three
methods did not agree in the location of the main source. Yet
very spread, LORETA solution showed the maximum activity in
the superior temporal cortex (Brodmann area 43) and secondary
activations in occipital, frontal and parietal areas, being difficult
to decide which is relevantly separated from the main activation.
Differently, ENET-SSBL and ELASSO-SSBL found the maximum
activity in the anterior temporal lobe (Brodmann area 21).
ENET-SSBL showed again a similar solution as LORETA with a
better trade-off between sparsity and smoothness, which would
allow to identify different sources. The ELASSO-SSBL solution
is the sparsest again, clearly separating two PCD sources. The
maximum activity was located in the superior gyrus of the
anterior temporal lobe and the secondary activation in the
occipital area. Again, sources were not scattered focal activations
but well-localized smooth patches of activations. It seems that
the ELASSO-SSBL applied to just one time instant (i.e., without
temporal information) does not behave simply like the LASSO
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model (Laplace prior), but it is able to find intermediate
levels of spatial group sparsity. More comprehensive studies
are needed to completely characterize the performance of
this model with the proposed sparse Bayesian Learning
algorithm.

CONCLUSIONS

In this work we introduced a Bayesian formulation of
Structured Sparsity regularization models combining L1/L2
norm constraints, for solving the EEG IP. In particular, we
developed ENET and ELASSO models that have been previously
addressed with the classical statistical framework, which presents
practical limitations for selecting optimal values for one or more
regularization parameters that are critical for correctly estimate
solutions. We have used the Empirical Bayes approach for
deriving a Sparse Bayesian Learning algorithm that allows both
the estimation of parameters and the learning of hyperparameters
by means of iterative algorithms. Using simulations, we found
that our methods ENET-SSBL and ELASSO-SSBL are able to
recover complex sources more accurately and with a more
robust behavior under different sparsity scenarios than the
classical ENETL, LASSO-Fusion and LORETA inverse solutions.
Importantly, we have used a large set of simulations that
do not cope with the theoretical assumptions of the models,
and explore different sparsity scenarios. The quality measures
used in this work were also found from the non-thresholded
solutions to avoid the influence of arbitrary post-processing.
Proper methods for a statistically founded thresholding and
a more careful evaluation of the Bayesian estimator will be
the subject of future developments with these models. In
a real EEG study with a visual attention experiment, our
methods localized electrical sources of early negative and late
positive components of the Visual Evoked Potential that are
more interpretable from the neurophysiological point of view,
as compared with other known methods such as LORETA,
ENETL and LASSO Fusion. Theoretically, the principles behind
the proposed algorithms can be applied to other models
based on combined Normal/Laplace priors and other types
of inverse problems such as image recovery. Other possible
extensions to deal with the vector PCD field (i.e., estimating
the three spatial components in each voxel) or with other
multidimensional data, such as time-frequency and space-time-
frequency EEG tensors, should also be considered as new lines of
research.
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