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Abstract

The optimization of logistics in large building complexes with many resources, such

as hospitals, require realistic facility management and planning. Current planning

practices rely foremost on manual observations or coarse unverified assumptions and

therefore do not properly scale or provide realistic data to inform facility planning.

In this paper, we propose analysis methods to extract knowledge from large sets of

network collected WiFi traces to better inform facility management and planning in

large building complexes. The analysis methods, which build on a rich set of temporal

and spatial features, include methods for quantification of area densities, as well as

flows between specified locations, buildings or departments, classified according to the

feature set. Spatio-temporal visualization tools built on top of these methods enable

planners to inspect and explore extracted information to inform facility-planning

activities. To evaluate the proposed methods and visualization tools, we present

facility utilization analysis results for a large hospital complex covering more than

10 hectares. The evaluation is based on WiFi traces collected in the hospital’s WiFi

infrastructure over two weeks observing around 18000 different devices recording

more than a billion individual WiFi measurements. We highlight the tools’ ability

to deduce people’s presences and movements and how they can provide respective

insights into the test-bed hospital by investigating utilization patterns globally as well

as selectively, e.g. for different user roles, daytimes, spatial granularities or focus areas.
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1. Introduction

Healthcare administrators are constantly under pressure to reform the healthcare

system organization by planning activities to better utilize available resources to mini-

mize cost but at the same time offer a high quality healthcare service [1, 2]. The design

and maintenance of a cost-effective and high quality healthcare system is an ongoing5

high-priority challenge for most governments around the world. A crucial part of this

challenge is the difficulty inherent in planning hospital activities—as these require

an accurate knowledge of the hospital environment, of the availability of resources

(both materials and personnel), of knowledge about flows of personnel and patients,

and usage of services and facilities. One example where better planning can help10

optimize healthcare services are removal of inefficiencies in patient flows, e.g., patient

misplacement or late arrivals of patients, which result in surgery cancellations [3].

Today, only statistics from patient records are generally available to hospital

facility planners [2], e.g. number of ambulant treatments and hospitalizations. Other

existing approaches [4, 5] have tried to address the lack of knowledge using a modeling15

approach. These approaches focus on length of stay and flow of patients between

departments to provide models reflecting the complex, variable, dynamic and multi-

dimensional nature of hospital systems. However, in [6] the authors demonstrate that

such model-based calculations typically do not provide the appropriate information

needed to obtain reliable results—since the models do not take into account all vari-20

ables influencing the continuous operations at a hospital. Examples of such variables

include: i) amount and spatio-temporal distribution and flow of visitors—influencing

the planning of offered facilities such as seating areas, parking spaces, and toilets;

ii) precise up-to-date information about people within the building complex such

as their role as patients, visitors, and staff.25

Nowadays, widespread user devices such as smartphones, tablets and in the

future also smart watches, emit WiFi signals on a frequent but irregular basis [7].

Moreover, the already available wireless infrastructures in large building complexes,

like hospitals, enable the collection of large data sets of WiFi measurements that can
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be used not only to analyze the network’s performance and usage, as proposed in30

earlier work among others [8, 9, 10], but potentially also the density and flow of people

within the building. Compared to earlier approaches based on Bluetooth, in urban

[11] or indoor settings [12], or based on video in indoor settings [13], the use of WiFi

comes with lower setup costs, due to the existing deployment, for monitoring complete

large-scale building complexes. However, analysis methods are missing that allow to35

extract information, relevant for planning, from collected large-scale WiFi data sets.

In this article, we extend our earlier work [14] proposing analysis methods to

extract knowledge from large sets of WiFi traces to better inform facility planning

in large building complexes. The analysis methods build on a rich set of temporal

and spatial features extracted from the WiFi traces. The analysis methods include40

methods for i) noise removal, ii) quantification of people densities and flows at locations

of interest and iii) analysis of traffic flow, both globally as well for individual foci, on

e.g. specific user groups, departments, and/or daytimes. To remove noise we propose

methods to clean data, filtering out, e.g., device traces that are close to the perimeter

of the building complex but not within it. We do so by labeling these devices as beyond45

building-perimeter devices using machine learning-based classification with a novel set

of features calculated from raw WiFi signal data. For estimating people densities and

flows in areas we propose heuristics to filter streams of calculated device positions—

assessing, among others, the number of enter and exit events. For traffic flow analysis

between specific areas, we employ the defined feature sets as well as time-based filters50

to allow for a configurable flow analysis according to the needs of e.g. domain experts.

The additions to the conference version of this article focus on the spatio-temporal

visual tools for facility utilization analysis which are built on top of the described

methods. Specifically, we present travel-based graphs as a basis to visualize traffic

flow and how these allow to investigate and assess facility utilization, globally as well55

as selectively, e.g. for different user roles, daytimes, spatial granularities or focus areas.

To evaluate the proposed methods, we present results for a large hospital complex

covering more than ten hectares in which we have collected WiFi traces over two

weeks observing around 18000 different devices recording more than one billion

individual WiFi measurements. Moreover, as background information we also present60
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detailed statistics of the observed devices, e.g., type of devices and the frequency of

observations. We present quantitative results for the analysis methods, e.g., for noise

removal of beyond building perimeter devices where results demonstrate over 95%

accuracy for correct removal. For the quantification of flows we present comparisons

with manually recorded flows. Additionally, we present example visualizations such65

as heat and flow maps that both highlight the visualizations’ potential as inspection

tools for planners and provide interesting insights into the hospital’s workings.

The presented methods can be generalized and thus applied not only to hospital

settings but enable facility analysis also in other types of large building complexes

such as industrial facilities, shopping malls or public buildings in general. The70

proposed methods can be also used to analyze the spatio-temporal distribution of

people to offer better planing services and facilities, e.g., seating areas, parking spaces,

toilets, and their maintenance, e.g., for cost-efficient scheduling of cleaning personnel

at times of low load on the respective facilities.

2. Related work75

Existing work utilizing measurements from wireless networks [8] focused on ana-

lyzing the networks’ performance and usage. The analysis was based on aggregating

the data into various forms of graphs and statistical summaries; for instance, to

obtain statistics about the number of devices that made use of the network, which

applications the network was used for, and the mobility of the users. The main aim80

of these studies was to improve the design, modeling and management of wireless

networks in regards to, e.g., improved protocol designs or better adaptability for areas

where APs exhibit a lot of network traffic. Such studies have been performed both in

an university campus settings [8], corporate settings [9] and urban settings [10]. For a

campus setting Calabrese et al. [15] proposed methods to explore overall user behavior85

for buildings on the campus but did not relate it to the within-building movements.

Another line of work has utilized data collected from people’s own devices instead

of using data from wireless networks. Such work has analyzed different aspects of

people’s behavior and of the places they visit. Chon et al. presented a system for
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Figure 1: Aarhus University Hospital - Skejby complex.

categorizing places from mobile device data [16]. Vu et al. [17] presented a framework90

for constructing predictive models of people’s movement. Focusing on sensing of the

collective behavior of crowds, different methods have been proposed, e.g., to estimate

properties regarding flocking, followers and density. Kjærgaard et al. [18, 19, 20]

propose methods for flock detection and follower detection based on mobile sensing

data. Neil et al. [11] consider methods for counting people in an urban setting using95

Bluetooth scanning. Other approaches focus on traffic analysis, including Musa et al.

[7], and study vehicle tracking based on passive WiFi transmissions. The above study

demonstrated that tracking unmodified devices using WiFi monitoring is feasible

in outdoor settings but it did not consider indoor settings or facility planning. In

contrast to previous work in this paper we propose analysis methods utilizing data100

from WiFi networks in large building complexes. These methods are designed to

extract knowledge from such data to inform facility planning.

3. Hospital Testbed

During the process of developing the proposed analysis methods we have collabo-

rated with staff from the planning and IT departments at Aarhus University Hospital.105

In discussions the staff told that their current practices for planning are mainly based

on statistics from patient records and coarse estimates which is common according

to existing research studies [2]. Furthermore, they were very interested in new means

of obtaining and using more realistic information for their planning activities.
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Figure 2: Overview of the steps involved in data processing feature extraction, analysis methods

and visualization.

In collaboration with the hospital a data set of WiFi measurements was collected110

throughout the hospital complex. See Figure 1 for an overview of the complex. The

hospital features 22 different buildings with up to 3 floors, covering an area of more

than 10 hectares. The entire hospital relies on a wireless network infrastructure that

covers all of its buildings, with the exception of those areas reserved to surgery rooms,

where, due to safety reasons, electromagnetic radiation is restricted. The total amount115

of access points (APs) available in the hospital is 798, with most of them (around 95%)

being Trapeze and Juniper devices. The network provides several virtual networks

including a guest network open to the general public. The system architecture used for

data collection is network-based, i.e., WiFi measurements are collected by the APs on

all WiFi channels and forwarded to a central server which stores them to a database.120

Our data collection was carried out for 15 days using all available APs, collecting in

total more than a billion of WiFi measurements from around 18000 different devices.

One important aspect in large-scale mining studies is that some of the extracted

features (e.g. user position) are privacy sensitive—especially when working in hospital

environments, since personal health information must be protected in regards to iden-125

tification of individuals. Regarding this concern, we emphasize that we only collected

network scan frames, and used an anonymization procedure during data acquisition

that ensures a high level of privacy protection. Following the same approach as

utilized for the Nokia data challenge [21], MAC addresses were encrypted by hashing

after concatenating them with a secret key. This ensures that the collected tracking130

information can not be re-associated with a specific device.
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4. Overview of Analysis Methods

Figure 2 illustrates how the proposed analysis methods build upon each other and

together enable a tool chain to extract knowledge for facility planning and provide

associated visualizations. The data used as input (a) are provided from two different135

sources: WiFi measurements from a large-scale wireless network, and a geometric

model of the perimeter of the building complex. The feature calculation phase (b) is

divided into two steps consisting of: (1) basic processing where the type of the device

is identified (1.i) and the raw WiFi measurements are converted to positions using

existing WiFi positioning algorithms (1.ii); and (2) calculation of a rich set of spatial140

(2.i), temporal (2.ii) but also spatio-temporal (2.iii) features to enable the analysis

methods. The analysis methods (c) extract relevant information from the calculated

features. The proposed heuristic based-method for quantifying densities and flow(3),

is applied to estimate the flow at locations according to parameters derived from

the features. Furthermore, the configurable traffic flow analysis is applied to analyse145

traffic flow between specific areas of the hospital, with traffic classified according to

the derived features.

The visualization tools (d) provide intuitive and interactive access to the infor-

mation extracted in order to facilitate assessment and planning regarding facilities

and services in the building complex. The visualization tools show different outputs150

provided along the entire process as heat-maps, flow-maps, graphs and tables and

thereby provide an important set of information that reflects different aspects of the

utilization of the buildings, and of associated facilities and services.

5. Feature Calculation

This section covers the proposed rich set of features calculated to enable the155

mentioned analysis methods. Furthermore, to argue for the feasibility of using

large-scale WiFi traces for facility planning we provide illustrating examples of the

feature data calculated from the hospital data set.
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5.1. Large-scale WiFi Positioning

To estimate the position of the observed mobile devices we use a WiFi positioning160

module. Since we do network-based measurement collection we will only be able to

position devices when they scan for networks. Musa et al. [7] provide statistics and

observations of the scanning behavior of different mobile devices, e.g., most devices

scan when the screen is turned on or when they aim to transmit data. In the collected

data, the median and average time between a device’s scans are 58 and 196 seconds re-165

spectively, with large variations, e.g. a device may scan every two seconds when active,

while it may not scan for half an hour when inactive. Whenever an AP observes a scan

it sends to a central machine a measurement message which contains: the id of the AP,

theMAC address of the device, the received signal strength (RSS) in dBm, and a times-

tamp. This is enabled by employing a status-surveillance feature which is common170

in modern WiFi infrastructures. When enabled, each AP will whenever it receives a

message from a device send a TZSP-packet containing the collected information to the

central server. The main advantage of using this network-based measuring approach

is that every device providing WiFi connectivity can be monitored, independently of

its platform and installed software, thus reducing the system deployment time and175

cost and not requiring the user to install specific software [22]. In order to only track

mobile devices, and not infrastructure devices, we filter measurements based on the

vendor-specific first three octets of the MAC adresses, as further described in [14].

At the central machine MAC addresses are encrypted and position estimates are

computed from the RSS measurements using the centroid lateration algorithm as180

described in [23]. For this computation the algorithm only requires the location of the

APs. Using these, the algorithm estimates the position of a device to be the weighted

geometric average of the locations of the receiving APs, using as weights the received

signal strengths for each AP. The estimate is then snapped to the location of the

nearest AP, in order to enforce that reported positions are inside the buildings. Using185

this approach the position estimates were evaluated to have a mean accuracy of 15m

on traces collected through-out the buildings. While other methods may provide more

accurate estimates, such as fingerprinting based methods [24], they have additional

requirements such as collection of fingerprints or the availability of digital building
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models. Reliable fingerprint collection (and keeping it up-to-date over time, facing also190

building- and WiFi-infrastructure changes) at a hospital with more than six thousand

rooms spread over ten hectares was deemed unfeasible [22]; furthermore, a complete

digital building model, suitable for fingerprinting, of the hospital was not available.

5.2. Classification of Beyond Building Perimeter

Discriminating whether a device is inside or outside one of the complex’s buildings195

is a difficult task as such complexes often have court yards and passages between

buildings. Previous work has considered this problem using GPS signals [25] and other

sensor modalities [26]. However, given only WiFi measurements these solutions do

not apply, and the WiFi positioning literature has also not yet addressed the problem.

In general, when being located outside but close to a building, the WiFi signals200

emitted from a device can be observed by the APs within the building; a positioning

module as described above would therefore end up placing the observed device

inside the building. These situations generate erroneous cases in which the device

could receive certain information, e.g., from an indoor navigation application or

advertising from a specific shop, when it is still out of the buildings that offer these205

services. In the chosen scenario such errors may impair our analysis methods, e.g.,

for detecting the time of entry in a building. Moreover, distinguishing outdoor from

indoor positions may allow us to filter out those devices that never enter the building

and therefore should not be taken into account in statistics of people utilizing the

building facilities. We employ a distinction algorithm which uses machine learning210

based on features extracted from the signal strength measurements, specifically:

(i) The signal strength difference between the strongest AP and the weakest AP

observed; (ii) Average signal strength of the k-strongest APs received; (iii) Averaged

distance between the device’s estimated position and the position of the k-strongest

APs received; (iv) Average distance among all the received APs; (v) Percentage of215

perimeter APs observed: for this we define a perimeter area utilizing the building

complex’s layout data, and we classify a AP as either a perimeter AP or interior

AP according to if it is within or out of the perimeter area. The perimeter area

covers those APs that are within a fixed distance of the actual perimeter. In Figure
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Outdoor wrong estimations

Indoor wrong estimations

Figure 3: Geometry that defines the perimeter area of the building complex. Indoor and outdoor

paths and examples of wrong estimation cases.

3 the perimeter area is highlighted as it is defined for the hospital; note, that this220

area includes only the part of the perimeter that is physically accessible from public

streets. In [14] we provide the algorithm, its implemenation and evaluation in detail.

The overall accuracy we perceived in our experiments was at around 95 percent.

We are conscious that the features listed above may need to be adjusted in order

to use the classifier at other building complexes according to their wireless network225

infrastructures. For instance, for high-rise buildings also the floor level detected

by the positioning system can provide valuable input to the classifying procedure.

Furthermore, our analysis detailed in [14] revealed that among the listed features

the ones having the strongest benefit for the intended classification are features

iv) and v); these features are largely independent from specific device’s hardware230

characteristics (e.g. from absolute RSSI value computations), and thus can cope well

with device heterogeneity [27].

In Figure 4, incorrect classifications are labeled by colored pushpins: red when

a pedestrian walking indoors was classified as outdoors and blue when a pedestrian

walking outdoors was classified as indoors. Note that the location of the pin is that235

which is estimated by the positioning system independently of the classification. As

one can observe, most of the incorrect classifications in both test cases, indoors and

outdoors, happen near main entrances or in areas where the number of APs detected

is relatively low (which is the case in one of the building corners). Although entrances

are a crucial challenge when distinguishing inside and outside positions, the problem240

can be alleviated since people are not constantly leaving and entering a building in
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short order: i.e, when they are inside or outside the building, they usually remain

so for a sufficiently long time to produce several position estimates. This in turn

allows us to optimize the robustness of the estimations, c.f. Section 6.1.

5.3. Calculation of Features245

A crucial task for the goal followed in this paper and when dealing with large

sets of unlabeled data is the design of features for extracting vital information on

which further analysis can build. In the following we list features central to this task,

differentiating them into three categories: temporal, spatial and spatio-temporal.

Temporal features capture aspects concerning the times a device is located250

within the building complex.

Number of days detected (T1) indicates the number of days we observe a specific

device, as shown in Figure 4a. Within the chosen use-scenario the feature helps

distinguishing between devices that belong to employees and those that belong to

visitors, since the duration of observations should be clearly different in those cases.255

Hours per day (T2) spent inside the building complex. In general terms, employees’

smartphones remain visible within the building more hours per day than those of

short-term visitors, but less than those of hospitalized persons. Such differences

can be observed in Figure 4d, where Device 1 is typical for a short-term visitor

whereas Device 4 is typical for a hospitalized person.260

Daytime (T3) indicates the times of day each device is observed. We distinguish be-

tween: during day-time(e.g. 7am to 11:59pm), night-time (e.g. 9pm to 6:59pm) and

during both. As shown in Figure 4d, devices of hospitalized persons (Device 4) are

usually observed at any time, whereas visitors are mainly observed during daytime.

Working shifts (T4) help us to discriminate what devices belong to employees or265

other people that have a fixed timetable. Since the ranges of working hours can vary

from one environment to another, we have taken into account the hospital working

shift schedule (from 7am to 3pm, from 3pm to 11pm, and from 11pm to 7am). Figure

4c shows the number of devices whose duration inside the hospital correlates with a

shift time on at least three days. Those devices would clearly belong to employees.270
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(a) (b)

(c) (d)

Figure 4: (a) Number of unique devices grouped according to the number of days they were observed.

(b)Areas where a device spent most time stationary. (c)Statistics about working shifts.(d) Time

of detection inside the hospital of four different devices representing the four expected behaviors.

Spatial features capture aspects of the locations of people (respectively their

devices) within the building complex.

Restricted areas (S1) indicates that a device resides within hospital areas that are

restricted to certain kinds of people; for example, surgery rooms and laboratories.

The areas accessible only to employees are indicated in Figure 1. Moreover, in275

the particular hospital most parts of the basement floors are only accessible to

employees. This last restriction, times observed in basement is one of the features

that will be used in the posterior processing.

Frequent places(S2) determines the set of areas were a device is frequently observed.

This information allows, e.g., to infer ambulant treatment types or job roles.280

Beyond Building Perimeter Classification (S3) has been described in Section 5.2

and is listed here for completeness.

Spatio-temporal features consider both spatial and temporal aspects of a device’s

movement within the building complex.

Motion speed (TS1) depicts average speed of a device. The feature’s accuracy285

depends on realised positioning accuracy as well as frequency. We estimate speed
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based on the distance covered over time. Though this does not provide a highly

accurate speed estimation, it serves well to differentiate motion status (still vs.

moving) of devices. Earlier work [28] has proposed a more accurate method for still

vs. motion detection using raw signal measurements, however, we did not apply this290

method because it requires frequent measurements often not satisfied in our data set.

Time stationary (TS2) reflects whether a device has been stationary for a longer

period of time—which we define here as being located for more than T minutes

within r meters of any single place. For choosing r we suggest taking into account

the average distance among APs.295

Places where stationary (TS3) determines, relating to the feature S2, the different lo-

cations where a device has been stationary, e.g., in a waiting, patient or meeting room.

Figure 4b shows a building map indicating the places visited by a device during one

day (with the color scale indicating total stationary time at the respective locations).

The presented features form the basis for the analysis methods presented in Section300

6. Furthermore, the graphical presentation of the collected data set for the described

features illustrate and highlight their utilization, revealing e.g., that ca. 2000-3000

mobile devices were observed per day, and that a large fraction of these were observed

only on one day (Figure 4a). These numbers support that our measurement approach

provides rich data for a significant number of devices. Compared to previous wireless305

network studies in campus or company settings [8, 9, 10], the large percentage of

one-day-only visitors differentiates this data set from what has been observed in the

above studies where the sets of perceived devices per day were highly correlated across

days. This also highlights that hospital environments are different and thus relevant

use-scenarios to consider in future work in wireless network analysis and related fields.310

6. Analysis Methods

In the following, we describe how to utilize the features extracted from WiFi

measurements for further analysis methods for informing and supporting decisions

within facility utilization analysis, focusing on aspects introduced in Section 4.
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6.1. Density and Flow Estimation315

The density of people in a specific area or the flow of people through a given

area or across a given line or other borders are fundamental types of information

within planning in both indoor and urban settings [11]. To obtain such informa-

tion, we propose to apply a number of heuristics using the features introduced in

Section 5. In the following, we will consider the specific case of quantifying the flow320

through entrances as people enter and leave the hospital. Such information enable

the deduction of, e.g., the most used entrances to a building complex, which helps

to decide e.g., where to install information boards or vending machines (since these

would be the most busy areas), or to determine the flow-wise most appropriate

entrances for emergency cases (i.e.,less crowded ones), or to determine where to build325

additional parking places (i.e., in those areas by which people usually enter into the

hospital), or to design evacuation plans (for individual day-times or weekdays, or

even dynamically, according to current crowd conditions, among others).

To estimate the flow through entrances we propose a method building on the be-

yond building perimeter classification from Section 5.2. Having calculated the beyond330

building perimeter feature value, once we detect a change in the device’s in/outdoor

state, we record its timestamp. To avoid erroneous rapid state changes provoked by

signal variability in devices which scan frequently, the method waits for the new state

to remain stable for at least S seconds before it registers a new entry or exit event.

We assign the event to the closest entrance among a list of entrances previously335

defined. To avoid false positive cases we record the event only in case the distance

between the closest entrance and the estimated position is below a threshold R.

To evaluate the method’s accuracy, we have carried out several empirical tests

using different configurations for the threshold parameters S and R which define

whether an entry/exit event should be recorded. Figure 5a depicts the number of340

entry and exit events that have been estimated at the hospital’s main entrance over a

period of 6 hours. During this time, a person manually counted the number of actual

entries (327) and exits (453) at the entrance, obviously with no knowledge about how

many of people that were counted also carried a smartphone. We can assume that the

ratio of smartphone holders is close to the 59% reported as the estimated percentage345
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(a) (b)

Figure 5: (a) Entry and exit events over time for S=30s and R=40m. (b) Total entry and exit

events for different S and R values.

(a) (b) (c) (d)

Figure 6: (a) Heat-maps representing all device positions; (b) Only inside to outside movements

(leaving the building); (c) Positions of filtered exits; (d) Estimated exits constrained to real exits.

of smartphone penetration in 2013 in Denmark1. These numbers would correspond

to 192 entries and 270 exits of persons with smartphones approximately. Using these

values we calibrate the parameters R and S as shown in figure 5b, and find that

the optimal values are S=30 seconds and R=40 meters. Using these configuration

values we are able to approximate the expected results as shown in Figure 5a. Finally,350

in order to provide visualizations of various obtained results on the complete data

set we build, after executing the method, heat-maps as shown in Figure 6.

6.2. Configurable Traffic Flow Analysis

In addition to flow at specific locations, we propose methods for analysis of the

flow of traffic between configurable areas of the covered buildings. The methods are355

designed to be configurable in order to allow for input from e.g. domain expert users

who wish to perform analysis for specific buildings or departments, a specific time

frame, or for specific classes of building users.

The areas of the hospital between which traffic flow should be analysed are

specified as polygons whose spatial extend each covers an area of interest. These360

polygons are specified in the open KML format, which allows for easy configuration
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of the areas using editors such as Google Earth. During the traffic flow analysis

computation, each position estimate is annotated with the area of the polygon it

is contained in, if any. After this annotation with areas, the position estimates are

aggregated into areas, so that several consecutive position estimates in a single area365

defines a single time-interval within that area. From this information we can easily

extract the number of travels between the various areas. Optionally, the travel data

may be filtered w.r.t.: Minimum and maximum time in an area as well as minimum

and maximum time between areas. These filters may be used to e.g. ignore stays in an

area of less than 5 minutes if areas which are just passed through are not interesting370

for the analysis. Note here that not all devices performWiFi transmissions at frequent

intervals, which may influence the analysis results, as some traversed areas may not

be registered. However, a frequency analysis of the collected data shows that 80%

of devices allow for position computations at least every 5 minutes. This allows for

registering any areas which are visited for more than a short period, but areas which375

are simply passed through, such as the hallways, may be underrepresented in the data.

The maximum time between areas can be used to avoid the situation of registering

e.g. an employee going home and coming back the next day as a travel between

departments. In addition to the filtering, the travels may be classified according to the

features defined in Section 5, e.g. in order to analyze traffic flow based on work shifts.380

7. Visual Analysis

In this section, we present and visualize tools built based on the introduced fea-

tures and analysis methods. We furthermore present respective results for the test-bed

hospital, and discuss their use for facility utilization assessment and improvement.

7.1. Visualizing Traffic Flow385

To illustrate how visualizations based on WiFi monitoring and our analysis

methods are generated, Figure 7 shows individual movements observed from a

hospital entrance until the device reaches a stationary destination (waiting room,

canteen, office, etc.) as described by the “places where stationary” feature (TS3).
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Figure 7: Tracking three devices from a particular to their respective destination.

For privacy reasons, these visualizations are computed from traces collected by the390

authors. The left part of the figure shows the real paths while the right one reflects the

estimated paths. The obtained results support that our method is valid as in all three

cases the correct entrances and stationary end point was detected by our methods.

The concrete entrance chosen here has a high load, see Figure 6d—higher than

intended given its location; noteworthy is also that the closest main entrance has a395

comparatively low load. For further analysis, it is relevant to consider where people

using an entrance end up within the building. Given, e.g., the obtained 15 day

data set, our methods aid in such analysis and in assessing if the the paths people

currently take are optimal, or whether instead means for improved directing of flow

would yield improved efficiency or safety.400

7.2. Travel-graph Based Analysis

Generalizing from the individual movement data discussed above, we now present

visualizations of aggregated traffic flow between locations within the test-bed hospital.

Domain experts advised us on their needs for visualizations and analysis tools, and the

produced visualizations were evaluated in collaboration with them. We interviewed405

two hospital professionals, respectively a project manager from the hospital planning

department, and the head of a logistics department at a large hospital. The evaluations

were performed through a semi-structured interview, where the hospital employees

were presented with printed versions of the various visualizations. They were asked

about the correctness of the traffic flow as well as usefulness of the visualizations,410

while notes were taken by the interviewer. Figure 8 and 9 show traffic flow, computed

and filtered as described in Section 6.2, during the complete observation period and

for all detected mobile devices on three different spatial resolutions; in each graph
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the edges reflect travels between locations, where the set of locations are: individual

locations in Figure 9a; individual buildings in Figure 8 and department complexes415

in Figure 9b, as per Figure 1. In each graph the thickness as well as the color of

edges encodes the number of recorded travels, according to the scale given with each

graph, from lowest (thin green) to highest (thick red). As edges are intended to show

completed travel, the latter needs to be defined; for the graphs shown a travel end

is constituted by the device being observed for longer than 10 seconds. Such a filter420

aids in removing also spurious inaccurate position estimates to neighbouring areas.

The interval may be increased depending on the analysis, e.g. it may be interesting to

note the wards between which people travel and then stay for longer periods of time.

Combined, these graphs allow to investigate the facility utilization and whether

optimizations, e.g. in the distribution of facilities are required. The three different425

granularities facilitate different aspects of, and interests within, facility utilization in-

vestigation: The fine granularity graph in Figure 9a allows to identify visually, e.g. the

most common routes taken, as well as traffic bottleneck zones, and aids in finding po-

tential solutions for these, e.g. in the form of additional pathways or alternative signs

for guiding visitor traffic. The two other graphs, showing travels between buildings and430

departments, identifies which buildings and departments have the highest interaction

with each other, and thus should be ideally i) spatially close and ii) well connected by

pathways. We chose this form of visualization of the data as it is easy to determine the

spatial relation between buildings, and thus to check whether large flows between de-

partments are simply due to spatial closeness, or whether it may be caused by other fac-435

tors. However, the data may be visualized in other ways as appropiate, e.g. the project

manager suggested that a matrix enumerating the flow between different wards would

be very beneficial for layout-planning purposes, instead of the current process of asking

individuals at each wards with whom they collaborate. For the following exemplary il-

lustration of travel-graph-based analysis, we focus on the building-level granularity, as440

shown in Figure 8 where buildings are labelled by letters, and in further graphs which

visualize selective portions of the recorded travel data on building-level granularity.

As we do not have full ground truth due to the large scale of the hospital, we have

instead had the two hospital professionals evaluate whether the detected movement
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Figure 8: Overview of movement between departments as well as hallways.

(a) (b)

Figure 9: Overview of movement at two levels of detail: between individual locations (9a) and

between specific departments (9b)

patterns are supported by their professional knowledge of the activity at the hospital.445

Detailing for individual user roles. The recorded travel data, as shown in Figure 8

and 9, can be divided by user roles, into data for visitors, ambulant patients, or staff,

respectively, as they can be inferred, e.g., by employing behavioral classification of

users as described in [14]. Figure 10 allows for this comparison, and makes for several

interesting observations. The graphs suggest that while the majority of guests seem450

to move around the left area of the hospital, the employees travel throughout the

entire hospital and hallways. According to the hospital professionals, the left area

of the hospital contains the maternity wards and pediatric wards, which have a large

flow of people due to pregnancy-checkups, visits to new mothers, and parents visiting

hospitalized children. The right area of the hospital on the other hand contains mostly455

wards, where patients stay for several days at a time, and laboratories to which visitors

do not have access. From a facility-management point of view, the figures indicate that

visitors are largely constrained to one part of the hospital—yielding the benefits that i)

visitors have only a small and less complex area to travel and to be guided in, and that
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(a) (b)

Figure 10: Overview of movement separated into that of visitors (10a) and employees (10b).

ii) visitors do not interfere with e.g. work at the surgery wards where unobstructed460

movement along the pathways and also a more quiet environment are desired.

Detailing for daytimes. The travel data, as shown in Figure 8 and 9 can be divided

temporally, e.g., in week- vs. weekend-days, or according to the shift period they

fall into. Figure 11 shows building-level travels during day, evening and night shifts,

respectively, as defined in feature T4 in Section 5. Comparison of the three figures465

reveals as expected the highest level of activity during the day shift, slightly less

activity on evenings, and a very quiet hospital at night, when primarily only strictly

necessary or emergency tasks are performed. The comparison shows also a change

in the spatial patterns of activity: E.g., the building hosting the personnel-cafeteria

(M) is traveled to and from often during day-time from many buildings, while travel470

activity in this building is much less distinct on evenings and almost disappears at

night when the cafeteria is closed. Similarly, several wards see a lot less activity

during evening hours, e.g. building F, D and C at the lower mid of the hospital,

as the consultations hosted in these are scheduled primarily during daytime. The

hospital professionals further pointed out that the decrease in activity at evening and475

night time around building S and T are due to those primarily being laboratories

in which mostly daytime work is performed. Figure 11c furthermore indicates that

during nighttime the building most frequently visited by employees is C, which hosts

emergency reception for patients with acute heart issues. This again suggests a

beneficial layout of buildings in regards to facility-management, as the night employee480

activity is centered on a very small part of the hospital, thus avoiding i) the disturbance

of e.g. hospitalized patients, and ii) unnecessary long traveling between tasks.
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(a) (b) (c)

Figure 11: The number of travels between hospital departments and hallways, during day (11a),

evening (11b) and night (11c) shifts of employees.

(a) (b)

Figure 12: The number of travels to and from the surgery ward for patients (12a) and employees (12b).

Detailing for spatial focus areas. The methods also allow for focusing on specific

places of interest. Figure 12 shows the movement, for patients and employees, respec-

tively, to and from a specific building containing parts of the surgical ward as well as485

performing some outpatient treatment. It shows that the building which supplies the

most patients for surgery or outpatient treatment is the one directly below, which

contains consulting rooms as well as the emergency reception for heart issues. The

hospital professionals confirmed that patients often are moved from building C to

P for surgeries, but that they are generally not allowed to carry smartphones, only490

when heading for the outpatient clinic located there. This may be why the numbers

for patients are so much smaller than those for employees. They also mentioned that

the buildings around P, as well as C, all share the same staff, which moves around

these buildings regularly. This could be why we see a lot of movement between

the neighbouring buildings and C in the figure for employees. Of note is also the495

movement to and from building R which contains the blood bank, and as such is

likely due to employees transporting blood for surgeries.

While the hospital professionals were overall positiove regarding the correctness of

the results, it’s worth mentioning the unexpected results. They noted that maternity

wards ought to have more activity at night, as this is naturally busy through all500

24 hours. Additionally, there is an unexpected high amount of movement directly
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between J and L. This may be due to errors in the position estimates when persons

close to the perimeter of one of the buildings are falsely located in the other.

8. Conclusions

In this paper we have proposed a rich set of features and analysis methods to505

inform building facility planning enabling studies of people’s behavior in large build-

ing complexes utilizing solely measurements of WiFi signals from peoples’ devices.

To this end, we have addressed the challenges coming with the complexity of the

chosen environment. To the best of our knowledge, this is the first study of its

type which addresses hospital complexes. The proposed analysis methods include510

a method to estimate when and where users (respectively their mobile devices) enter

and leave buildings. This addresses shortcoming usually inherent in the WiFi-based

tracking and offers several possibilities, e.g., to analyze the flow of people from

the specific moment they enter a building. In addition we provide methods and

visualization tools for analysis of the traffic flow between specific areas of the hospital,515

according to features such as user group or time of day. This further empowers

the facility-management by enabling domain experts to perform specific analysis

to determine whether the facilities are utilized optimally. We achieved the central

goal of providing realistic information that reflects realistically the behavior of, e.g.,

hospital staff or visitors who make use of the facilities and services offered. Thus,520

the proposed methods can provide valuable sources of information, e.g. regarding

building, path and service utilization, for supporting hospital planning activities.

Building on presented results, for future work we plan to evaluate analysis meth-

ods for further aspects of human behavior and consider the development of privacy

protecting methods to enable gathering of labeled data in hospital environments.525
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