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Abstract 

This paper presents various spatio-temporal feature extraction techniques with 

applications to online and offline recognition of isolated Arabic Sign Language (ArSL) 

gestures. The temporal features of a video-based gesture are extracted through forward, 

backward and bi-directional predictions. The prediction errors are thresholded and 

accumulated into one image that represents the sequence motion. The motion 

representation is then followed by spatial domain feature extractions. As such, the 

temporal dependencies are eliminated and the whole video sequence is represented by a 

few coefficients. The Gaussianity of the extracted features is assessed and its suitability 

for both parametric and non-parametric classification techniques is elaborated upon. The 

proposed feature extraction scheme was complemented by simple classification 

techniques, namely, KNN and Bayesian, i.e. likelihood ratio, classifiers. Experimental 

results showed classification performance ranging from 97% to 100% recognition rates. 

To validate our proposed technique, we have conducted a series of experiments using the 

classical way of classifying data with temporal dependencies. Namely, Hidden Markov 

Models (HMMs).  Experimental results revealed that the proposed feature extraction 

scheme combined with simple KNN or Bayesian classification yields comparable results 

to the classical HMM-based scheme. Moreover, since the proposed scheme compresses 

the motion information of an image sequence into a single image, it allows for using 

simple classifications techniques where the temporal dimension is eliminated. This is 

actually advantageous for both computational and storage requirements of the classifier. 
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1. Introduction 
 
Deaf people use sign language as their prime means of communications with other deaf 

or hearing people. Developing a tool for interpreting sign language into text or speech 

enables hearing people to understand deaf people. The functionality of such a tool is 

referred to as Sign Language Recognition (SLR). The complement of such a tool is one 

that transforms text or speech back to sign language so as to make it possible for deaf 

people to understand hearing people. Interest in automatic SLR research has started in 

about twenty years ago particularly for American, Australian, and Japanese sign 

languages. Since then many techniques and algorithms have been proposed using a 

variety of methods based on sensor fusion, signal processing, image processing, and 

pattern recognition methods. The application was extended to several international sign 

languages including Korean[1], Chinese[2], and to a lesser extent Arabic [ 3] . 

Different levels of SLR have been proposed ranging from recognizing isolated alphabets 

[3-5] to recognizing continuous gestured sentences [6]. In terms of gesture data 

acquisition, SLR methods range from relying on instrumented gloves to vision based 

systems. Instrumented glove-based systems rely on electromechanical devices that 

capture the data of hand gestures via a set of motion sensors that are wired to a 

computer [1,7,8]. This data is then processed via signal processing and pattern matching 

to categorize and recognize the different gestures. Normally, such systems cause 

inconvenience to the signer and restrict his/her movements. On the other hand, vision-

based systems capture the hand movement via video cameras in a non-restrictive way [6]. 

The captured video is then processed via image processing, and artificial intelligence to 

recognize and interpret hand gestures [9]. Some vision-based systems require that a 

signer wears a color-coded pair of gloves while others don’t. While wearing these color-

coded gloves may be inconvenient, it usually improves the recognition accuracy as it 

minimizes or eliminates the need for sophisticated image segmentation [5,10,11,12].  

Regardless of the data acquisition method, gesture data needs to be processed, 

parameterized and modeled for the gesture to be recognized. Data processing ranges 

from simple geometric modeling of the hand and fingers for finger spelling [13] to more 

elaborate video and image processing techniques for full signing scenarios. For finger 

spelling, if it is done with instrumented gloves then the data processing needed is 

minimal and the focus is directed to the modeling and classification. On the other hand, 
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if the finger spelling is done via a vision system then some level of image processing will 

be needed especially if no color-coded gloves were used. For more sophisticated signing 

scenarios whether for limited isolated vocabulary or continuous large vocabulary more 

elaborate image processing techniques are required for feature extraction especially that 

the field of view includes the whole upper body of the signer. Extracted features need to 

characterize the position and the movement of the hands and sometimes the head and 

the face of the signer. Among the extracted features is the center-of-gravity of the hand 

blob relative to the face or body, relative to the first gesture frame, or relative to the 

previous frame [14,15,16,17] Other features characterize hand motion by tracking the 

hand pixels [18]. Statistical features were also used such as moment-based features [16]. 

Some researchers have gone beyond 2-D features by using multiple cameras to capture 3-

D features of the signers’ hands and other moving parts [15].  

As in any recognition system, classification follows feature extraction. Once they are 

extracted, features have to be modeled in the training phase and recognized in the 

recognition phase. Many different classification methods have been used for both 

instrumented-gloves and vision-based SLR systems. Among these methods are hidden 

Markov models (HMM) [14,18], and various architectures of neural networks (NN) such 

as time-delay neural networks (TDNN) [20], Hopfield NN [19]. Other classifiers such as 

adaptive inference neuro-fuzzy systems (ANFIS) [4] and polynomial networks [5] have 

been used. 

Finger spelling systems reported signer-independent recognition results in the 80 and 90 

percentile ranges. For example, 80.1% recognition accuracy was achieved on Korean Sign 

Language recognition using fuzzy logic and fuzzy min-max neural networks [28]. More 

recently, a 93% recognition rate was obtained on signer independent Arabic sign 

language (ArSL) alphabet using polynomial networks [5]. For isolated word SLR previous 

results were reported on different international sign languages. For example, on isolated 

American Signal Language (ASL) words of vocabulary sizes of 28 to 40 words, 

recognition results were reported between 93% and 96% [16,20] using features based on 

pixel motion trajectories and  classification based on TDNN for the 96% system. A 

comprehensive review of the latest advances in SLR can be found in [ 13].  

Although used in over 21 countries covering a large geographical and demographical 

portion of the world, Arabic sign language (ArSL) has received little attention in SLR 

research. To date, only small number of research papers (mainly on finger spelling) has 

been published on ArSL. In this paper we present an isolated word ArSL system using a 
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variety of feature extraction and classification techniques. The introduced features are 

novel and, we believe, applicable to other sign languages as well.  

 

2. Related work: 

As mentioned in the introduction, no previous work has been reported on ArSL 

recognition of signs beyond static gestures. Our database, to the best of our knowledge, 

is the first of its kind. However, previous related work has been reported on other sign 

languages which mostly uses temporal features and HMM classification [29, 20, 6] as we 

have included in our experiments in Section 6. We would like to emphasize that we have, 

in our experimental results, used similar feature extraction and classification techniques 

on our database. We believe this gives an indicator to a comparison against the 

aforementioned work. Nonetheless, we summarize the reported related work and the 

obtained results as follows. 

In [29] the authors proposed to extract spatial and temporal image features. The 

temporal features are based on the thresholded difference between two successive 

images. The spatial features are extracted from the skin color and edge information. A 

logical AND is then applied to combine the temporal and spatial features. The solution is 

further enhanced by applying Fourier Descriptors to extracted boundaries of hand 

shapes. Likewise temporal analysis is enhanced, albeit at a high computational cost, by 

the use of motion estimation. The temporal features are then extracted from the 

distribution of the magnitude and phase of the motion vectors. Hidden Markov Models 

(HMMs) are used for classification. Combining Fourier Descriptors with the motion 

analysis resulted in a classification accuracy of 93.5%. Classification based on Fourier 

Descriptors only resulted in a 90.5% accuracy. 

In [20] feature extraction starts by breaking sentences with limited grammar into video 

gestures. Image segmentation is then used to segment out the hands. This task is very 

reasonable taking into account the cap-mounted camera pointed downwards towards the 

hands. The features are then extracted from the pixel-wise image differences, angle of the 

least inertia and the length of the associated eigenvector and lastly the ratio between the 

major axis the minor axis of the enclosing ellipse. Again HMMs are used for the 

classification. The reported classification accuracy is 91.9% for a restricted grammar. 

In [6] similar Regions Of Interest (ROIs) across frames are tracked. ROIs are identified 

through skin color and geometric cues. Motion trajectories are then extracted from the 

concatenation of the affine transformations associated with these regions. Time-delay 
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neural networks are used for classification. The reported classification accuracy is 96.21% 

based on 40 ASL gestures. 

 

3. Arabic sign language database description 

Unlike other sign languages, Arabic does not yet have a standard database that can be 

purchased or publicly accessed. Therefore, we decided to collect our own ArSL database. 

We have collaborated with the Sharjah City for Humanitarian Services (SCHS) [31], 

UAE, and arranged for collecting data from there. In this first phase of our data 

collection, we have collected a database of 23 Arabic gestured words/phrases from 3 

different signers. The list of words is shown in Table 1.   

 
# Arabic word English Meaning # Arabic word English Meaning 
 To Eat یأكل Friend 13 صدیق 1
 To sleep ینام Neighbor 14 جار 2
 To Drink یشرب Guest 15 ضیف 3
 To wake up یستیقظ Gift 16 ھدیة 4
 To listen یسمع Enemy 17 عدو 5
السلام علیكم 6  Peace upon you 18 یسكت To stop talking 
 To smell یشم Welcome 19 اھلا وسھلا 7
 To help یساعد Thank you 20 شكرا 8
 Yesterday امس Come in 21 تفضل 9
 To go یدھب Shame 22 عیب 10
 To come یأتي House 23 بیت 11
    I/me انا 12

 
Table 1: Arabic sign language gestures and their English meanings1. 

 
Each signer was asked to repeat each gesture a total of 50 times over 3 different sessions 

resulting in a total of 150 repetitions of the 23 gestures. The signer was videotaped using 

an analog camcorder without imposing any restriction on clothing or image background. 

The video segments of each session were digitized and partitioned into short sequences 

representing each gesture individually. Note that the proposed feature extraction 

techniques to follow do not require any specific frame rate. An example of the sequence 

of frames of the Gesture 4 (Gift). is shown in Figure 1.  

 

 
FIGURE1: Video sequence of Gesture 4 (Gift). 
 
 

                                                 
1 The dataset can be made available upon request. 
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4. Feature extraction techniques 
 
For video segments (i.e. image sequence) feature extraction is typically done in the 

temporal and spatial domains in order to capture the spatial and temporal information 

contents of the image sequence.  

 
4.1. Temporal feature extractions: 

The motion of the temporal sequence can be captured by removing temporal-domain 

redundancies. The motion can be accumulated into one image that represents the activity 

of the whole temporal sequence.  

Temporal domain redundancy reduction techniques are well established in the video 

compression literature. Hybrid video compression standards employ backward and bi-

directional prediction as specified by the ISO/IEC MPEG coders such as MPEG-4 part 

10 [21]. On the other hand, wavelet based video coders employ sophisticated motion-

compensated temporal filtering techniques as reported in [22,23].  

To reduce the energy of prediction error, video coders employ motion estimation and 

motion compensation prediction on blocks of pixels referred to as macroblocks. The 

outcome of the motion estimation process is a two dimensional motion vector 

representing the relative displacement of a macroblock relative to a reference or anchor 

picture. The motion compensation prediction subtracts the macroblocks of the current 

picture from the best-matched location of the anchor picture as indicated by the relevant 

motion vector.  

Content-based querying of video databases utilizes such motion vectors for video 

indexing and retrieval. For instance MPEG-7 visual motion descriptors use such motion 

information to identify object speed, motion trajectory, motion intensity, spatio-temporal 

distribution of motion activity and so forth [24]. The extraction of such descriptors is 

facilitated by the syntax of the coded video stream which includes the needed motion 

information. Thus neither further motion estimation nor compensation is needed in this 

case. 

However in the proposed temporal motion activity extraction for sign language 

recognition, computation of motion vectors is computationally prohibitive. Thus we 

propose to capture the motion activity by examining the forward prediction error of 

successive pictures without motion compensation. Clearly, elimination of motion 

compensation for sign language recognition does not affect the preciseness of 
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classification; in fact reducing the energy of the prediction error through motion 

compensation prediction is undesired in this case. 

Formally, the proposed forward prediction of successive frames is expressed as follows. 

Let )(
,
j
igI  denote image index ‘j’ of the ith repetition of gesture number ‘g’. The forward 

accumulated prediction can be computed by: 
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Where n is the total number of images in the ith repetition of gesture g.  

∂  is a binary threshold function defined as: 
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The TH threshold is empirically determined as illustrated in the experimental results 

section. Briefly, it can be set to either the mean intensity of motion pixels i.e. arithmetic 

mean of non-zero pixel differences, or the mean plus the standard deviation and so forth. 

Likewise, this section proposes the use of bi-directional accumulation of prediction 

errors which uses both previous and future images as a source of prediction. This can be 

expressed as follows: 
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Where wi is a bi-directional prediction weight inversely proportional to the time distance 

between images. Typically, equal weights of 0.5 are allocated to immediate previous and 

future reference images. Additionally, note that image index 0 and n+1 are replicas of 

images at index 2 and n-1 respectively. That is, two copied images are defined at the 

boundaries of the video sequences. 

The steps of the proposed temporal feature extraction are illustration in the following 

diagram: 
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FIGURE 2. Illustration of the proposed temporal feature extraction technique. 

 

The figure illustrates that successive images are subtracted without motion 

compensation. If bi-directional prediction is employed then the current image is 

subtracted from a weighted sum of previous and future images as mentioned previously. 

The resultant prediction error is thresholded into a binary image. All binary 

representations are then accumulated into one image which represents the temporal 

features of the input gesture. 

Figure 3 shows an example of applying the above forward prediction technique to two 

different gestures. 

 

 

 

 

 

 

 

Raw input images 

Image prediction errors 

Binary threshold 

Forward prediction 

Accumulated prediction 
errors: Pg,i 
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(a) 

 

 

 
(b) 

FIGURE 3. Examples of accumulated prediction errors. Raw images and their temporal 
features for (a) Signer 3, Gesture 1, Repetition 1 of the test data (b) Signer 1, Gesture 4, 
Repetition 10 of the test data.  
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In the figure, the temporal features are scaled to the range of 0-255 for display purposes. 

Since the prediction error of successive images is subjected to a binary threshold, a 

median filter is applied to the temporal feature image in order to remove isolated 

prediction errors which can be treated as impulse noise. Additionally, the temporal 

feature images are normalized by the number of images in underlying image sequence. 

The figure shows that the motion of the image sequence is nicely captured by the 

proposed technique. Thus reducing the three dimensional image sequence into one 

image. 

 
4.2. Spatial domain feature extractions 
 
Having reduced the temporal sequence of a given gesture into an image of accumulated 

differences, we now turn our attention to spatial domain feature extractions.  

This section proposes two different approaches namely: 2-D transformation followed by 

Zonal coding and Radon transformation followed by low pass filtering.  

4.2.1 2-D transformation and Zonal coding 

In the first approach, the accumulated temporal differences are transformed into the 

frequency domain using the 2-D Discrete Cosine Transformation (DCT) given by [30]: 
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Where NxM are the dimensions of the input image ‘f’ and F(u,v) is the DCT coefficient at 

row u and column v of the DCT matrix. C(u) is a normalization factor equal to 
2

1 for 

u=0 and 1 otherwise. 

An attractive property of this transformation is its energy compaction. Low frequencies 

are concentrated in the top left corner of the transformed image. Thus the input 

accumulated temporal differences can be coarsely represented by discarding high 

frequencies. This can be realized through Zonal coding which was first employed for 

partitioning DCT coefficients into a number of video layers as specified in the MPEG-2 

video codec [25].  In this work the DCT coefficients are zigzag scanned from the top left 

corner into an n dimensional vector. The dimensionality is empirically determined as 

illustrated in the experimental results section. The block diagram of the proposed spatial 

feature extraction is shown in Figure 4: 
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FIGURE 4. block diagram of the proposed spatial feature extraction technique. 
 
 
This work also proposes the use of 2-D Walsh Hadamard (WH) transformation with the 

following kernel: 

  
 ∑

−=

−

−

+
1

0
)()()()(

)1(
2
1),,,(

m

i
iiii vpybupxb

mvuyxh    (5) 

Where m is the number of bits needed to represent a pixel value, bi(x) is the ith binary bit 

from right to left and pi(u) = bm-i(u) + bm-i-1(u). All sums are performed in modulo 2 

arithmetic [26]. 

The WH transformation uses a binary transformation kernel composed of 1s and –1s. 

The transformation is known for its simplicity and suitability for transforming binary 

images. It makes more sense to decompose a binary image into square waves rather than 

smoothly varying sinusoids. This shall come in handy when successive input image 

differences are binarized without accumulation. Such an approach is needed for training 

HMM models as elaborated upon later. 

4.2.2 Radon transformation and low pass filtering 

On the other hand, we also propose the use of image projections through Radon 

transformation. The pixel intensity of the accumulated temporal differences are projected 

at a given angle θ using the following equation: 
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Where f is the input image and the line integral is parallel to the y’ axis where x; and y’ are 

given by:   
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The resultant projection is then coarsely represented by transforming it into the 

frequency domain using a 1-D DCT followed by an ideal low pass filter. For 

completeness the spatial features of the accumulated temporal differences of Figure 3 

above are illustrated in Figure 5: 
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(a) Block diagram of proposed solution.  
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(b) Reconstructed spatial features with the accumulated temporal differences of Figure3a. 
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(c) Reconstructed spatial features with the accumulated temporal differences of Figure3b. 
 

FIGURE 5. Spatial feature extraction using image projections. Projection on the x-axis 
with DCT cutoff = 50 
 
The projection angle in the figure is 0 degrees. The projected image are represented by 

the first 50 DCT coefficients in this example. The figure shows the reconstructed 

projection for illustration purposes. Various DCT cutoffs and projection angles are 

experimented with in the experimental results section. 

 

5. Linear separability assessment of feature vectors:  

To verify the suitability of the proposed feature extraction techniques, this section 

presents the recognition rates using linear discriminant functions such as 

   0)( wd t += xwx     (8). 

Where w is a weight vector that determines the orientation of the linear decision 

hyperplane, w0 is the bias and x is the feature vector. 

Table 2 shows the results of applying the above linear discriminant function to the 

proposed temporal extraction followed by either the DCT zonal coding or the Radon 

transform approach with projections on the x-axis. For each of the 23 classes, we have 

used 70% of the data for training and the remaining 30% for testing. 
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 DCT zonal coding Radon transform 

Training error 1.49% 5.176% 

Testing error 2.14% 11.95% 

 Table 2. Performance of linear discriminant functions for the proposed feature vector 
extraction techniques with 100 dimensional feature vectors. 
 
Another linear classifier that is commonly used is the Fisher’s linear discriminate. We 

have experimented with this classifier using the same data described above, and obtained 

comparable results to those of the linear discriminant functions. These results are shown 

in Table 3. The similarity of the results between the two classifiers is expected given that 

the data is linearly separable.  

 
 DCT zonal coding Radon transform 

Training error 1.24%  4.6%  

Testing error 2.82%  13.02%  

 Table 3. Performance of Fisher’s linear discriminates for the proposed feature vector 
extraction techniques with 100 dimensional feature vectors. 
 

The results obtained in the tables show that the features are reasonably linearly separable. 

This illustrates the efficiency of the proposed feature extraction method in projecting the 

complex sign videos into a compact, yet representative set of features.  In the following 

section, this conclusion is further exhibited by the experimental results using relatively 

simple classification techniques such as K Nearest Neighbor (KNN).  

 
6. Experimental results: 

This section presents the experimental results for offline and online classification for 

both temporal and non-temporal classification. In the offline classification mode, training 

is done beforehand and model parameters are uploaded to the recognition stage. This is 

normally done when the training data is very large (due to large number of classes or 

excessive variability within each class) or the recognition is user-independent.  On the 

other hand, some applications are geared towards user dependent mode with a limited 

number of classes. In this case training is required to be done as the user is enrolled to 

the system. Normally, this mode supports a limited number of classes with a few 

numbers of samples per class.  
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6.1. Offline classification: 

The gesture database is divided into training and testing sets. As we mentioned in section 

3, the database is composed of 50 repetitions for each of the 23 classes per signer.  In 

this classification mode, we have used 70% of the data for training and the remaining 

30% for testing. The training and testing sets contain mixed samples of all signers. 

 

6.1.1 Bayesian and KNN based classification 

This section experiments with the Bayesian i.e. likelihood ratio, and the KNN classifiers. 

As mentioned in section 4.1 above, the threshold of the temporal prediction error is 

empirically determined. Figure 6 employs a 1NN nonparametric classifier to examine 

three threshold values of 0, mean and one standards deviation above the mean of 

moving pixels. 
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FIGURE 6. Threshold of the temporal prediction error. 1NN classifier with a DCT 
cutoff value of 50. 

 

Forward and bi-directional temporal predictions are employed in the experiment. The 

figure shows that the forward prediction technique constantly outperforms its bi-

directional counterpart. This can be justified as follows. The use of the previous and 

future images for prediction creates a temporally interpolated prediction that minimizes 

the motion residue; this defeats the purpose of motion detection. 

The figure also shows that setting the threshold of the forward temporal prediction to 

the mean of moving pixels results in the highest classification results. Increasing the 

threshold results in further loss of motion information hence lower classification results.  
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Likewise, the DCT cutoff of the spatial domain feature extraction is empirically 

determined as pointed out in Section 4.2 above. Again Figure 7 employs the 1NN 

nonparametric classifier to examine 10 different values for the DCT cutoff.  
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FIGURE 7. Determining DCT cutoff in spatial feature extractions. Forward temporal 

prediction with TH=mean. 1NN classifier used. 

 

Additionally, Figure 7 experiments with 2-D DCT coding and image projections 

followed by 1-D DCT coding. The figure shows that coding the temporal features with 

2-D DCT coding results in higher classification rates. At lower DCT cutoffs however, 

image projections with 1-D DCT coding are preferred. Clearly, coding 2-D DCT 

coefficients with such coarse zonal cutoffs under-represents the contents of the 

transformed temporal features, hence lower classification results.  On the other hand, at 

higher cutoffs the 2-D DCT coding approach reaches a classification rate of 100%. This 

accuracy is not obtainable by the image projection technique because vertical projections 

result in losing vertical coordinates and vice versa. However, the vertical projections in 

this work scored classification results above 99% which is noteworthy.  

 

The same experiment is repeated using a Bayesian classifier i.e. likelihood ratio, and the 

classification results are shown in Figure 8. The figure confirms the above discussion 

regarding the classification rates via 2-D DCT versus image projections. It is also 

important to note that the figure confirms the normality of the extracted feature vectors 

as indicated by the suitability of the Bayesian classifier. The figure also demonstrates that 

increasing the dimensionality of the feature vectors beyond a given DCT cutoff (60-70 in 

this case) adversely affects the classification rate. This is so because higher dimension 

multivariate normal distributions require more feature vectors to be parameterized 
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properly. This is related to the well known “curse of dimensionality problem” in 

parametric classifiers.  
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FIGURE 8. Bayesian (likelihood ratio) classification. DCT cutoff in spatial feature 
extractions. Forward temporal prediction with TH=mean. 
 

However, this not the case when employing Fisher discriminate analysis which seems to 

be more robust as the DCT cutoff increases beyond 60 coefficients. This is illustrated in 

Figure 9 which compares the classification rates obtained by Bayesian (likelihood ratio) 

and Fisher linear discriminant classifiers. 

65
70
75
80
85
90
95

100

50 60 70 80 90 100

DCT cutoff

Cl
as

si
fic

at
io

n 
ra

te

2D DCT: Baysian classifier 2D DCT: Fisher's L.D

 
Figure 9. Comparison between Fisher’s linear discriminant classification and Bayesian 
(likelihood ratio) classification as a function of 2-D DCT zonal cutoff. 

 

6.1.2. HMM-based classification 

This section classifies the sign language data using Hidden Markov Models (HMMs). 

Throughout the experiment we have used the left to right HMM architecture where a 
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state can only transit to its immediate right neighbor or stay in the same state. The 

training method applied is the Baum-Welch algorithm and the number of states is 

empirically determined to be 2-4 according to the complexity of the gesture. 

In this approach the temporal domain information of the input image sequence is 

preserved. As pointed out previously, the feature extraction step preserves the absolute 

difference between successive images without accumulating them into one image. The 

absolute differences are then thresholded, binarized, transformed into the frequency 

domain and converted into a sequence of 1-D signals using zonal coding.  
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FIGURE 10. Classification using HMMs, Zonal cutoff versus classification rate. 

TH=mean of moving pixels. 

 

In Figure 10, 4 different feature extraction approaches are employed. In the first 

approach successive absolute image differences are DCT zonal coded without 

thresholding (labeled ‘No threshold + 2-D DCT’). Clearly, not all pixel difference 

comprise the actual gesture motion, some difference are considered noise and should not 

be part of the features. Therefore, this approach scored the lowest classification results as 

shown in the figure. In the second approach (labeled ‘Threshold + 2-D DCT’), the 

absolute differences are thresholded, differences less than the mean of moving pixels are 

set to zero. This is followed by DCT zonal coding. Unlike the previous approach, noisy 

pixel differences are eliminated and therefore higher classification results are achieved.  

Note that the modeling of both approaches did not converge when the feature vector 

dimensionality exceeded 60. The third approach (labeled ‘Binary threshold + 2-D DCT’) 

is similar to the aforementioned approach, however a binary threshold is employed. Thus 
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pixel values above the threshold are represented by the value one rather than the actual 

pixel difference. As such the intensity of pixel differences is decoupled from the gesture 

motion. The resultant binary data is then DCT zonal coded. The classification results are 

notably superior to the first two approaches. In the fourth and last approach (labeled 

‘Binary threshold + 2-D WH’), since the data is binarized it makes sense to use a binary 

transformation kernel rather than a weighted sum of cosine terms as provided by the 

DCT transformation. The transformation of choice is the Walsh-Hadamard with a 

transformation kernel consisting of 1s and -1s only. Such a kernel is more suitable than 

the smoothly varying basis vectors of DCT that resemble the intensity variation of 

natural images. The boost in the clarification rate is evident even at low zonal cutoffs as 

shown in Figure 10. 

6.2 Online classification 

To examine the suitability of the proposed solutions to online systems, we reduce the 

training data to the range of 1-6 repetitions per gesture per signer. More specifically, all 

the samples of a given gesture  are merged into one set and divided into non-overlapping 

windows of ‘n’ samples, where ‘n’ is between 1 and 6 inclusive. Gestures of a signer are 

then classified based upon all the ‘n’ training samples in a round robin manner. That is, 

the first ‘n’ samples of all gestures are used for training and the resulting classification 

result is recorded. Then the second ‘n’ samples of all gestures are used for the training 

and so forth. All classification results are then averaged as shown in Figure 11. The mean 

and standard deviation of the minimum distance classifier (INN in this case) of the three 

signers are shown in figure. 
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FIGURE 11. Online classification using 1NN. DCT zonal cutoff = 70, temporal 

TH=mean of moving pixels. 
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The figure shows that one training sample per gesture results in an average classification 

rate of 93%. Increasing the number of training samples to 3 results in a classification rate 

above 96% and so forth. On the other hand, the standard deviation of the classification 

rate is constantly decreasing which indicates marginal deviations from the plotted 

classification mean. In the worst case scenario of 1 training sample per gesture the 

standard deviation did not exceed 4%. Clearly, the classification accuracy at such low 

numbers of training samples is convenient and appreciated by users of online systems. 

Likewise, similar experiments are performed using the HMM classifier. The DCT zonal 

cutoffs are set according to the maximum classification rates of Figure 10 for both the 

DCT and WH transformation approaches. The classification results for the online HMM 

classifier are shown in Figure 12. 
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(a)  2-D WH with a binary threshold. 
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 (b) 2-D DCT with a binary threshold. 

FIGURE 12. Online HMM classifier. 

 

The rather low classification results are expected in such a parametric classifier. The low 

number of training samples is inadequate for estimating the state transition probabilities 

and emissions. The figure shows that even with 6 training samples per gesture the 

classification rate does not exceed 75%. Increasing the number of training samples in this 

case defeats the purpose of online classification. Therefore the HMM classifier in this 

case is deemed impractical. 

Lastly, it is worth mentioning that our future work will focus on recognition of 

continuous sign sentences. Such sentences can be segmented into isolated gestures by 

means of non-supervised learning for instance. Once performed, the proposed spatio-

temporal solution can be applied to the segmented gestures. Another approach might be 

to adapt speech recognition techniques where sentences are divided into context-adaptive 

sub-gestures followed by Viterbi decoding and so forth. In both approaches the 

proposed spatio-temporal feature extraction can be applied to either the segmented sub-

gestures or complete signs.  

 

7. Conclusion 

 
In this paper we have presented a variety of feature extraction methods for Arabic sign 

language recognition (ArSL). These techniques compress the motion information in a 

video segment into a single representative image. This was done based on the concept of 

temporal prediction and accumulated differences. The representative image is then 
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transformed into the frequency domain and parameterized into a precise and concise set 

of features. This process allowed for using simple classification techniques that are 

normally used with time-independent feature sets. To establish some comparison 

grounds with other classical techniques, we have conducted similar experiments using 

explicit temporal information with HMM classification.  The proposed feature extraction 

scheme with KNN and Bayesian classifiers has been found to yield comparable results to 

the more elaborate HMM-based system.  

In future work we are planning to conduct another phase of data collection where a 

larger number of signers will be used. As such, we will be able to focus on the user 

independence capability of the proposed system. Moreover, we plan to collect ArSL data 

for continuous signing. 
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