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Abstract. The majority of data sets in the geosciences aretained in modern times, the uneven spatio-temporal coverage
obtained from observations and measurements of natural syswises because of the way the measurements are obtained,
tems, rather than in the laboratory. These data sets are o&.g. in the case of satellite or ship measurements. Depending
ten full of gaps, due to to the conditions under which the on the type of instrumentation, remote sensing is influenced
measurements are made. Missing data give rise to variouby atmospheric conditions and can be hampered by clouds,
problems, for example in spectral estimation or in specify-aerosols, or heavy precipitation. For example, sea-surface
ing boundary conditions for numerical models. Here we usetemperature (SST) measurements in the infrared provide a
Singular Spectrum Analysis (SSA) to fill the gaps in seve-relatively well-sampled data set for the global ocean, but the
ral types of data sets. For a univariate record, our procetemporal coverage at a given point may be as low as 30%
dure uses only temporal correlations in the data to fill in because of cloud cover. Instrument malfunction in extreme
the missing points. For a multivariate record, multi-channelweather conditions, such as hurricanes, tornadoes or floods,
SSA (M-SSA) takes advantage of both spatial and tempoimay also give rise to data gaps.
ral correlations. We iteratively produce estimates of missing Missing data are, in particular, a source of problems in cli-
data points, which are then used to compute a self-consistemhate research, e.g., in the analysis and modeling of spatio-
lag-covariance matrix; cross-validation allows us to optimizetemporal variability. Standard spectral analysis tools re-
the window width and number of dominant SSA or M-SSA quire regular sampling, although some methods do allow un-
modes to fill the gaps. The optimal parameters of our pro-even sampling (MacDonald, 1989; Foster, 1996; Schultz and
cedure depend on the distribution in time (and space) of theviudelsee, 2002). Recently, Schoellhamer (2001) suggested
missing data, as well as on the variance distribution betweem modified singular-spectrum analysis (SSA) algorithm to
oscillatory modes and noise. The algorithm is demonstratebtain spectral estimates from records with a large fraction
on synthetic examples, as well as on data sets from oceanogf missing data. Analyzing the full extent of the climate time
raphy, hydrology, atmospheric sciences, and space physicseries, with the missing points filled in, allows for greater ac-
global sea-surface temperature, flood-water records of theuracy and better significance testing in the spectral analysis.
Nile River, the Southern Oscillation Index (SOI), and satel- The full record can also improve our knowledge on the evo-
lite observations of relativistic electrons. lution of the oscillatory modes in the gaps, and provide new
information on changes in climate.

Gap-filling methods can be model-based, with parameter-
dependent models, as opposed to relying on the data alone
and being nonparametric. Classical parametric methods are

Missing data are a common problem for geophysical datdPased on “optimal interpolation” (OI) (R_eynolds and Smith,
sets. This is always the case for geological and paleoclimad994). Smith et al’s (1996) method implements a least-
tological data from the remote past, as well as for histori-Square fit of empirical orthogonal functions (EOFs) to the

cal records, such as proxy data on precipitation, temperatur@0Served data and can be considered as a variant of Ol. More
or hydrological information. For instrumental data sets ob-advanced approaches include Kalman filtering and optimal
smoothing in EOF space (Kaplan et al., 1997); in the latter,

Correspondence tdD. Kondrashov a linear model is set up to describe the evolution in time of
(dkondras@atmos.ucla.edu) the data fields. All these methods require the use of a priori
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information about the spatio-temporal covariance structure2 Gap filling by iterative SSA

of the data set and of the errors therein. The parameters on

which this structure depends, and/or the EOFs to be used id-1 SSA review and notation

the reconstruction, are then calculated from time intervals of . ) )

dense data coverage. SSA isa da.ta—adap.tlve, nonparametric method based on em-
Schneider’s (2001) parametric method uses expectatio?€dding a time seriepX(t):t=1,N} in a vector space of di-

maximization (EM) and ridge regression to iteratively esti- Mension¥. The SSA method proceeds by diagonalizing the

mate the mean and covariance matrix of the analyzed dat&! <M lag-covariance matriCy of X (r) to obtain spectral
set. At each iteration step, missing values are filled in bylnformatlon on the time series (Colebrook, 1978; Fraedrich,

regularized regression of variables with missing values ont986). The matriCx can be estimated directly from the data
the variables with available values. Then the mean and co@S @ Toeplitz matrix with constant diagonals, i.gz., its entries
variance matrix are updated using all the data. Schneider:; depend only on the lag— | (Vautard and Ghil, 1989):
(2001) method has shown some improvement over tradi- ) N—li—j]

tional Ol (Smith et al., 1996; Kaplan et al., 1997; Mann et al., .

1998) in estimating missing values for simulated SST data ™/ = N — [i — | ; XOX@+1i = jD- (1)
However, this EM-based method, as well as the geostatisti- B

cal filling-in procedure of Johns et al. (2003), rely on the Broomhead and King (1986) proposed computhgby us-
gaussianity of the data, as well as on the randomness in timghg the N’ x M trajectory matrixD that is formed byM lag-

of the missing values. Sherwood’s (2001) iterative universalshifted copies oK(t), which areN’=N —M+1 long; then
kriging method also employs the EM approach to fit “sig-

nal” patterns that are specified a priori. State-space methodé - i
(Mendelssohn et al., 2003) use the Kalman filter to estimate =N

the trend, seasonal and noise components of a given time seB- h hods of . impl dinthe SSA
ries, with gaps fitted by the specified a priori model. oth methods of computing are implemented in the )

Recently, Beckers and Rixen (2003) proposed a nonpara}'a/;g\_/'/ /mk:tr(nDo(zuan?aereiltuzlcéalls)i?; Ghil et al., 2002; see

metric, EOF-based interpolation method to fill in missing he ei £ . : h
data. Both the EOFs and the missing data are iteratively esti- The eigenvectors, of lag-covariance matrbCy have

mated, thus removing the need for a priori assumptions aboJ?een called temporal EOFs by Fraedrich (1986) and by Vau-

the spatial form and parameters of the covariance matrix.tard and Ghil (1989). The eigenvaluggof Cx account for

Cross-validation is used to determine the optimum numbelthe partial va_riance in the directi_dﬁk and the sum of the

of leading EOFs to be retained for filling. Alvera-Amate e|gen\_/a_lues,_ €., th_e trace Of, gives the total variance of
et al. (2005) applied this method to satellite-derived SSTs ofhe orl_glngl time ;eneX (t,)' .

the Adriatic and showed it to be much faster than OI, while PTOIECting the time series onto each EOF yields the corre-
being comparable in accuracy. usually account for the low-SPONding principal components (PGs):

D'D. (2

frequency and large-scale variability, it is natural to use them M
to fill the missing data. This spatial-EOF-based reconstruc-4,(r) = Zx(t +j—DEL()). (3)
tion, as well as Schneider’s (2001) EM method, however, j=1

utilize spatial correlations only, and are therefore less well

suited to deal with data sets that exhibit relatively long, con-AN 0scillatory mode is characterized by a pair of nearly equal

tinuous gaps. SSA eigenvalues and periodic eigenvectors that correspond
In this work we apply a novel, iterative form of SSA to the same frequency. The window width determines the

for both univariate and multi-channel SSA (M-SSA). Our longest periodicity captured by SSA. Signal-to-noise separa-

method utilizes temporal, as well as spatial correlations ofion can be obtained by merely inspecting the slope tl);gak In

fill in missing points; it thus generalizes Beckers and Rixen’s@ “scree diagram” of eigenvalueg or singular values.;
(2003) spatial-EOF—based reconstruction method and is pais- k. A Monte-Carlo test (Allen and Robertson, 1996) is
ticularly useful for data sets that exhibit relatively long, con- available to ascertain statistical significance of the oscilla-
tinuous gaps. Section 2 describes SSA and our iterativdions detected by SSA or M-SSA.

method to fill in the missing data. In Sect. 3 we use first The entire time series or parts of it that correspond to
synthetic time series, with and without noise, and then fourtrends, oscillatory modes or noise can be reconstructed by
actual data sets from distinct areas of the geosciences, t8sing linear combinations of these principal components and
demonstrate the capabilities of SSA gap filling. ConclusionsEOFs, which provide the reconstructed components (RCs)
appear in Sect. 4. Ri:

1 s
R =23 ) Akt — j + DEG):; @

! ke j=L;
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here K is the set of EOFs on which the reconstruction is time series. Outer-loop iterations are stopped by optimizing
based. The values of the normalization facky, as well as  a robust-estimation criterion described further below.

of the lower and upper bound of summatibnandU;, differ Beckers and Rixen (2003) have noted that, for their spa-
between the central part of the time series and its endpointtial EOF reconstruction method, both the shape of the EOFs
(Ghil and Vautard, 1991; Ghil et al., 2002). and their variance will change so as to diminish the bias in-

troduced by zeroing out the missing data. For example, the
2.2 lterative gap filling variance of the dominant modes will usually increase, while

F . . . SSA il q that of the noise modes will decrease. In addition, the dom-
or a univariate time series, our gap hlling proceaure;,-nt EOFs will rotate as well, to remove the contribution

utilizes temporal correlations in the data to fill in the miss- from “noise” modes. This increased separation of signal
ing points. For a multivariate Qata set, gap filling by M,'SSA and noise accompanied the convergence of their algorithm.
takes advantage of both spatial and temporal correlations. If,o same phenomenon was observed to occur for our SSA
either case. (i)_we iteratively produce estimates of mis_sing ap filling, as both procedures are cast similarly in terms of
data points, which are then used to compute a self-consiste ding eigenvectors of an iterated sequence of covariance

Iag—covalr.|gnge math-X gnd ;:S E,OEE" ; 6}334(") éve US€ " matrices; the only difference is that we now deal with tem-
cross-validation to optimize the window widff and num- poral (spatio-temporal for M-SSA) signal and noise modes.

ber of dominant SﬁA moldes to;i" thefgapls. di The (spatio-) temporal gap-filling algorithm proposed here
For many geophysica recoras, a few leading EOFs Cor'always converges in our experience, for both synthetic and
respond to the record’s dominant oscillatory and/or trend

d hile th . ise (Ghil L 2002). Using thi real-data examples.
modes, while the rest is noise (Ghil et al., ). Using this The quality of the reconstruction, e.g. the closeness of its

g:!ea, ;ve fl'rSt cfer;]ter the 0r|g|3al dart1a by_ cqmplétlng th? un'oscillatory and/or trend modes to those of the original, gappy
lased value of the mean and set the missing-data values e series, will of course depend on the amount of noise,

ZET0. We start the inner-loop iteration by computing the lead-, || 45 on the number and distribution of missing points.
ing EOF E; of the cent_ered, ze_ro-padded recqrd_ Th_en WEAs the amount of noise increases, the significant EOFs will
per.form the SSA algorithm again on the new time series, 1 “polluted” more, making it more difficult to remove the

which the RCR, corresponding to that EOF alone was used “noise” contributions. Increasing the number of missing data

to obtain nonzero values in place of the missing points ancllields the same effect, with the worst-case scenario being, in

correct the record’s mean, the covariance matrix and EOFs,) | experience, continuous gaps. Even in this case, the pe-

The reconstruction of the missing data is repeated with a nev;,  of the oscillation can be determined correctly, provided

estimate ofiRy andhtestt)ed aga'?‘i_t t(;meNprewous onfe, until 3the gap is not larger than any significant spatio-temporal cor-
convergence test has been satisfied. Next, we perform outefs,iong present in the data, i.e. the time period of the slow-

loop iterations by adding a second E@ for reconstruc- est oscillatory mode. In the latter, extreme case, reconstruc-

tion, starr]tln.g from the.solutlon with data filled in 18, and tion in such a gap can no longer be trusted, while the phase of
repeat the inner iteration. ) i the reconstructed serigs*(r) in continuous gaps is always
To understand the flow of information from the less reliable than the period
known to Fh_e ”.“SS""Q data, it i$ us:eful .to co_ngider Data sets with “red” spectra, where noisy modes con-
,SSA gap filling in .terms of applying |terat|vely.f|n|t9- tribute significantly to or even dominate the spectrum’s low-
impulse response filters (FIR). Each _reconstrucpon f”terfrequencies, present special challenges. In such cases it may
f=|(fth+1}§/[M7 'i'ffl’dfo’ 1. ""fM*ﬁ) IS syrg_meérl_c}lhas be beneficial to skip the “noisy” modes associated with low
a length o —Lan representst € combined in uen_cefrequencies and large amplitudes and use only oscillatory
of the EOFs used so far in the o_uter—loop iteration (V{aradl ®ones in a higher-frequency band; this strategy, though, was
al., 1999). Thgse SSA—based filters are data adap“_",e- Thﬁot thouroghly tested, and further tests are left for future re-
reconstructed time seriés*(r) can be viewed as the original ... The quality of the filled-in data can be evaluated by

time series (1) filtered with the weightsf: cross-validation experiments (see below) or by verification

Y M-1 _ against independent data, if possible. The latter approach
X*iy= Y XGi+nf. (5)  was tried for Tropical Pacific data in Sect. 3.3 below.
n=—(M-1) The optimum SSA parameters for gap filling in a given

For gap filling, at each inner iteration, the valueXadt miss-  time series are found from a set of cross-validation experi-
ing points are replaced with estimat¥dl values. Then, the ments: for each such experiment, a fixed fraction of avail-
EOFs and the filter coefficients, are recalculated, and the able data is left out, and the root-mean-square (rms) error in
whole procedure is repeated until a convergence criterion igseconstruction is computed as a function of the nunkseof

met for X* at missing points. Then the next EOF is added EOFs retained and the SSA window size The global min-

in the reconstruction, and so on. For a continuous gap, Eqimum in error, averaged over all experiments, corresponds to
(5) shows that missing data are filled with information be- the required optimum, and provides an estimate of the actual
ing transfered inside the gap from adjacent portions of theerror in the reconstruced data s€t(r). For the examples
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(a) SSA filling of gap | (2 bursts) (b) SSA filling of gap Il (2 bursts) construction method. The latter corresponddfte-1 in our
ofT m off m M-SSA gap filling method and we compare the two cases,
0 H\H‘\W\w v H‘i“”‘h‘\ﬁj‘mf , 0 ‘\‘H‘m(\f@m . ]hww;\g e of M=1 andM>1, in Sect. 3.2, for global SST data sets.
-2}/ 1" -2f|l" M We also carried out a few tests with the Toeplitz fornCof;
0 100 200 0 100 200 these tests did not show any significant difference in our re-
(c) SSA filling of gap II (3 bursts) (d) SSA filling of gap Il (4 bursts) sults, though more research can be done on the advisability
2T ™ i ‘ of either form in various situations.
o) e JWU/ 0} NUU/
—20‘,“'“' 100! ) - —20““' e ! - 3.1 Univariate synthetic data
(;) SSA spectrum of 4 bursts, M=1t40 First, we consider a time series consisting of a sinusoidal

‘ ‘ carrier signal with several periodic, sawtooth-shaped bursts
and with synthetic gaps to demonstrate the method’s capa-

10 ; :
@E@E}Eﬁm bilities and limitations on a pure signal without noise. The
0 R 0‘; o 05 gap in Fig. 1a lies within the slowly decaying phase of the
Frequency ' ' first sawtooth spell of a time series composed of two such

spells, while the gap in Figs. 1b—d masks the rapid excita-
Fig. 1. Gap filling of a time series with several identical oscillatory tion of the second spell. The period of the carrier signal and
spells (as indicated; in each case only two bursts are shown) anthe gap size are 5 and 20 sampling units, respectively. The
gaps over the interval I: 2&r<40 (panel a), and II: 115:<135  time series plotted in Figs. 1a,b is 230 points long in Figs.
(panels b—d); blue line is the original data, red line is the filled- 14 by, while the three and four spells of the complete signals
in data _(nondimensional units). (e) SSA spectrum of.signal with i, Figs. 1c,d correspond to 345 and 460 points, respectively.
four oscillatory spells (panel d) and windoW=140; red diamonds = o 5 5reement between the data set filled in by our method
show SSA eigenvalues, plotted against the dominant frequency as-

sociated with the corresponding EOFs; black dots with error barsLand the original time series is almost perfect in Fig. 1a, while

are the mean and confidence intervals corresponding to.5% 2 in Fig. 1b the period of the signal is captured very well, but

and 975% percentiles of a Monte Carlo significance test againstNOt the timing, nor the sharpness of the second spell’s exci-
red noise (Allen and Robertson, 1996). tation. The cross-validated results for choosing SSA param-

eters are quite similar in both cases (not shown): the opti-
mum number of modes is equal to four; the optimum window
presented in Section 3 we used 5% of available data and 30/, though, is equal to 10 sampling intervals for the gap in
experiments (unless specified otherwise), in order to obtairFig. 1a, and to 20 for Fig. 1b.
a smooth estimate of the cross-validation curve and accurate The poorer reconstruction result for gap Il in Fig. 1b is not
estimates of optimum SSA parameters, with sufficient statis-surprising, as the time series with two bursts only is too short
tical confidence. We will show that this procedure providesto use an SSA window that is wide enough to capture the
reliable estimates of the optimal paramet&isandM when  lag correlations required to reconstruct the gap-covering ex-
the pattern of missing data is random, though some issuesitation phase. When the number of oscillatory bursts in time
remain in the case of continuous gaps. series increases, the reconstruction dramatically improves, as
To obtain the actual reconstruction, we repeat the innerobserved in Figs. 1c, d. The optimum SSA window also be-
and outer-loop iterations, using the optimal parameters obcomes larger, reflecting the long-term periodicity of bursting,
tained by cross-validation, but with all the available points and is equal to 140 points for the reconstructions in Figs. 1c,
now being included in the process. d.
The Monte-Carlo SSA spectrum for the full time series in
Fig. 1d (blue line) is shown in Fig. 1e. There is a highly sig-
3 Results nificant SSA pair representing the main oscillatory mode at
the correct frequency of 0.2 unit/cycle, surrounded by a few
The original idea for using SSA in filling data gaps (R. Vau- other pairs, apparently representing the shape of the modu-
tard, pers. commun., 1992) was based on the fact that, in thiated oscillations’ envelope.
Toeplitz form of the lag-covariance mat&y (Vautard and For gap filling in Figs. 1b—d we useki*=20, which gave
Ghil, 1989), the constant diagonalg depend only on the the bestresults and corresponds to the large number of modes
lag|i—j| and can thus be easily computed from the availablenecessary to capture the modulations of the spells.
data pairs alone. In practice, we have used the Broomhead Next, we consider two time series; the first one is an an-
and King (1986) method for constructi@y from the trajec-  harmonic, nonlinear oscillatios(t). The main period of the
tory matrix for all our tests herein. We did so mainly because,oscillation is 40 sampling units, and it is both amplitude- and
in the case of multivariate data, this method automaticallyphase-modulated with periods of 200 and 120 units, respec-
includes Beckers and Rixen’s (2003) spatial-EOF-based retively. The length of the time series is 600 points. The second
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time seriesx(t) is the signals(t) contaminated by additive (a) Filling gap | (b) Filling gap Il

white noisew=w(t), with a normal distribution and a stan- 1 1
dard deviation equal to one: OW\f OJ\WM/V

x(t) =5s(t) +w,

.2 2 T, 27
s(t) = sin(=—1) - cos(%t + —sin—1). (6)

200 2 120
We apply our SSA gap filling method to both tlsét)
and x(t) time series and for intervals {£80<¢<120} and

I1={z:250<¢ <300}, which correspond to two distinct phases 50 10t0 150 200 250 t 300 350

of the nonlinear oscillation. (e) Cross-validation RMS error  (f) SSA spectrum, M=200
The filled-in data, shown by the heavy red line in Figs. 2a— 1.05 — 7S

d, are in very good agreement with the oscillatory sigg! éxg 100 [ T H ‘ il

in the gaps, both when noise is present (Figs. 2c, d) and with-

out it (Figs. 2a, b). Note that the “noise” modes preses{in 2 Ng of nfo de38 10 0 For-g2uenc 0.04
have been discarded in the reconstruction (Figs. 2c, d). The ' quency

Monte-Carlo SSA spectra o) in Fig. 2f show SIX signifi- . Fig. 2. Gap filling of (a, b) a nonlinear oscillatory signa{t), and
cz_int components that correspond to the three pairs assouat%fd) of its noise-contaminated versiaft) (black line); see Eq),
with the periods 40, 120 and 200; together they capture thgts are nondimensional. Blue line is the oscillatory component
nonlinear oscillation. The optimum SSA parameters for gapst), red is the filled-in data. Gap | is over the intervak8g:120,
filling in x(t) are thus suggested by the SSA analysis to bewnhile gap Il is over 2561<300. (e) Cross-validation results for
M*=200, required to capture the longest period present irfilling gap Il in x(t); blue, green and red lines are for SSA windows
the time series, and* = 6. This choice is confirmed by of M=160, 180 and 200, respectively. (f) Monte-Carlo SSA spectra
the cross-validation in Fig. 2e, which yields a minimum er- of x(t) with window M=200 (see caption to Fig. 1).

ror for M*=200 andK *=6; these values turned to be the

best choice for gap filling irs(t) as well. The estimate of ] ] . .
rms error in reconstruction from the cross-validation is very Small M-SSA windows as optimal in reconstruction; we shall

close to its expected “true” value, equal to unity, which is the S€€ that much larger values &ff are optimal for the substan-
standard deviation of white noise in E6)(We tried gaps in tl_a| gaps found in the Nile River and electron flux data sets
other places of the time series, and obtained results similar tgiscussed below.

those shown in Figs. 2a—d. The influence of the spatial pattern of large signal ampli-
tude on the quality of the reconstruction is evident in com-
3.2 Multivariate geophysical data paring Fig. 3d with Fig. 3a: the relative error is uniformly

small in the Central and Eastern Tropical Pacific, where
As a first multivariate example, we apply M-SSA gap fill- the EI-Nifio/Southern-Oscillation (ENSO) mode dominates
ing to the global data set of monthly SSTs from the Inter- seasonal-to-interannual climate variability, despite the low
national Research Institute for Climate and Society (IRI) for density of data available over part of this area. However, the
1950-2004, from 30S to 60 N, on a 10-latitude by 10- signal-to-noise ratio is small in the Western Pacific, and the
longitude grid, with a total of 66@37=156 420 data points. relative error there is larger, despite a comparable fraction of
We have randomly removed about 70% of the data, in a manmissing data. Estimated errors from cross-validation and the
ner that is white in time and with spatial correlations that areactual absolute errors in the filled-in data set are shown in
consistent with the structure of the actually missing SST ob-Fig. 3b by solid and dashed lines, respectively. The curves
servations; the fraction of missing observations at each gridn each pair are pretty close, thus confirming that the cross-
point is shown in Fig. 3a. We then applied our iterative gapvalidation procedure provides a good estimate of errors in
filling procedure to fill in the missing data, and computed this case. The rather small difference in absolute errors for
both estimated errors from cross-validation experiments and/=3 and M=5, despite the large variations in relative er-
actual errors in the reconstructed data set. rors observed in Figs. 3c, d faf=1 andM =3 is due to the

The cross-validation results in Fig. 3b indicate significant higher signal variance in the Eastern Tropical Pacific.

reduction of the rms error when using an optimum window Our next multivariate example concerns the flood-water
of M=3 vs. M=1; the latter corresponds to the spatial EOF records of the Nile River; see Fig. 4a. Several authors com-
reconstruction method of Beckers and Rixen (2003). Thispiled the annual maxima and minima of the water level
cross-validation result is verified in Figs. 3c, d by comparingrecorded at nilometers in the Cairo area, in particular at
relative error normalized by the standard deviation at eactRodah Island, from A.D. 622 to 1922 (Toussoun, 1925;
grid point; the errors are indeed much smaller#=3. The  Popper, 1951). The large gaps in these records have been
pattern of data missing at random in observed SSTs favorsaused by social and economic upheavals during Ottoman
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b) Estimated and actual rms errors
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Fig. 3. Reconstruction of missing SST anomaly data for the 50-year-long monthly IRI datéagdtraction of missing data (%)b)
cross-validation results for choosing optimum M-SSA window and number of modes for filling of missing data. Dashed and solid lines are
the actual and estimated errors, respectively; blue, black and red colors are for windbfxslofdM =3, and M =5, respectively.(c, d)
Root-mean-square (rms) SST error between the actual and reconstructed SST fields, computed and normalized by the standard deviation
each grid point: (c) for M-SSA window/=1 and number of mode&*=10; (d) for optimum M-SSA window*=3 andK *=50.

rule. Analyzing a complete 1300-yr record of Nile River data points, with missing data mainly in the first 80 days
floods, with the missing points filled in by iterative M-SSA, of record. In many magnetospheric observations, gaps are
allowed Kondrashov et al. (2005a) to study the evolution of present across all the spatial channels, as seen in Fig. 5a
the record’s regularities over the most recent 450 years (A.Don the 64th day; such gaps occur when satellite instruments
1471-1922). In particular, these authors found evidence foswitch into a different operational mode, or fail due to space
a novel source of interannual climatic variability for tropi- hazards. Space physicists are interested in the build-up and
cal East Africa, namely changes in the North Atlantic oceanrelaxation of electron fluxes that coincide with strong, recur-
circulation. ring geomagnetic disturbances coming from the Sun.

Given the fact that high- and low-water records are not We tested the ability of our algorithm to fill the real gap, as
always missing the same year, both records were used in fillwell as three synthetic, continuous gaps of 1 day, 5 day and
ing the gaps in either one (Fig. 4b). Using tkié=9 leading 3 days, respectively, which we added during strong magnetic
EOFs and a window o#/=100 in the two-channel SSA of storms (Fig. 5b). The reconstruction error for synthetic gaps,
high- and low-water levels minimized the estimation error of presented in Fig. 6, shows that the optimum M-SSA window
50 independent cross-validation experiments. Independerwidth and number of modes is equal¥*=30 andk *=19,
information on the signal-to-noise separation is obtained byrespectively.
inspecting the slope break in the “scree diagram” of SSA The agreement between the reconstructed and the original
eigenvalues for the optimum window/*=100 (Fig. 4c).  data in Fig. 5c is quite good. The decay of electron fluxes
There is clear separation between the nine “signal” EOFsafter the strong magnetic storm near the 30th day of obser-
that have been used in the reconstruction and the remainingations is reconstructed well, although it is not as steep as
modes, which represent the discarded “noise.” in the observations. Of course, one should bear in mind that

Our third and last multivariate example is provided by the filled-in data lack noise, and reconstruction cannot equal
daily measurements of high-energy electron fluxes in Earth’'s£xactly the observed data.
inner magnetosphere (Fig. 5a) from the Combined Release
and Radiation Effects Satellite (CRRES). These observa-
tions are 100-day long, and have a total of -Bl33000
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Fig. 4. Extended records (A.D. 622-1922) of low-water (solid black

curve) and high-water (solid red) level&) original data; andb) Fig. 5. CRRES satellite measurements of 1MeV high-energy elec-
data with missing points filled in by M-SSA. The gap filling uses tron fluxes (stMeV-scm?)~1 in Earth’s radiation belts as a func-

a window of =100 yr and two channels (the low- and high-water tion of L-shell: (a) original data with missing values in whitéh)
levels). The time series have been centered on the relevant meapriginal data with a few synthetic gaps added; ég)dM-SSA filled-

and the amplitudes have been normalized by the standard devian. The L-shell parameter measures distance to the intersection be-
tion of the original time series (excluding missing data points). Thetween a magnetic-dipole field line and the equatorial plane in Earth
mean of the high-water record is 907 cm, while it is 288 cm for the radii; it indicates how far trapped electrons are from the Earth.
low-water record; the corresponding values for the variances are

6586 cnf for the high-water record and 10 359 &rfor the low-

water record. (Panels (a) and (b) reproduced fikondrashov et 0.65 Reconstruction error for synthetic gaps‘

al., 2005a, by permission of the American Geophysical Uni¢gc). | [ M=1

M-SSA spectrum of filled Nile River record#/*=100 years. The 0.1 - --M=20||

optimum numbelK *=9 of modes corresponds to the break in the —M=30

slope of the M-SSA spectrum. 0.55 = ="M=40} ]
€ 05
©

When continuous gaps are present at all spatial locations ;’ 0.45

over some time interval, using a window width>1 allows 2

one to reduce the reconstruction error significantly in com- 0.4

parison with purely spatial EOF reconstructial£1). In - 0.35

the latter case, missing data in the gaps are replaced with ¢

constant time-mean value at a particular grid point. In con- 0.3

trast, for M>1, cross-channel, time-lagged spatial correla-

tions are taken into account. This feature of the method en- %% 10 20 30 40 50 60

sures temporal variations and lower rms errors in the gaps. M-SSA modes

Some challenges do remain in using cross-validation t0gjg g RMS reconstruction error for synthetic gaps in the CRRES
choose optimum SSA parameters for the case of continuousateliite data set of electron fluxes (Fig. 5¢), as a function of window
gaps in multivariate data, as well as for time series with “red” width M and numbek of M-SSA modes.
temporal spectra (see Sect. 2.2). For example, the true recon-
struction errors fold=1 will not depend on the number of
EOFs retained, as shown in Fig. 6. Randomly deleting pointserror in our experience. Ultimately, the choice in how cross-
for cross-validation may, however, not capture correctly thevalidation is done should probably reflect the pattern of miss-
actual error level in continuous gaps. Filled-in data at ran-ing points in the data set. If points are missing at random
domly chosen points, at a given time moment, will take into in time and space, then artificially deleting points for cross-
account spatial correlations from existing values at other gridvalidation in the same manner may be both easy and optimal,
points, leading to the rms error being reduced as more signawhile for other, more coherent patterns of missing data, mix-
modes are added in the reconstruction. Using gappy time ining points deleted in gaps and at random could be the best
tervals for cross-validation improves the estimate of actualchoice.
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5 ~ COADS with these parameters is shown in Fig. 7 as a black dashed
‘ ‘ line.
~——CRU

- - -COADS-SSA/CRU Next we applied regular SSA reconstruction to the
4r —— COADS-SSA i COADS data alone, as in the previous examples of Sects. 3.1
—— CRU-MSSA

* and 3.2. The minimum cross-validation error corresponds in
I this case to a window/*=100 andK*=12 modes; the re-
constructed data is shown by the blue line. Finally, we use the
CRU and COADS time series together, and applied M-SSA
reconstruction to take advantage of existing correlations be-
tween the two time series. Cross-validation yields a window
of M*=100 andK*=27 modes as optimal M-SSA param-
eters. The reconstruction is shown by the magenta line and
the corresponding “CRU channel” of the M-SSA reconstruc-
tion is shown by a black solid line; as expected, the latter
-6 ‘ ‘ ; ‘ follows quite closely the raw CRU data, except for its being
1955 1860 1865 Year 1870 1878 1880 somewhat smoother, due to the us&kdt=27 modes.
All the COADS reconstructions in pre-1870 years are
Fig. 7. Reconstruction of pre-1880 SOI time series. Different gominated by an oscillatory mode with a period of about 4 yr,
methods are app_lied to the COADS data_ set, with or without _CRUand are in fairly good agreement with each other. Signifi-
gﬁ‘tz as g%;grégme_\ihc g@fg da(t;_it_(astzrlsks)égst,(lbsloIk(rded Ir|1ned); cant differences exist, however, during the years 1868—1878,
ned-in Wi conaitionea on acl ashe : :
ne). wih SSA of COADS ctaonly (olue ), wih -ssa us- SRR B0 MR 8 S o B et e
ing jointly the COADS and CRU data (solid magenta); and recon- . s . .
structed CRU with optimal M-SSA parameters (solid black). from CRU t!me series passes quite far from the few eX|st|_ng
COADS points. On the other hand, the SSA reconstruction
using only the COADS data passes closer to these points, as
expected. The COADS reconstruction by two-channel M-
SSA lies somewhere in the middle.

To compare the performance of our iterative SSA method Fairly different reconstructions can thus be obtained when

it cthr weys of fling g3ps i ime s, we consder "OeEETIETL e Soutces eXst ) of ich may prode
for simplicity a univariate data set. This is provided by P

the monthly values of the Southern Oscillation Index (SOI) have in common. The question of which SOI recon;trucﬂon
for 1854-1997, from the Comprehensive Ocean-Atmospherg hOUId. pe trusted more can only be settled as additional data
Data Set (COADS; Woodruff, 1987), available frduttp:// or additional theoretical insights become available.
tao.atmos.washington.edu/data/soicoads@f derived from

ship observations. The SOl is based on the mean sea level

pressure difference between Tahiti, French Polynesia, and Conclusions

Darwin, Australia (Tahiti-Darwin); the SOI represents the

atmospheric signature of a coupled ENSO oscillatory modelterative SSA is a new and promising method to fill gaps in
Many SOI data are missing, especially in the early part of thea considerable variety of geophysical records. The gaps may
record (1854-1880), which we reconstruct using our SSAbe distributed at random in space and time, or they may con-
gap-filling procedure. Our reconstructions are then com-tain patches of data missing in space, as well as windows
pared with the SOI time series from the Climatic Researchof data missing in time. The accuracy and reliability of the
Unit (CRU) at East Anglia University (1866—1997), available method depend on the pattern of missing data, the relative
athttp://www.cru.uea.ac.uk/ftpdata/soi.dahd based on the length of the gaps with respect to the total length of the data
Ropelewski and Jones (1987) data. set, and the fraction of variance captured by robust, oscilla-

First, three data points with unreasonably large valuegory modes.
(greater than 5) have been flagged as missing in the earlier The method’s performance has to be assessed and opti-
part of the COADS data set. Then we tried different gap fill- mized in general through cross-validation or through com-
ing strategies. First, we applied SSA reconstruction to theparison with independent data. Further research is required
COADS data, but with the cross-validation error computedin order to find optimal cross-validation algorithms for data
against CRU data, wherever it overlaps with missing COADSsets with complex spatio-temporal modes and patterns of
data, which is mainly during the 1870-1880 time interval. missing data. Detailed comparison with other existing meth-
The minimum of the corresponding rms error occurs for aods is beyond the scope of this paper, and its results may
window M*=60 andK *=2 modes. The filled-in time series depend on the properties of the data set under consideration.

COADS-MSSA

Index

3.3 Comparison of different methods
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The SOI example in Sect. 3.3 involved extension of theJohns, C., Nychka, D., Kittel, T., and Daly, C.: Infilling sparse
time series into the past. It is clear, though, that our iterative records of spatial fields, J. Amer. Stat. Assoc., 98(464), 796-806,
SSA gap filling may be used just as well for extending the 2003.
series into the future, i.e. for prediction. We plan to explore Kaplan, A., Kushnir, Y., Cane, M., and Blumenthal, M.: Reduced
this aspect of the method’s capabilities further, comparing SPace optimal analysis for historic data sets: 136 years of At-
it with other statistical or mixed statistic-dynamical forecast 2ntic sea-surface temperatures, J. Geophys. Res., 102, 27835~

. . . 27860, 1997.
methods (Ghil and Jiang, 1998; Kondrashov et al., 2005D). Kondrashov, D., Feliks, Y., and Ghil, M.: Oscillatory modes of ex-

. tended Nile River records (A.D. 622-1922), Geophys. Res. Lett.,
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original suggestion of using the Toeplitz form of the lag-covariance : ;
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see Kondrashov et al. (2005a) for details. We are also grateful to anc ncl)'rr:a r r' " pe; ra gna y;ls Oﬁ@&;ﬂg; gle;ré%ra ed by
Y. Shprits for providing the CRRES measurements and for useful onlinear processes, Rev. Seopnys., 27, ’ )
; . . . Mann, M. E., Bradley, R. S., and Hughes M. K.: Global-scale tem-
discussions. This work is supported by NSF grant ATM00-81231. . - )
perature patterns and climate forcing over the past centuries, Na-

ture, 392, 779-787, 1998.

Mendelssohn, R., Schwing, F. B., and Bograd S. J.: Spatial
structure of subsurface temperature variability in the Califor-
nia Current, 1950-1993, J. Geophys. Res., 108(C3), 3093,
doi:10.1029/2002JC001568, 2003.

Popper, W.: The Cairo Nilometer, 269 pp., University of California

Allen, M. R. and Robertson, A. W.: Distinguishing modulated oscil-  Press, Berkeley/Los An_geles, 1951.
lations from coloured noise in multivariate datasets, Clim. Dyn., Réynolds, R. W. and Smith, T. M.: Improved global sea-surface
12, 775-784, 1996. temperature analysis using optimum interpolation, J. Climate, 7,

Alvera-Azcrate, A., Barth, A., Rixen, M., and Beckers, J. M.: Re- 929_948_' 1994. ) -
construction of incomplete oceanographic data sets using empiriRopelewski, C. F. and P. D. Jones: An extension of the Tahiti-
cal orthogonal functions: applications to the Adriatic Sea surface Darwin Southern Oscillation Index, Mon. Wea. Rev., 115, 2161~

temperature, Ocean Modelling, 9, 325-346, 2005. 216'_5’ 1987. ) ] ) o
Beckers, J. and Rixen, M.: EOF calculations and data filling from Schneider, T.: Analysis of incomplete climate data: Estimation of

incomplete oceanographic data sets, J. Atmos. Ocean. Technol., Méan values and covariance matrices and imputation of missing

Edited by: M. Thiel
Reviewed by: A. Y. Schumann and another referee

References

20, 18391856, 2003. values, J. Climate, 14, 853-871, 2001.
Broomhead, D. S. and King, G. P.: Extracting qualitative dynamicsSchquI‘hamer, D.: Singular spectrum analysis for time series with
from experimental data, Physica D, 20, 217—236, 1986. missing data, Geophys. Res. Lett., 28(16), 3187-3190, 2001.

Colebrook, J. M.: Continuous plankton records: zooplankton andSchulz, M. and Mudelsee, M.: REDFIT: estimating red-noise spec-
environment, North-East Atlantic and North Sea, 1948-1975, tra directly from unevenly spaced paleclimatic time series, Com-
Oceanol. Acta, 1, 9-23, 1978. puters and Geosciences, 28, 421-426, 2002.

Dettinger, M. D., Ghil, M., Strong, C. M., Weibel, W., and Yiou, Sherwood, S.: Climatic signals from station arrays with missing
P.: Software expedites singular-spectrum analysis of noisy time ~data, and an application to winds, J. Geophys. Res., 105, 29 489

series, Eos, Trans. American Geophysical Union, v. 76(2), p. 12, 2_9 500, 2000. )
14, 21, 1995. Smith, T. M., Reynolds R. W., Livezey R. E., and Stokes D. C.:

Foster, G.: Wavelets for period analysis of unevenly sampled time Reconstruction of historical sea-surface temperatures using em-
series, Astronom. J., 112, 1709-1729, 1996. pirical orthogonal functions, J. Climate, 9, 1403-1420, 1996.

Fraedrich, K.: Estimating the dimensions of weather and climateToussoun, O.: Mimoire sur I'histoire du Nil, Némoires de I'nstitut
attractors, J. Atmos. Sci., 43, 419-432, 1986. d’Egypte, 18, pp. 366-404, Cairo, 192S.

Ghil, M. and Vautard, R.: Interdecadal oscillations and the warming Varadi, F., Pap, J. M., Ulrich, R. K., Bertello, L., and Henney, C. J.:

trend in global temperature time series, Nature, 350, 324-327, Searching for signal in noise by random-lag singular spectrum
1991, analysis, Astrophys. J., 526, 1052—-1061, 1999.

Ghil, M. and Jiang, N.. Recent forecast skill for the EI Vautard, R.and Ghil, M.: Singular spectrum analysis in nonlinear

Nifio/Southern Oscillation, Geophys. Res. Lett., 25, 171-174, dynamics, with applications to paleoclimatic time series, Physica
1998. D, 35, 395-424, 1989.

Ghil, M., Allen, R. M., Dettinger, M. D., Ide, K., Kondrashov, D., Woodruff, S. D., Slutz, R. J., Jenne, R. L, and Steurer, P. M.: A
et al.: Advanced spectral methods for climatic time series, Rev. COMprehensive ocean-atmosphere data set, Bull. Amer. Meteor.
Geophys. 40(1), 3.1-3.41, doi:10.1029/2000RG000092, 2002,  SOC., 68, 1239-1250, 1987.

www.nonlin-processes-geophys.net/13/151/2006/ Nonlin. Processes Geophys., 15918066



