
Nonlin. Processes Geophys., 13, 151–159, 2006
www.nonlin-processes-geophys.net/13/151/2006/
© Author(s) 2006. This work is licensed
under a Creative Commons License.

Nonlinear Processes
in Geophysics

Spatio-temporal filling of missing points in geophysical data sets

D. Kondrashov1 and M. Ghil 1,2

1Department of Atmospheric and Oceanic Sciences and Institute of Geophysics and Planetary Physics, University of
California, Los Angeles, USA
2Department of Geosciences and Laboratoire de Mét́eorologie Dynamique (CNRS and IPSL), Ecole Normale Supérieure,
Paris, France

Received: 16 January 2006 – Revised: 6 March 2006 – Accepted: 17 March 2006 – Published: 24 May 2006

Abstract. The majority of data sets in the geosciences are
obtained from observations and measurements of natural sys-
tems, rather than in the laboratory. These data sets are of-
ten full of gaps, due to to the conditions under which the
measurements are made. Missing data give rise to various
problems, for example in spectral estimation or in specify-
ing boundary conditions for numerical models. Here we use
Singular Spectrum Analysis (SSA) to fill the gaps in seve-
ral types of data sets. For a univariate record, our proce-
dure uses only temporal correlations in the data to fill in
the missing points. For a multivariate record, multi-channel
SSA (M-SSA) takes advantage of both spatial and tempo-
ral correlations. We iteratively produce estimates of missing
data points, which are then used to compute a self-consistent
lag-covariance matrix; cross-validation allows us to optimize
the window width and number of dominant SSA or M-SSA
modes to fill the gaps. The optimal parameters of our pro-
cedure depend on the distribution in time (and space) of the
missing data, as well as on the variance distribution between
oscillatory modes and noise. The algorithm is demonstrated
on synthetic examples, as well as on data sets from oceanog-
raphy, hydrology, atmospheric sciences, and space physics:
global sea-surface temperature, flood-water records of the
Nile River, the Southern Oscillation Index (SOI), and satel-
lite observations of relativistic electrons.

1 Introduction

Missing data are a common problem for geophysical data
sets. This is always the case for geological and paleoclima-
tological data from the remote past, as well as for histori-
cal records, such as proxy data on precipitation, temperature
or hydrological information. For instrumental data sets ob-
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tained in modern times, the uneven spatio-temporal coverage
arises because of the way the measurements are obtained,
e.g. in the case of satellite or ship measurements. Depending
on the type of instrumentation, remote sensing is influenced
by atmospheric conditions and can be hampered by clouds,
aerosols, or heavy precipitation. For example, sea-surface
temperature (SST) measurements in the infrared provide a
relatively well-sampled data set for the global ocean, but the
temporal coverage at a given point may be as low as 30%
because of cloud cover. Instrument malfunction in extreme
weather conditions, such as hurricanes, tornadoes or floods,
may also give rise to data gaps.

Missing data are, in particular, a source of problems in cli-
mate research, e.g., in the analysis and modeling of spatio-
temporal variability. Standard spectral analysis tools re-
quire regular sampling, although some methods do allow un-
even sampling (MacDonald, 1989; Foster, 1996; Schultz and
Mudelsee, 2002). Recently, Schoellhamer (2001) suggested
a modified singular-spectrum analysis (SSA) algorithm to
obtain spectral estimates from records with a large fraction
of missing data. Analyzing the full extent of the climate time
series, with the missing points filled in, allows for greater ac-
curacy and better significance testing in the spectral analysis.
The full record can also improve our knowledge on the evo-
lution of the oscillatory modes in the gaps, and provide new
information on changes in climate.

Gap-filling methods can be model-based, with parameter-
dependent models, as opposed to relying on the data alone
and being nonparametric. Classical parametric methods are
based on “optimal interpolation” (OI) (Reynolds and Smith,
1994). Smith et al.’s (1996) method implements a least-
square fit of empirical orthogonal functions (EOFs) to the
observed data and can be considered as a variant of OI. More
advanced approaches include Kalman filtering and optimal
smoothing in EOF space (Kaplan et al., 1997); in the latter,
a linear model is set up to describe the evolution in time of
the data fields. All these methods require the use of a priori
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information about the spatio-temporal covariance structure
of the data set and of the errors therein. The parameters on
which this structure depends, and/or the EOFs to be used in
the reconstruction, are then calculated from time intervals of
dense data coverage.

Schneider’s (2001) parametric method uses expectation
maximization (EM) and ridge regression to iteratively esti-
mate the mean and covariance matrix of the analyzed data
set. At each iteration step, missing values are filled in by
regularized regression of variables with missing values on
the variables with available values. Then the mean and co-
variance matrix are updated using all the data. Schneider’s
(2001) method has shown some improvement over tradi-
tional OI (Smith et al., 1996; Kaplan et al., 1997; Mann et al.,
1998) in estimating missing values for simulated SST data.
However, this EM-based method, as well as the geostatisti-
cal filling-in procedure of Johns et al. (2003), rely on the
gaussianity of the data, as well as on the randomness in time
of the missing values. Sherwood’s (2001) iterative universal
kriging method also employs the EM approach to fit “sig-
nal” patterns that are specified a priori. State-space methods
(Mendelssohn et al., 2003) use the Kalman filter to estimate
the trend, seasonal and noise components of a given time se-
ries, with gaps fitted by the specified a priori model.

Recently, Beckers and Rixen (2003) proposed a nonpara-
metric, EOF-based interpolation method to fill in missing
data. Both the EOFs and the missing data are iteratively esti-
mated, thus removing the need for a priori assumptions about
the spatial form and parameters of the covariance matrix.
Cross-validation is used to determine the optimum number
of leading EOFs to be retained for filling. Alvera-Azcárate
et al. (2005) applied this method to satellite-derived SSTs of
the Adriatic and showed it to be much faster than OI, while
being comparable in accuracy. usually account for the low-
frequency and large-scale variability, it is natural to use them
to fill the missing data. This spatial-EOF–based reconstruc-
tion, as well as Schneider’s (2001) EM method, however,
utilize spatial correlations only, and are therefore less well
suited to deal with data sets that exhibit relatively long, con-
tinuous gaps.

In this work we apply a novel, iterative form of SSA
for both univariate and multi-channel SSA (M-SSA). Our
method utilizes temporal, as well as spatial correlations to
fill in missing points; it thus generalizes Beckers and Rixen’s
(2003) spatial-EOF–based reconstruction method and is par-
ticularly useful for data sets that exhibit relatively long, con-
tinuous gaps. Section 2 describes SSA and our iterative
method to fill in the missing data. In Sect. 3 we use first
synthetic time series, with and without noise, and then four
actual data sets from distinct areas of the geosciences, to
demonstrate the capabilities of SSA gap filling. Conclusions
appear in Sect. 4.

2 Gap filling by iterative SSA

2.1 SSA review and notation

SSA is a data-adaptive, nonparametric method based on em-
bedding a time series{X(t):t=1,N} in a vector space of di-
mensionM. The SSA method proceeds by diagonalizing the
M×M lag-covariance matrixCX of X(t) to obtain spectral
information on the time series (Colebrook, 1978; Fraedrich,
1986). The matrixCX can be estimated directly from the data
as a Toeplitz matrix with constant diagonals, i.e., its entries
cij depend only on the lag|i−j | (Vautard and Ghil, 1989):

cij =
1

N − |i − j |

N−|i−j |∑
t=1

X(t)X(t + |i − j |). (1)

Broomhead and King (1986) proposed computingCX by us-
ing theN ′

×M trajectory matrixD that is formed byM lag-
shifted copies ofX(t), which areN ′

=N−M+1 long; then

CX =
1

N ′
DtD. (2)

Both methods of computingCX are implemented in the SSA-
MTM Toolkit (Dettinger et al., 1995; Ghil et al., 2002; see
http://www.atmos.ucla.edu/tcd/ssa).

The eigenvectorsEk of lag-covariance matrixCX have
been called temporal EOFs by Fraedrich (1986) and by Vau-
tard and Ghil (1989). The eigenvaluesλk of CX account for
the partial variance in the directionEk and the sum of the
eigenvalues, i.e., the trace ofCX, gives the total variance of
the original time seriesX(t).

Projecting the time series onto each EOF yields the corre-
sponding principal components (PCs)Ak:

Ak(t) =

M∑
j=1

X(t + j − 1)Ek(j). (3)

An oscillatory mode is characterized by a pair of nearly equal
SSA eigenvalues and periodic eigenvectors that correspond
to the same frequency. The window widthM determines the
longest periodicity captured by SSA. Signal-to-noise separa-
tion can be obtained by merely inspecting the slope break in
a “scree diagram” of eigenvaluesλk or singular valuesλ1/2

k

vs. k. A Monte-Carlo test (Allen and Robertson, 1996) is
available to ascertain statistical significance of the oscilla-
tions detected by SSA or M-SSA.

The entire time series or parts of it that correspond to
trends, oscillatory modes or noise can be reconstructed by
using linear combinations of these principal components and
EOFs, which provide the reconstructed components (RCs)
Rk:

RK(t) =
1

Mt

∑
k∈K

Ut∑
j=Lt

Ak(t − j + 1)Ek(j); (4)
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hereK is the set of EOFs on which the reconstruction is
based. The values of the normalization factorMt , as well as
of the lower and upper bound of summationLt andUt , differ
between the central part of the time series and its endpoints
(Ghil and Vautard, 1991; Ghil et al., 2002).

2.2 Iterative gap filling

For a univariate time series, our SSA gap filling procedure
utilizes temporal correlations in the data to fill in the miss-
ing points. For a multivariate data set, gap filling by M-SSA
takes advantage of both spatial and temporal correlations. In
either case: (i) we iteratively produce estimates of missing
data points, which are then used to compute a self-consistent
lag-covariance matrixCX and its EOFsEk; and (ii) we use
cross-validation to optimize the window widthM and num-
ber of dominant SSA modes to fill the gaps.

For many geophysical records, a few leading EOFs cor-
respond to the record’s dominant oscillatory and/or trend
modes, while the rest is noise (Ghil et al., 2002). Using this
idea, we first center the original data by computing the un-
biased value of the mean and set the missing-data values to
zero. We start the inner-loop iteration by computing the lead-
ing EOFE1 of the centered, zero-padded record. Then we
perform the SSA algorithm again on the new time series, in
which the RCR1 corresponding to that EOF alone was used
to obtain nonzero values in place of the missing points and
correct the record’s mean, the covariance matrix and EOFs.
The reconstruction of the missing data is repeated with a new
estimate ofR1 and tested against the previous one, until a
convergence test has been satisfied. Next, we perform outer-
loop iterations by adding a second EOFE2 for reconstruc-
tion, starting from the solution with data filled in byR1, and
repeat the inner iteration.

To understand the flow of information from the
known to the missing data, it is useful to consider
SSA gap filling in terms of applying iteratively finite-
impulse response filters (FIR). Each reconstruction filter
f=(f−M+1, f−M , ...f−1, f0, f1, ....fM−1) is symmetric, has
a length of 2M − 1, and represents the combined influence
of the EOFs used so far in the outer-loop iteration (Varadi et
al., 1999). These SSA-based filters are data adaptive. The
reconstructed time seriesX∗(t) can be viewed as the original
time seriesX(t) filtered with the weightsfn:

X∗(i) =

M−1∑
n=−(M−1)

X(i + n)fn. (5)

For gap filling, at each inner iteration, the values ofX at miss-
ing points are replaced with estimatedX∗ values. Then, the
EOFs and the filter coefficientsfn are recalculated, and the
whole procedure is repeated until a convergence criterion is
met for X∗ at missing points. Then the next EOF is added
in the reconstruction, and so on. For a continuous gap, Eq.
(5) shows that missing data are filled with information be-
ing transfered inside the gap from adjacent portions of the

time series. Outer-loop iterations are stopped by optimizing
a robust-estimation criterion described further below.

Beckers and Rixen (2003) have noted that, for their spa-
tial EOF reconstruction method, both the shape of the EOFs
and their variance will change so as to diminish the bias in-
troduced by zeroing out the missing data. For example, the
variance of the dominant modes will usually increase, while
that of the noise modes will decrease. In addition, the dom-
inant EOFs will rotate as well, to remove the contribution
from “noise” modes. This increased separation of signal
and noise accompanied the convergence of their algorithm.
The same phenomenon was observed to occur for our SSA
gap filling, as both procedures are cast similarly in terms of
finding eigenvectors of an iterated sequence of covariance
matrices; the only difference is that we now deal with tem-
poral (spatio-temporal for M-SSA) signal and noise modes.
The (spatio-) temporal gap-filling algorithm proposed here
always converges in our experience, for both synthetic and
real-data examples.

The quality of the reconstruction, e.g. the closeness of its
oscillatory and/or trend modes to those of the original, gappy
time series, will of course depend on the amount of noise,
as well as on the number and distribution of missing points.
As the amount of noise increases, the significant EOFs will
be “polluted” more, making it more difficult to remove the
“noise” contributions. Increasing the number of missing data
yields the same effect, with the worst-case scenario being, in
our experience, continuous gaps. Even in this case, the pe-
riod of the oscillation can be determined correctly, provided
the gap is not larger than any significant spatio-temporal cor-
relations present in the data, i.e. the time period of the slow-
est oscillatory mode. In the latter, extreme case, reconstruc-
tion in such a gap can no longer be trusted, while the phase of
the reconstructed seriesX∗(t) in continuous gaps is always
less reliable than the period.

Data sets with “red” spectra, where noisy modes con-
tribute significantly to or even dominate the spectrum’s low-
frequencies, present special challenges. In such cases it may
be beneficial to skip the “noisy” modes associated with low
frequencies and large amplitudes and use only oscillatory
ones in a higher-frequency band; this strategy, though, was
not thouroghly tested, and further tests are left for future re-
search. The quality of the filled-in data can be evaluated by
cross-validation experiments (see below) or by verification
against independent data, if possible. The latter approach
was tried for Tropical Pacific data in Sect. 3.3 below.

The optimum SSA parameters for gap filling in a given
time series are found from a set of cross-validation experi-
ments: for each such experiment, a fixed fraction of avail-
able data is left out, and the root-mean-square (rms) error in
reconstruction is computed as a function of the numberK∗ of
EOFs retained and the SSA window sizeM. The global min-
imum in error, averaged over all experiments, corresponds to
the required optimum, and provides an estimate of the actual
error in the reconstruced data setX∗(t). For the examples
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Fig. 1. Gap filling of a time series with several identical oscillatory
spells (as indicated; in each case only two bursts are shown) and
gaps over the interval I: 20≤t≤40 (panel a), and II: 115≤t≤135
(panels b–d); blue line is the original data, red line is the filled-
in data (nondimensional units). (e) SSA spectrum of signal with
four oscillatory spells (panel d) and windowM=140; red diamonds
show SSA eigenvalues, plotted against the dominant frequency as-
sociated with the corresponding EOFs; black dots with error bars
are the mean and confidence intervals corresponding to the 2.5%
and 97.5% percentiles of a Monte Carlo significance test against
red noise (Allen and Robertson, 1996).

presented in Section 3 we used 5% of available data and 30
experiments (unless specified otherwise), in order to obtain
a smooth estimate of the cross-validation curve and accurate
estimates of optimum SSA parameters, with sufficient statis-
tical confidence. We will show that this procedure provides
reliable estimates of the optimal parametersK∗ andM when
the pattern of missing data is random, though some issues
remain in the case of continuous gaps.

To obtain the actual reconstruction, we repeat the inner-
and outer-loop iterations, using the optimal parameters ob-
tained by cross-validation, but with all the available points
now being included in the process.

3 Results

The original idea for using SSA in filling data gaps (R. Vau-
tard, pers. commun., 1992) was based on the fact that, in the
Toeplitz form of the lag-covariance matrixCX (Vautard and
Ghil, 1989), the constant diagonalscij depend only on the
lag |i−j | and can thus be easily computed from the available
data pairs alone. In practice, we have used the Broomhead
and King (1986) method for constructingCX from the trajec-
tory matrix for all our tests herein. We did so mainly because,
in the case of multivariate data, this method automatically
includes Beckers and Rixen’s (2003) spatial-EOF–based re-

construction method. The latter corresponds toM=1 in our
M-SSA gap filling method and we compare the two cases,
of M=1 andM>1, in Sect. 3.2, for global SST data sets.
We also carried out a few tests with the Toeplitz form ofCX;
these tests did not show any significant difference in our re-
sults, though more research can be done on the advisability
of either form in various situations.

3.1 Univariate synthetic data

First, we consider a time series consisting of a sinusoidal
carrier signal with several periodic, sawtooth-shaped bursts
and with synthetic gaps to demonstrate the method’s capa-
bilities and limitations on a pure signal without noise. The
gap in Fig. 1a lies within the slowly decaying phase of the
first sawtooth spell of a time series composed of two such
spells, while the gap in Figs. 1b–d masks the rapid excita-
tion of the second spell. The period of the carrier signal and
the gap size are 5 and 20 sampling units, respectively. The
time series plotted in Figs. 1a,b is 230 points long in Figs.
1a,b, while the three and four spells of the complete signals
in Figs. 1c,d correspond to 345 and 460 points, respectively.

The agreement between the data set filled in by our method
and the original time series is almost perfect in Fig. 1a, while
in Fig. 1b the period of the signal is captured very well, but
not the timing, nor the sharpness of the second spell’s exci-
tation. The cross-validated results for choosing SSA param-
eters are quite similar in both cases (not shown): the opti-
mum number of modes is equal to four; the optimum window
M∗, though, is equal to 10 sampling intervals for the gap in
Fig. 1a, and to 20 for Fig. 1b.

The poorer reconstruction result for gap II in Fig. 1b is not
surprising, as the time series with two bursts only is too short
to use an SSA window that is wide enough to capture the
lag correlations required to reconstruct the gap-covering ex-
citation phase. When the number of oscillatory bursts in time
series increases, the reconstruction dramatically improves, as
observed in Figs. 1c, d. The optimum SSA window also be-
comes larger, reflecting the long-term periodicity of bursting,
and is equal to 140 points for the reconstructions in Figs. 1c,
d.

The Monte-Carlo SSA spectrum for the full time series in
Fig. 1d (blue line) is shown in Fig. 1e. There is a highly sig-
nificant SSA pair representing the main oscillatory mode at
the correct frequency of 0.2 unit/cycle, surrounded by a few
other pairs, apparently representing the shape of the modu-
lated oscillations’ envelope.

For gap filling in Figs. 1b–d we usedK∗
=20, which gave

the best results and corresponds to the large number of modes
necessary to capture the modulations of the spells.

Next, we consider two time series; the first one is an an-
harmonic, nonlinear oscillations(t). The main period of the
oscillation is 40 sampling units, and it is both amplitude- and
phase-modulated with periods of 200 and 120 units, respec-
tively. The length of the time series is 600 points. The second
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time seriesx(t) is the signals(t) contaminated by additive
white noisew=w(t), with a normal distribution and a stan-
dard deviation equal to one:

x(t) = s(t) + w,

s(t) = sin(
2π

200
t) · cos(

2π

40
t +

π

2
sin

2π

120
t). (6)

We apply our SSA gap filling method to both thes(t)
and x(t) time series and for intervals I={t :80≤t≤120} and
II={t :250≤t≤300}, which correspond to two distinct phases
of the nonlinear oscillation.

The filled-in data, shown by the heavy red line in Figs. 2a–
d, are in very good agreement with the oscillatory signals(t)
in the gaps, both when noise is present (Figs. 2c, d) and with-
out it (Figs. 2a, b). Note that the “noise” modes present inx(t)
have been discarded in the reconstruction (Figs. 2c, d). The
Monte-Carlo SSA spectra ofx(t) in Fig. 2f show six signifi-
cant components that correspond to the three pairs associated
with the periods 40, 120 and 200; together they capture the
nonlinear oscillation. The optimum SSA parameters for gap
filling in x(t) are thus suggested by the SSA analysis to be
M∗

=200, required to capture the longest period present in
the time series, andK∗

= 6. This choice is confirmed by
the cross-validation in Fig. 2e, which yields a minimum er-
ror for M∗

=200 andK∗
=6; these values turned to be the

best choice for gap filling ins(t) as well. The estimate of
rms error in reconstruction from the cross-validation is very
close to its expected “true” value, equal to unity, which is the
standard deviation of white noise in Eq. (6). We tried gaps in
other places of the time series, and obtained results similar to
those shown in Figs. 2a–d.

3.2 Multivariate geophysical data

As a first multivariate example, we apply M-SSA gap fill-
ing to the global data set of monthly SSTs from the Inter-
national Research Institute for Climate and Society (IRI) for
1950–2004, from 30◦ S to 60◦ N, on a 10◦-latitude by 10◦-
longitude grid, with a total of 660·237=156 420 data points.
We have randomly removed about 70% of the data, in a man-
ner that is white in time and with spatial correlations that are
consistent with the structure of the actually missing SST ob-
servations; the fraction of missing observations at each grid
point is shown in Fig. 3a. We then applied our iterative gap
filling procedure to fill in the missing data, and computed
both estimated errors from cross-validation experiments and
actual errors in the reconstructed data set.

The cross-validation results in Fig. 3b indicate significant
reduction of the rms error when using an optimum window
of M=3 vs.M=1; the latter corresponds to the spatial EOF
reconstruction method of Beckers and Rixen (2003). This
cross-validation result is verified in Figs. 3c, d by comparing
relative error normalized by the standard deviation at each
grid point; the errors are indeed much smaller forM=3. The
pattern of data missing at random in observed SSTs favors
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Fig. 2. Gap filling of (a, b) a nonlinear oscillatory signals(t), and
(c, d)of its noise-contaminated versionx(t) (black line); see Eq. (6),
units are nondimensional. Blue line is the oscillatory component
s(t), red is the filled-in data. Gap I is over the interval 80≤t≤120,
while gap II is over 250≤t≤300. (e) Cross-validation results for
filling gap II in x(t); blue, green and red lines are for SSA windows
of M=160, 180 and 200, respectively. (f) Monte-Carlo SSA spectra
of x(t) with windowM=200 (see caption to Fig. 1).

small M-SSA windows as optimal in reconstruction; we shall
see that much larger values ofM are optimal for the substan-
tial gaps found in the Nile River and electron flux data sets
discussed below.

The influence of the spatial pattern of large signal ampli-
tude on the quality of the reconstruction is evident in com-
paring Fig. 3d with Fig. 3a: the relative error is uniformly
small in the Central and Eastern Tropical Pacific, where
the El-Niño/Southern-Oscillation (ENSO) mode dominates
seasonal-to-interannual climate variability, despite the low
density of data available over part of this area. However, the
signal-to-noise ratio is small in the Western Pacific, and the
relative error there is larger, despite a comparable fraction of
missing data. Estimated errors from cross-validation and the
actual absolute errors in the filled-in data set are shown in
Fig. 3b by solid and dashed lines, respectively. The curves
in each pair are pretty close, thus confirming that the cross-
validation procedure provides a good estimate of errors in
this case. The rather small difference in absolute errors for
M=3 andM=5, despite the large variations in relative er-
rors observed in Figs. 3c, d forM=1 andM=3 is due to the
higher signal variance in the Eastern Tropical Pacific.

Our next multivariate example concerns the flood-water
records of the Nile River; see Fig. 4a. Several authors com-
piled the annual maxima and minima of the water level
recorded at nilometers in the Cairo area, in particular at
Rodah Island, from A.D. 622 to 1922 (Toussoun, 1925;
Popper, 1951). The large gaps in these records have been
caused by social and economic upheavals during Ottoman
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Fig. 3. Reconstruction of missing SST anomaly data for the 50-year-long monthly IRI data set.(a) Fraction of missing data (%);(b)
cross-validation results for choosing optimum M-SSA window and number of modes for filling of missing data. Dashed and solid lines are
the actual and estimated errors, respectively; blue, black and red colors are for windows ofM=1, M=3, andM=5, respectively.(c, d)
Root-mean-square (rms) SST error between the actual and reconstructed SST fields, computed and normalized by the standard deviation at
each grid point: (c) for M-SSA windowM=1 and number of modesK∗

=10; (d) for optimum M-SSA windowM∗
=3 andK∗

=50.

rule. Analyzing a complete 1300-yr record of Nile River
floods, with the missing points filled in by iterative M-SSA,
allowed Kondrashov et al. (2005a) to study the evolution of
the record’s regularities over the most recent 450 years (A.D.
1471–1922). In particular, these authors found evidence for
a novel source of interannual climatic variability for tropi-
cal East Africa, namely changes in the North Atlantic ocean
circulation.

Given the fact that high- and low-water records are not
always missing the same year, both records were used in fill-
ing the gaps in either one (Fig. 4b). Using theK∗

=9 leading
EOFs and a window ofM=100 in the two-channel SSA of
high- and low-water levels minimized the estimation error of
50 independent cross-validation experiments. Independent
information on the signal-to-noise separation is obtained by
inspecting the slope break in the “scree diagram” of SSA
eigenvalues for the optimum windowM∗

=100 (Fig. 4c).
There is clear separation between the nine “signal” EOFs
that have been used in the reconstruction and the remaining
modes, which represent the discarded “noise.”

Our third and last multivariate example is provided by
daily measurements of high-energy electron fluxes in Earth’s
inner magnetosphere (Fig. 5a) from the Combined Release
and Radiation Effects Satellite (CRRES). These observa-
tions are 100-day long, and have a total of 100·30=3000

data points, with missing data mainly in the first 80 days
of record. In many magnetospheric observations, gaps are
present across all the spatial channels, as seen in Fig. 5a
on the 64th day; such gaps occur when satellite instruments
switch into a different operational mode, or fail due to space
hazards. Space physicists are interested in the build-up and
relaxation of electron fluxes that coincide with strong, recur-
ring geomagnetic disturbances coming from the Sun.

We tested the ability of our algorithm to fill the real gap, as
well as three synthetic, continuous gaps of 1 day, 5 day and
3 days, respectively, which we added during strong magnetic
storms (Fig. 5b). The reconstruction error for synthetic gaps,
presented in Fig. 6, shows that the optimum M-SSA window
width and number of modes is equal toM∗

=30 andK∗
=19,

respectively.
The agreement between the reconstructed and the original

data in Fig. 5c is quite good. The decay of electron fluxes
after the strong magnetic storm near the 30th day of obser-
vations is reconstructed well, although it is not as steep as
in the observations. Of course, one should bear in mind that
the filled-in data lack noise, and reconstruction cannot equal
exactly the observed data.
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Fig. 4. Extended records (A.D. 622–1922) of low-water (solid black
curve) and high-water (solid red) levels:(a) original data; and(b)
data with missing points filled in by M-SSA. The gap filling uses
a window ofM=100 yr and two channels (the low- and high-water
levels). The time series have been centered on the relevant mean
and the amplitudes have been normalized by the standard devia-
tion of the original time series (excluding missing data points). The
mean of the high-water record is 907 cm, while it is 288 cm for the
low-water record; the corresponding values for the variances are
6586 cm2 for the high-water record and 10 359 cm2 for the low-
water record. (Panels (a) and (b) reproduced fromKondrashov et
al., 2005a, by permission of the American Geophysical Union).(c)
M-SSA spectrum of filled Nile River records,M∗

=100 years. The
optimum numberK∗

=9 of modes corresponds to the break in the
slope of the M-SSA spectrum.

When continuous gaps are present at all spatial locations
over some time interval, using a window widthM>1 allows
one to reduce the reconstruction error significantly in com-
parison with purely spatial EOF reconstruction (M=1). In
the latter case, missing data in the gaps are replaced with a
constant time-mean value at a particular grid point. In con-
trast, forM>1, cross-channel, time-lagged spatial correla-
tions are taken into account. This feature of the method en-
sures temporal variations and lower rms errors in the gaps.

Some challenges do remain in using cross-validation to
choose optimum SSA parameters for the case of continuous
gaps in multivariate data, as well as for time series with “red”
temporal spectra (see Sect. 2.2). For example, the true recon-
struction errors forM=1 will not depend on the number of
EOFs retained, as shown in Fig. 6. Randomly deleting points
for cross-validation may, however, not capture correctly the
actual error level in continuous gaps. Filled-in data at ran-
domly chosen points, at a given time moment, will take into
account spatial correlations from existing values at other grid
points, leading to the rms error being reduced as more signal
modes are added in the reconstruction. Using gappy time in-
tervals for cross-validation improves the estimate of actual
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Fig. 5. CRRES satellite measurements of 1MeV high-energy elec-
tron fluxes (sr·MeV·s·cm2)−1 in Earth’s radiation belts as a func-
tion of L-shell: (a) original data with missing values in white;(b)
original data with a few synthetic gaps added; and(c) M-SSA filled-
in. The L-shell parameter measures distance to the intersection be-
tween a magnetic-dipole field line and the equatorial plane in Earth
radii; it indicates how far trapped electrons are from the Earth.
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error in our experience. Ultimately, the choice in how cross-
validation is done should probably reflect the pattern of miss-
ing points in the data set. If points are missing at random
in time and space, then artificially deleting points for cross-
validation in the same manner may be both easy and optimal,
while for other, more coherent patterns of missing data, mix-
ing points deleted in gaps and at random could be the best
choice.
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Fig. 7. Reconstruction of pre-1880 SOI time series. Different
methods are applied to the COADS data set, with or without CRU
data as well: original COADS data (asterisks), CRU SOI (red line);
filled-in COADS: with SSA conditioned on CRU (black dashed
line), with SSA of COADS data only (blue line), with M-SSA us-
ing jointly the COADS and CRU data (solid magenta); and recon-
structed CRU with optimal M-SSA parameters (solid black).

3.3 Comparison of different methods

To compare the performance of our iterative SSA method
with other ways of filling gaps in time series, we consider
for simplicity a univariate data set. This is provided by
the monthly values of the Southern Oscillation Index (SOI)
for 1854–1997, from the Comprehensive Ocean-Atmosphere
Data Set (COADS; Woodruff, 1987), available fromhttp://
tao.atmos.washington.edu/data/soicoads2/and derived from
ship observations. The SOI is based on the mean sea level
pressure difference between Tahiti, French Polynesia, and
Darwin, Australia (Tahiti-Darwin); the SOI represents the
atmospheric signature of a coupled ENSO oscillatory mode.
Many SOI data are missing, especially in the early part of the
record (1854–1880), which we reconstruct using our SSA
gap-filling procedure. Our reconstructions are then com-
pared with the SOI time series from the Climatic Research
Unit (CRU) at East Anglia University (1866–1997), available
athttp://www.cru.uea.ac.uk/ftpdata/soi.dat, and based on the
Ropelewski and Jones (1987) data.

First, three data points with unreasonably large values
(greater than 5) have been flagged as missing in the earlier
part of the COADS data set. Then we tried different gap fill-
ing strategies. First, we applied SSA reconstruction to the
COADS data, but with the cross-validation error computed
against CRU data, wherever it overlaps with missing COADS
data, which is mainly during the 1870–1880 time interval.
The minimum of the corresponding rms error occurs for a
windowM∗

=60 andK∗
=2 modes. The filled-in time series

with these parameters is shown in Fig. 7 as a black dashed
line.

Next we applied regular SSA reconstruction to the
COADS data alone, as in the previous examples of Sects. 3.1
and 3.2. The minimum cross-validation error corresponds in
this case to a windowM∗

=100 andK∗
=12 modes; the re-

constructed data is shown by the blue line. Finally, we use the
CRU and COADS time series together, and applied M-SSA
reconstruction to take advantage of existing correlations be-
tween the two time series. Cross-validation yields a window
of M∗

=100 andK∗
=27 modes as optimal M-SSA param-

eters. The reconstruction is shown by the magenta line and
the corresponding “CRU channel” of the M-SSA reconstruc-
tion is shown by a black solid line; as expected, the latter
follows quite closely the raw CRU data, except for its being
somewhat smoother, due to the use ofK∗

=27 modes.
All the COADS reconstructions in pre-1870 years are

dominated by an oscillatory mode with a period of about 4 yr,
and are in fairly good agreement with each other. Signifi-
cant differences exist, however, during the years 1868–1878,
depending on whether and how we used the CRU data in
this time interval. Reconstruction with the minimum distance
from CRU time series passes quite far from the few existing
COADS points. On the other hand, the SSA reconstruction
using only the COADS data passes closer to these points, as
expected. The COADS reconstruction by two-channel M-
SSA lies somewhere in the middle.

Fairly different reconstructions can thus be obtained when
independent data sources exist, all of which may provide
consistent fits to some portion of the data that the sources
have in common. The question of which SOI reconstruction
should be trusted more can only be settled as additional data
or additional theoretical insights become available.

4 Conclusions

Iterative SSA is a new and promising method to fill gaps in
a considerable variety of geophysical records. The gaps may
be distributed at random in space and time, or they may con-
tain patches of data missing in space, as well as windows
of data missing in time. The accuracy and reliability of the
method depend on the pattern of missing data, the relative
length of the gaps with respect to the total length of the data
set, and the fraction of variance captured by robust, oscilla-
tory modes.

The method’s performance has to be assessed and opti-
mized in general through cross-validation or through com-
parison with independent data. Further research is required
in order to find optimal cross-validation algorithms for data
sets with complex spatio-temporal modes and patterns of
missing data. Detailed comparison with other existing meth-
ods is beyond the scope of this paper, and its results may
depend on the properties of the data set under consideration.
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The SOI example in Sect. 3.3 involved extension of the
time series into the past. It is clear, though, that our iterative
SSA gap filling may be used just as well for extending the
series into the future, i.e. for prediction. We plan to explore
this aspect of the method’s capabilities further, comparing
it with other statistical or mixed statistic-dynamical forecast
methods (Ghil and Jiang, 1998; Kondrashov et al., 2005b).
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