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Abstract

Gait anonymization for protecting a person’s identity against gait recognition while maintaining naturalness
is a new research direction. It can be used to protect the identity of people in videos to be posted on social
networks, in police videos that require redaction, and in videos obtained from surveillance systems. We have
developed a spatio-temporal generative adversarial network (ST-GAN) that uses random noise synthesized
in the gait distribution to generate anonymized gaits that appear natural. ST-GAN consists of a generator
that uses the original gait and random noise to generate an anonymized gait and two discriminators, a spatial
discriminator and a temporal discriminator, to estimate the probability that a gait is the original one and
not an anonymized one. Evaluation showed that the anonymized gaits generated with the proposed method
are more natural than those generated with an existing method and that the proposed method outperforms
the existing method in preventing gaits from being recognized by a gait recognition system.

Keywords: Gait; biometric feature; security; gait anonymization; deep learning

1. Introduction

The human gait, i.e., the manner and pattern of
walking, has become an important biometric trait
because it is unique to each person and can be rec-
ognized at a distance without physical contact or
the person’s cooperation [1]. However, a serious
privacy problem may arise if the person in a video
is identified unintentionally by a gait recognition
system because his/her personal information (e.g.,
name, address, occupation) may eventually be re-
vealed. Therefore, it is important to anonymize a
person’s gait in a video (while retaining its natural-
ness) before making the video publically available.
Gait anonymization has potential applications in
many areas where personal information should be
protected: uploading a selfie video to the Internet,
releasing a video of a criminal suspect to be shown
on television, and viewing of a video captured by a
surveillance system. Gait anonymization can also

Email addresses: dungtieu@nii.ac.jp (Ngoc-Dung T.
Tieu), nhhuy@nii.ac.jp (Huy H. Nguyen),
nshquoc@nii.ac.jp (Hoang-Quoc Nguyen-Son),
jyamagis@nii.ac.jp (Junichi Yamagishi),
iechizen@nii.ac.jp (Isao Echizen)

provide security to women who have been victims
of violence. Women who have experienced violence
are often afraid to speak out against the perpe-
trator because they do not want to be identified.
Anonymizing their gait may make them more con-
fident about speaking out on public media channels
(e.g., social networks, television).

Previous research on gait anonymization has in-
vestigated such methods as obscuring a person’s
body [2] and pixelating or blurring the body [3, 4,
5]. These methods generally focus on privacy pro-
tection and do not address the problem of retaining
gait naturalness. As far as we know, only one re-
ported method [1] is aimed at anonymizing gaits
so that they cannot be recognized while retaining
their naturalness. The model used by this method
anonymizes a gait by using a deep neural network
to add a noise gait to the original one. The noise
gait must be different from the original gait, have a
length sequence similar to that of the original gait,
and should have the same viewing angle as the orig-
inal gait. Since the use of a noise gait may reduce
anonymization success if the gait recognition sys-
tem confuses the original gait with the noise gait,
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choosing the optimal noise gait is not an easy task.
In addition, because the loss function for the nat-
uralness is not strong enough, the anonymized gait
looks less natural, especially for viewing angles of
0◦ and 180◦.

For application to: 

(1) internet publishing

(2) police video redaction

(3) human surveillance systems

.	.	. .	.	.

Gait Anonymization

Input

Output .	.	. .	.	.

Figure 1: The scenario of gait anonymization.

Recent advances in deep neural network technolo-
gies are being applied in a wide range of areas such
as image classification, image generation, and se-
curity authentication. Among the various methods
for image generation, ones using a generative ad-
versarial networks (GANs) have shown enormous
potential and have become widely used. GANs of
various forms have been applied to numerous tasks
such as image synthesis [6, 7], image editing [8, 9],
and super-resolution image generation [10, 11].
Motivated by the potential of GANs, we have

developed a novel method that addresses the two
problems mentioned above: confusion between orig-
inal gait and noise gait and weak loss function. In-
stead of using a noise gait, we use random noise
generated with the traditional generative adver-
sarial network [12] from a random vector sampled
from a Gaussian distribution. This network is pre-
trained before being assigned to the main network,
a spatio-temporal generative adversarial network
(ST-GAN), used to generate anonymized gaits that
appear natural. The ST-GAN consists of a gener-
ator and two discriminators. The generator uses
the original gait and the random noise to generate
an anonymized gait while the two discriminators, a
spatial discriminator and a temporal discriminator,
distinguish real gaits from generated ones.
We evaluated the performance of our method by

using the CASIA-B dataset [13] and two metrics

suggested by Tieu et al. [1], the success rate and
naturalness. We used two gait recognition systems
as black-box systems for measuring the success rate,
one by Zheng et al. [14] and one by Wu et al. [15].
The former was more rapid, with accuracy up to
89%; the latter was more robust, with accuracy
up to 98%. We conducted two tests for measur-
ing naturalness: subjective evaluation by human
volunteers and automatic evaluation by machine.
The success rate was higher and the naturalness of
the anonymized gaits was higher with the proposed
method.
The contributions of this work are threefold:

• The proposed ST-GAN model anonymizes
gaits by using random noise obtained by map-
ping noise from a Gaussian distribution to the
gait distribution.

• Use of the ST-GAN model substantially im-
proves the naturalness of the anonymized gaits
because it uses spatio-temporal discriminators.

• The proposed method can be applied to color
video, making it much more useful.

In this paper, we overview related work in Sec-
tion II, describe the proposed method in Section
III, present the evaluation results in Section IV, and
discussion and mention future work in Section V.

2. Related Work

2.1. Gait Recognition Systems
Each person’s gait, i.e., pattern of walking, is

unique [16], [17] and is thus widely used for bio-
metric identification [18]. Gait recognition systems
are aimed at recognizing an individual on the basis
of his/her pattern of walking. Gait recognition ap-
proaches can be roughly divided into two categories:
model-free and model-based [19, 20, 21]. The for-
mer extract features from the whole silhouette and
use them to identify the individual while the latter
model the gait explicitly by using body parts, such
as the arms and legs.
Since the model-free approaches tend to be less

sensitive to the quality of gait sequences and have
lower computational cost than the model-based ap-
proaches [19, 21], we used two model-free gait recog-
nition systems (one proposed by Zheng et al. [14]
and one proposed by Wu et al. [15]) to evaluate
the success rate of our proposed method. Both sys-
tems use gait energy im,ages (GEIs) as gait fea-
tures. They are obtained by averaging aligned hu-
man silhouettes in gait sequences. The GEI was
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Figure 2: Gait energy image (image on right) is average of human silhouettes (images on left) in gait sequence.

first defined by Han and Bhanu [22]. Fig. 2 shows
an example silhouette sequence and its GEI.

2.2. Human Motion Synthesis
Human motion modeling is a key problem in two

fields: computer vision and robotics. In computer
vision, a common approach to motion synthesis is
statistical model construction. Grochow et al. [23]
used scaled Gaussian process latent variable models
to produce the pose satisfying a given set of con-
straints while maintaining the style of the train-
ing data. Chai and Hodgins [24] regarded user-
constrained motion generation as a maximum a
posteriori probability problem and proposed a mo-
tion synthesis method using linear dynamic system
modeling. In more recent work, Holden et al. [25]
used convolutional autoencoders to learn manifold
motion data and a deep feedforward neural network
stacked on top of a trained autoencoder to generate
a human motion sequence from control parameters.
The control parameters were the trajectory of the
target character over the terrain and the movement
of the end effectors. These research efforts were
aimed at automatically creating animations from a
set of constraints while our objective is to generate
a modified version of an original gait.
In robotics, Semwal et al. [26], [27] designed cel-

lular automata rules for predicting the next gait
state on the basis of the current and previous states.
Another interesting approach [27], [28], [29] is to
model a joint trajectory combining a vector field
(VF) [28] and hybrid automata [29] in order to de-
velop a more accurate bipedal robot. It is based
on the assumption that human walking is a com-
bination of different discrete sub-phases, and each
sub-phase has a continuous dynamic state, so it can
be modeled as a hybrid system. The VF is defined
as a function of time and gives joint angle values for
a particular joint at a given instant of time. First,
a VF is designed for each person from his/her cap-
tured gait pattern, and then hybrid automata is
used to generate joint trajectories for a humanoid
robot, giving it a gait that is morphologically sim-
ilar to the captured one. The goal of this research
is to generate a bipedal gait that is similar to the
captured gait.

2.3. Adversarial Examples
Adversarial examples are slightly modified ver-

sions of ordinary examples that cause unexpected
recognition mistakes. A wide range of approaches
has been proposed for the crafting of adversarial
examples. Szegedy et al. [30] first introduced ad-
versarial examples for deep neural networks. Their
approach is based on a box-constrained optimiza-
tion technique and is aimed at finding the smallest
perturbation in the input space that causes the per-
turbed image to be classed as a predefined target
label. Goodfellow et al. [31] presented a simple
and computationally cheaper, yet robust, method
for directly perturbing normal input by a small
amount in the direction of the sign of the gradi-
ent at each pixel. Moosavi-Dezfooli et al. [32]
proposed the DeepFool model, which is based on
iterative linearization of the classifier and is used
to generate minimal perturbations that are suffi-
cient to change classification labels. Leveraging the
DeepFool model, they developed a universal adver-
sarial perturbation [33]. They showed the existence
of a universal (image-agnostic) and very small per-
turbation vector that causes natural images to be
misclassied with high probability. All of these ap-
proaches use a classifier in the network to generate
the perturbed images. Since gait recognition sys-
tems use gait features such as body parts and GEIs,
it is difficult to integrate gait recognition into an ad-
versarial network at implementation. In addition,
existing methods focus on a single image while we
aim to enable application to video samples, which
is more challenging.

2.4. Generative Adversarial Networks
A traditional generative adversarial network

(GAN) [12] consists of two neural networks trained
in opposition to one another. The input is a ran-
dom noise vector, and the output is a fake image.
The role of the generator is to generate images re-
sembling real images while that of the discrimina-
tor is to distinguish real images from fake ones. The
whole network is trained using a min-max objective
function.
While many extensions proposed for GANs gen-

erate very natural images [10, 34, 35], few GAN-
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based approaches have been proposed for video gen-
eration. Saito et al. [36] proposed a temporal gen-
erative adversarial network (TGAN) consisting of
a temporal generator, an image generator, and a
discriminator. The temporal generator generates a
sequence of latent variables from a random variable.
The image generator follows the temporal genera-
tor and produces the t− th frame of the sequence.
Tulyakov et al. proposed the MoCoGAN model
for generating video sequences without a priming
image [37]. The basic idea is to use motion and
content. A content vector is sampled once from a
Gaussian distribution and fixed. A recurrent neu-
ral network is used to sample and map a series of
random variables for the motion subspace to a se-
ries of motions. Vondrick et al. [38] proposed a
video (VGAN) model with two generators, one for
background generation and the other for foreground
generation. The input to both is a noise vector sam-
pled from a Gaussian distribution. These methods
are aimed at generating a video from random noise
vectors while our aim is to modify a given gait so
that it is incorrectly recognized by a gait recogni-
tion system.
Yan et al. [39] attempted to generate an articu-

lated human motion sequence from a single image
by using a conditional GAN. Their aim was to syn-
thesize a video of a person from his/her skeleton
and static image; therefore, it is not suitable for
the gait anonymization problem, i.e., anonymizing
a gait by modifying it.

3. Methodology

3.1. Definitions and Notations
Definition 1. (Contour vector): the contour vec-
tor of a frame is a vector in which the elements are
the coordinates of the pixels on the contour of the
frame.

Definition 2. (Contour sequence): the contour se-
quence of a gait is the sequence of contour vectors
of its frames.

Definition 3. (Noise contour): a noise contour is
a vector that is added to the contour vector of a
gait to anonymize that frame. It is generated with
a noise generation network.

Definition 4. (Random noise): random noise is a
sequence of noise contours to be added to the orig-
inal gait to anonymize it.

Definition 5. (Random seed): a random seed is a
Gaussian-distributed random vector used as input

Notation Meaning

xi i− th frame of original gait

X frame sequence of original gait, X =
[x1, x2, . . . , xt]

yi contour vector of i− th frame of original
gait

Y contour sequence of original gait, Y =
[y1, y2, . . . , yt]

zi i− th random seed

Z sequence of random seeds, Z =
[z1, z2, . . . , zt]

ŷi contour vector of i − th frame of
anonymized gait

Ŷ contour sequence of anonymized gait,
Ŷ = [ŷ1, ŷ2, . . . , ŷt]

ẑi i− th contour vector of random noise

Ẑ random noise, Ẑ = [ẑ1, ẑ2, . . . , ẑt]

Table 1: Notations used in paper.

to the noise generation network to generate a noise
contour.

The notations used throughout this paper are
shown in Table 1

3.2. Overview of Proposed Method
To anonymize a gait, we need to modify its shape.

Therefore, the contours of the gait’s silhouette must
be modified. To do this, we convert the contour of
each silhouette into a vector in which the elements
are the coordinates of the pixels on the contour (the
contour vector) and modify this vector.
The model used comprises three steps.
Step 1 (Pre-processing): Extract the contour vec-

tors from the frames of the gait. The length of the
vectors is set to 4000, equivalent to 2000 pixels (zero
padding is added at the end if needed).
Step 2 (Contour vector modifying): Modify the

contour sequence of the original gait, which is de-
sired to anonymize.
Step 3 (Post-processing): Transfer the con-

tour sequence of the anonymized gait to a binary
anonymized gait. The binary anonymized gait is
then colorized to obtain a color anonymized gait.
Step 1 corresponds to Step 1 in the method of

Tieu et al. [1], but the input here is a color video
instead of a binary video. Likewise, Step 3 corre-
sponds to Step 3 in the method of Tieu et al.; how-
ever, the binary anonymized gaits are colorized to
obtain color anonymized gaits, as explained in Sub-
section E. Our two main contributions are found
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(a) Training phase: Only non-filled blocks are trained in this phase.

Pre-processing
G

GN
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processing
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𝑋′# = [𝑥′# 1,𝑥′# 2,… ,𝑥′# 𝑡]
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1 , 𝑥3

1 ,… ,𝑥4
1]

𝑌1 = [𝑦2
1 , 𝑦3

1 , … , 𝑦4
1]

𝑍1 = [𝑧2
1 ,𝑧3

1 ,… , 𝑧4
1]

(b) Generation phase.

Figure 3: Overview of the proposed method.

in Step 2. The success of anonymization is im-
proved by using random noise instead of a noise
gait as previously used [1]. The naturalness of the
anonymized gait is improved by using an ST-GAN
containing a generator and two discriminators (a
spatial discriminator and a temporal discrimina-
tor).

As illustrated in Fig.3a, the flow of the train-
ing phase is as follows. First, the original gait X is
pre-processed to extract contour sequence Y . Next,
random seeds Z are fed into noise generator GN to
obtain random noise Ẑ. Finally, the original con-
tour sequence Y and random noise Ẑ are fed into
gait generator G to obtain Ŷ . Spatial discrimina-
tor DS and temporal discriminator DT are used
to distinguish the shape and time continuity of the
original and anonymized gaits, respectively.

In the generation phase (Fig.3b), contour se-
quence Y ′ of original gait X ′ and random noise Ẑ ′

created from random seed Z ′ are passed through
anonymized gait generator G to obtain the con-
tour sequence of anonymized gait Ŷ ′. This con-
tour sequence is then post-processed to obtain the
anonymized gait.

3.3. Noise Generation

As mentioned above, using a noise gait may re-
duce the success of anonymization if the gait recog-
nition system confuses the original gait with the
noise gait. In addition, it is not easy to find a
noise gait that satisfies the requirements: it must
be different from the original gait, its length se-
quence must be similar to that of the original gait,
and it should have the same viewing angle as the
original gait. To overcome the confusion problem
and satisfy these requirements, we use the tradi-
tional GAN model [12] to generate noise in the gait
distribution (random noise) by using a Gaussian-
distributed random seed. For simplicity, here we
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generate the first contour vector of random noise
ẑ1. The remaining contour vectors (ẑ2, ẑ3, . . . , ẑt)
are copied from ẑ1. In other words, we build a noise
generation network to generate ẑ1 from a random
seed. The real gait is pre-processed before being
fed into discriminator DN as a positive example.
The noise generation network is pre-trained before
being assigned to the ST-GAN network.

Figure 4: Example visualizations of generated noise.

Because the random noise is generated from a
Gaussian-distributed random seed and there are no
constraints between the random noise and the orig-
inal gait in the noise generation model, the ran-
dom noise is different from the original gait. In the
model of Tieu et al., the noise gait should have the
same viewing angle as the original gait to maintain
the naturalness of the original gait. However, in our
ST-GAN model, the naturalness of the anonymized
gait is adjusted using two discriminators, so the
random noise does not need to have the same view-
ing angle as the original gait. Example visualiza-
tions of generated noise are shown in Fig. 4.

3.4. ST-GAN: Spatio-Temporal GAN
To obtain a high degree of naturalness in the

anonymized gaits, we stacked two discriminators
on the gait generator: a spatial discriminator net-
workDS and a temporal discriminator networkDT .
They are schematically illustrated in Fig. 5.
The role of the spatial discriminator network is to

distinguish the real frame from a generated frame.
It does this by discriminating the shape of the real
gait and the shape of the generated gait at each
frame. The input to this network is a contour vec-
tor. The results are used to improve the naturalness
of the shape of the anonymized gait. The architec-
ture of this network includes 1-dimension convolu-
tion network followed by a fully connected layer and
one sigmoid function on top.
The role of the temporal discriminator network

(4000 × 1) 
Contour vector of one frame

pooling

conv1d

sigmoid

pooling

conv1d

sigmoid

fully connected

sigmoid

(a) Spatial discrimina-
tor network.

Contour sequence of one gait

. . .

concatenation

fully connected

sigmoid

(4000 × 1) (4000 × 1) (4000 × 1) 

(b) Temporal discriminator
network.

Figure 5: Discriminator networks.

is to determine whether a generated gait moves
smoothly. It does this by discriminating the tem-
poral continuity of the real gait and that of the
generated gait. To this end, we feed a contour se-
quence Ŷ through a long short-term memory net-
work. Since we want to measure the naturalness
of the temporal continuity of the whole sequence,
the outputs of each node are concatenated into one
vector, and the sigmoid function is stacked on top
of this model.

The structure of the gait anonymization gener-
ator can be designed in various ways. We used
the same convolutional neural network architecture
used by Tieu et al., in which the generator follows
the encoder-decoder structure. There are two net-
works in the encoder to take the two inputs: the
contour of the original gait and the random noise.
These two networks are merged using a sum opera-
tor to convey a high-dimensional representation of
the two inputs to the decoder.

Explicitly, in the GAN model, the training of G,
DS , and DT is achieved by solving the min-max
problem using a value function:

minmaxL(G,DS , DT ) = Ey∼py(y)[logDS(Y )]

+ Ey∼py(y),z∼pz(z)[log(1−DS(G(Y,GN (Z)))]

+ Ey∼py(y)[logDT (Y )]

+ Ey∼py(y),z∼pz(z)[log(1−DT (G(Y,GN (Z))))]
(1)

In practice, this equation is solved by alterna-
tively training discriminators DS and DT and
anonymized gait generator G. In the first step, the
generator network is fixed, and the two discrimina-
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tors are trained by maximizing the two correspond-
ing loss functions.

L(DS) = Ey∼py(y)[logDS(Y )]

+ Ey∼py(y),z∼pz(z)[log(1−DS(G(Y,GN (Z))))]
(2)

L(DT ) = Ey∼py(y)[logDT (Y )]

+ Ey∼py(y),z∼pz(z)[log(1−DT (G(Y,GN (Z))))]
(3)

Next, the two discriminator networks are fixed, and
the generator is trained by minimizing the two cor-
responding loss functions.

LS(G) = Ey∼py(y),z∼pz(z)[log(1−DS(G(Y,GN (Z))))]
(4)

LT (G) = Ey∼py(y),z∼pz(z)[log(1−DT (G(Y,GN (Z))))]
(5)

Because we want to retain the viewing angle and in-
formation about the action (here, ”walking”) of the
original gait, generator G is designed to minimize
the reconstruction loss by using the l1 loss function:

LRec(G) = Ey∼py(y),z∼pz(z)[‖ Y −G(Y,GN (Z)) ‖1]
(6)

To generate an anonymized gait that can fool a gait
recognition system, we add a perturbation loss so
that the generated gait is somewhat similar to the
random noise.

LPer(G) = Ey∼py(y),z∼pz(z)[‖ Z −G(Y,GN (Z)) ‖1]
(7)

The gait anonymization generator is trained to min-
imize the four loss functions [(4), (5), (6), (7)]:

L(G) = LS(G) + LT (G) + LRec(G) + α ∗ LPer(G)
(8)

where α is a hyperparameter used to control the
trade-off between naturalness and success rate.

3.5. Colorizing
The methods for synthesizing colorized objects

from original objects that have been reported [34],
[35], [40]. However, these methods are aimed at
generating static images, so they are not applicable
to our work as we use video as input. The main
problem is that they do not have constraints on
consistency between frames or constraints on the
relationships between scenes in consecutive frames.
Here we present a method for colorizing binary
anonymized gaits to obtain colorized anonymized
gaits. For simplicity, we assume that the original
video is recorded using a static camera. Let IBg be
the background image, IOr be the t − th frame of

the original gait, IAn be the t−th frame of the color
anonymized gait, and SOr and SAn be the silhou-
ettes of these frames, respectively. We denote the
coordinate of a pixel as (i, j). Our colorizing prob-
lem is [now to compute IAn given IBg, IOr, SOr,
and SAn.

Silhouette of original gait

Silhouette of anonymized gait

!"#
(%)

!
"#
(')

!"#
(()

!"#
())

Figure 6: Four regions of color anonymized gait.

Color anonymized gait IAn consists of four re-

gions, as illustrated in Fig.6. The first one, I
(1)
An,

does not belong to the silhouette of the original

gait or to the silhouette of anonymized gait I
(1)
An :

{(i, j) /∈ SOr ∪SAn}. The second one, I
(2)
An, belongs

to the silhouette of the original gait as well as to

the silhouette of anonymized gait I
(2)
An : {(i, j) ∈

SOr ∩SAn}. The third one, I
(3)
An, belongs to the sil-

houette of the original gait and not to the silhouette

of anonymized gait I
(3)
An : {(i, j) ∈ SOr\I

(2)
An}. The

fourth one, I
(4)
An, does not belong to the silhouette

of the original gait and belongs to the silhouette of

anonymized gait I
(4)
An : {(i, j) ∈ SAn\I

(2)
An}. The al-

gorithm used for colorizing the binary anonymized
gait is given by

IAn(i, j) =























IBg(i, j), if (i, j) ∈ I
(1)
An

IOr(i, j), if (i, j) ∈ I
(2)
An

IBg(i, j), if (i, j) ∈ I
(3)
An

IOr(i
′, j′), if (i, j) ∈ I

(4)
An

(9)

where (i′, j′) is the pixel nearest (i, j).
Note that our colorizing algorithm is applied to

each frame. Since we use the original frame for
reference, the relationship between scenes in con-
secutive frames is preserved.

4. Evaluation

We experimentally evaluated our proposed
method by using the CASIA-B gait dataset [13], in
which there are 124 subjects in total, with 110 se-
quences (10 sequences for each of 11 viewing angles
(0◦,18◦,...,180◦)) for each subject. We divided the
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124 subjects into non-overlapping groups. The first
group contained 50 subjects and was used for train-
ing the two gait recognition systems. The second
group contained 10 subjects (1100 sequences) and
was used for training the GN network. The third
group contained 16 subjects (1760 sequences) and
was used for training the ST-GAN model. Because
the GN and ST-GAN networks were not trained
for each viewing angle, all sequences for each group
were fed into the network. The fourth group con-
tained 8 (880 sequences) subjects and was used for
validation. The fifth group contained 40 subjects
(equivalent 400 sequences for each viewing angle)
and was used for testing.
We also compared the performance of the ST-

GAN model with that of the model presented by
Tieu et al. [1], which we used as the baseline for
comparison. The evaluation metrics were success
rate and naturalness for each viewing angle. We ran
our model with several values of hyperparameter α
and determined that when α = 0.3 the success rate
was good and the gaits looked natural. We thus
used this value for the baseline comparison, which
is described in Subsections A, B, and C. We discuss
the effect of hyperparameter α on the success rate
in Subsection D.

4.1. Generation Results
The effectiveness of the proposed method is illus-

trated by the visualized anonymized gaits shown in
Figs. 8, 9, and 10. We further analyzed the role
of the noise generation network GN by removing it.
The results are shown in Fig. 7.
From the results shown in these figures, we draw

three conclusions
(1) The use of the ST-GAN model overcomes the

problem of the anonymized gaits generated with
the baseline method looking less realistic because
of head distortion, especially at viewing angles of
0◦ and 180◦, as shown in Figs. 8 and 9.
(2) The proposed method can generate colorized

frames with color consistency between consecutive
frames, as shown in Figs. 9 and 10.
(3) The noise generator plays an important role

in making a generated gait more natural. This is ev-
ident in Fig. 7, which shows the results of gait syn-
thesis using a Gaussian-distributed random seed,
which is equivalent to removing the noise generator
from the model.

4.2. Success Rate
The success rate is a measure of gait anonymiza-

tion performance. It was calculated in the same

(a) 0◦

(b) 90◦

Figure 7: Silhouette of anonymized gaits generated using
Gaussian-distributed random seed (top two rows) and using
random noise in gait distribution (bottom two rows).

way used by Tieu et al. It is typically stated as
the ratio of the number of anonymized gaits that
were not correctly identified and the total num-
ber of anonymized gaits. We measured it for two
gait recognition systems (Zheng et al. [14]; Wu et
al. (model MT) [15]) with top-1 and top-3 identi-
fication. Fig. 11a plots the success rates for the
baseline and proposed methods as computed using
Zheng’s system while Fig. 11b plots those com-
puted using Wu’s system.
(1) The success rate with the proposed method

for α = 0.3 was higher than that for the baseline
method for both gait recognition systems. This
demonstrates that using random noise removes the
identity information from the original gaits better
than using a noise gait.
(2) The difference between the success rate for

the two methods was higher for the side views
because the anonymized gaits generated with the
baseline method were less distorted at these view-
ing angles (from 72◦ to 108◦).

(3) The success rate with Zheng’s system was
higher than that with Wu’s system because Wu’s
system is more robust.

4.3. Naturalness
The naturalness of a gait encompasses two as-

pects: whether the shape of the gait looks human
and whether the movement looks like a humanoid
walking. To quantitatively compare the naturalness
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(a) 0◦

(b) 90◦

(c) 144◦

(d) 180◦

Figure 8: Original and anonymized gaits generated with proposed and baseline methods for viewing angles of 0◦, 90◦, 144◦,
and 180◦: top rows are original gaits, middle rows are anonymized gaits generated with baseline method, and bottom rows are
anonymized gaits generated with proposed method.
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(a) 36◦

(b) 90◦

(c) 144◦

Figure 9: Original and anonymized gaits generated with proposed and baseline methods for viewing angles of 36◦, 90◦, and
144◦: top rows are original gaits, middle rows are anonymized gaits generated with baseline method, and bottom rows are
anonymized gaits generated with proposed method.

performance of our model with that of the baseline
one, we conducted two kinds of evaluation on the
color anonymized gait results: subjective evaluation
by human volunteers and automatic evaluation by
machine, which comes from the ideas of Cai et al.
[41] and Walker et al. [42].

Subjective evaluation: The subjective evalua-
tion was done using the mean opinion score (MOS),
which has long been used for assessing the qual-
ity of media from the users perspective [10], [43]
and which was used by Tieu et al. in their re-

search. There were 20 volunteer evaluators with dif-
ferent backgrounds. Each volunteer viewed 60 color
anonymized gait videos (half synthesized with the
proposed method, haft synthesized with the base-
line method), which were shown in random order.
After watching each video, they rated the natural-
ness of the anonymized gait on a five-point scale
(1: Bad, 2: Poor, 3: Fair, 4: Good, 5: Excellent).
For each viewing angle, we computed the average
score of each evaluator. From the results, which are
plotted in Fig. 12, we draw three conclusions.
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(a) 0◦

(b) 90◦

(c) 126◦

Figure 10: Original and anonymized gaits in original scene for three viewing angles 0◦, 90◦, and 126◦: top rows are original
gaits; bottom rows are anonymized gaits generated with proposed method.
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(b) Wu’s system.

Figure 11: Success rate comparison between proposed and
baseline methods.

(1) The higher quartile1, quartile2, quartile3, and
mean values for all viewing angles with the pro-
posed method indicate that gaits anonymized with
our method are more natural than those with the
baseline method, from a human perspective.

(2) The greater differences at viewing angles of 0◦

and 180◦ mean that the distortion in the generated
gaits at those viewing angles is mostly eliminated
by our ST-GAN model.

(3) The tendency of the scores for viewing angles

from 54◦ to 180◦ to be higher than those for angles
from 0◦ to 36◦ indicates that an algorithm using
information for the nearest pixel can colorize the
body better than it can colorize the face.

Figure 12: Mean opinion scores (triangle points represent
mean values).

Automatic evaluation: Inspired by the ideas
of Cai et al. [41] and Walker et al. [42], we in-
vestigated whether the anonymized gaits were suf-
ficiently natural such that a pre-trained recognition
network could recognize the object and action of the
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object in the generated video. We did this by com-
puting the probability that the recognition network
recognizes the object in each frame as a ”person”
and the action of the object in the video sequence
as ”walking.” The metrics representing these prob-
abilities are the frame score and video score, respec-
tively.

Frame score: This metric reflects the degree
to which the shape of the object in each frame
looks human. We used a pre-trained YOLO model
(version 3) [44], an improvement of the version
2 model [45], which detects and classifies objects
in an image, to compute the probability that an
object in a frame is assigned to the ”person”
class. Fig. 13 shows the average frame score over
all frames in the test set for the original gaits,
the anonymized gaits generated by the baseline
method, and the anonymized gaits generated by the
proposed method.

Video score: This metric reflects the degree to
which the movement of the gait in the video looks
like a humanoid walking. We used pre-trained
model ResNeXt-101 [46], which classifies human ac-
tion in a video, to compute the probability that the
action of the object in a video sequence is assigned
to the ”walking” class. Fig. 14 shows the average
video score for three data gait sets: original data,
anonymized gaits generated using a baseline model,
and anonymized gaits generated using the proposed
model.

From the results shown in these figures, we draw
two conclusions.

(1) The higher frame and video scores for the
proposed method than for the baseline method in-
dicate that the anonymized gaits generated by our
method in both still images (spatial domain) and
video sequences (temporal domain) look more nat-
ural than those generated by the baseline method.
This demonstrates the importance of the spatial
and temporal discriminators in our model.

(2) In Fig. 13, we can observe that the variation
of frame scores of the baseline method is not consis-
tent with that of the original gait at the view 0◦ and
180◦ (the scores for the baseline were lower at these
angles while those for the original gaits were slightly
higher), while the variation of the frame scores of
the proposed method is not. These demonstrate
that the ST-GAN model minimizes the distortion
in the gaits generated with the baseline method for
the front viewing angles. This is consistent with
our subjective evaluation and generation results.

Figure 13: Frame score.

Figure 14: Video score.
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(b) Success rate for top-3.

Figure 15: Effect of α on success rate against Zheng’s system.

In this section, we analyzed the effect of hyperpa-
rameter α (with values of 0.2, 0.3, and 0.4) on the
success rate (ratio between number of anonymized
gaits not correctly identified and total number of
anonymized gaits), the generation result and the
naturalness of gaits generated with our method.
The success rates against Zheng’s and Wu’s gait
recognition systems are plotted in Figs. 15 and 16.
The success rate increased with α for both systems.

The effects of α on anonymized gaits generated
with the proposed method for the three values of α
are visualized in Fig. 17. Additionally, we visual-
ized the difference between the original gait and the
anonymized gaits by computing XOR images be-
tween the original gait and the anonymized gaits.
As shown in Fig. 18, the difference between the
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Table 2: Effect of α on frame score.

α
Viewing angle (degree)

0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦

0.2 0.9764 0.9762 0.9751 0.9706 0.9699 0.9671 0.9672 0.9690 0.9679 0.9690 0.9694

0.3 0.9668 0.9664 0.9646 0.9590 0.9567 0.9556 0.9555 0.9574 0.9541 0.9568 0.9575

0.4 0.9558 0.9550 0.9533 0.9461 0.9386 0.9366 0.9363 0.9433 0.9418 0.9450 0.9464

Table 3: Effect of α on video score.

α
Viewing angle (degree)

0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦

0.2 0.5738 0.5468 0.6575 0.5311 0.6268 0.5289 0.5174 0.5351 0.6239 0.6070 0.5335

0.3 0.5437 0.5353 0.6291 0.5197 0.6036 0.5225 0.5090 0.5321 0.6083 0.5887 0.5167

0.4 0.5185 0.5220 0.6016 0.4929 0.5956 0.5156 0.4969 0.5242 0.6004 0.5827 0.4983
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(a) Success rate for top-1.
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(b) Success rate for top-3.

Figure 16: Effect of α on success rate against Wu’s system.

original gait and anonymized gait increased with α
(white pixels are where two silhouettes differ). This
is consistent with the effect of α on the success rate.
For naturalness, we computed the average frame

score and average video score at each viewing angle
for each value of α. As shown in Tables 2 and 3,
the scores increased with a decrease in α for all
viewing angles. This means that the success rate
of the ST-GAN model is inversely proportional to
naturalness and that changing the value of α can
be used to control this trade-off.

5. Discussion and Conclusion

We proposed a spatio-temporal generative adver-
sarial network model to generate anonymized gaits
that appear natural as a means of preventing people
in a video from being identified by a gait recognition
system. The ST-GAN model generates a gait by
adding random noise synthesized in the gait distri-
bution to the original gait. Our evaluation demon-
strated that this model can generate anonymized
gaits with more naturalness and a higher success
rate than a previous model. This means that the

use of spatial and temporal discriminators in the
proposed method results in spatial and temporal
consistency while adding random noise to the orig-
inal gait prevents the gait from being recognized
by a gait recognition system. The anonymized gait
maintains the originality of the action. It also re-
tains the viewing angle by minimizing the recon-
struction loss.

Two questions have been raised in anonymization
research. (1) Is it possible to recover the original
gait from an anonymized gait? (2) Is it possible to
reproduce the identity of the original gait from an
anonymized gait? Because random noise is used in
our ST-GAN model, the noise added to the orig-
inal gait is unknown. In addition, since our gait
generator network, like Tieu’s network [1], uses the
non-reversible ReLU activation function, our model
can be considered to be a one-way function. More-
over, the addition of random noise to the original
gait means that there is no common formula for
calculating the difference between the original gait
and its anonymized gait. These properties make it
impossible to recover the the original gait from an
anonymized gait even though the properties (e.g,
network architecture, network parameters) of the
model are known.

As shown in Fig. 18, our method modifies all
parts of the original gait, including the thigh and
shank. The sizes of the thigh and shank are im-
portant features for identification using the gait
pattern, especially for GEI-based recognition sys-
tems because a small modification of these features
greatly changes the lower part of the body in the
GEI image (see Fig. 2). Therefore, to reproduce the
identity of original gait from an anonymized gait,
the size of the thigh and shank must be recovered.
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Figure 17: Anonymized gaits generated for three values of α.
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Figure 18: XOR images for three values of α.

However, as explained above, recovering the origi-
nal gait from an anonymized gait is an impossible
task, so reproducing the identity of the original gait
from an anonymized gait is impossible.

Future work includes addressing three limitations
of our method. First, the ST-GAN model generates

an anonymized gait from silhouettes of the original
gait, so the quality of the anonymized gait depends
on the method used to extract the silhouettes. Sec-
ond, our model aims to change the shape of the
gait, however, the temporal information such as the
speed of walking, the cycle of the gait and the po-
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sitions of key joints (shoulders, hips, knees, ankles,
etc.) also play an important role in gait anonymiza-
tion. We believe that modifying the temporal in-
formation would increase the success rate. Third,
our colorizing algorithm uses information for the
nearest pixel. This works well for colorizing the
body but not so well for colorizing the face because
the face contains many parts (e.g., eyes, nose, and
mouth).
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