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Abstract

With the representation effectiveness, skeleton-based human
action recognition has received considerable research at-
tention, and has a wide range of real applications. In this
area, many existing methods typically rely on fixed physical-
connectivity skeleton structure for recognition, which is in-
capable of well capturing the intrinsic high-order correla-
tions among skeleton joints. In this paper, we propose a novel
spatio-temporal graph routing (STGR) scheme for skeleton-
based action recognition, which adaptively learns the in-
trinsic high-order connectivity relationships for physically-
apart skeleton joints. Specifically, the scheme is composed
of two components: spatial graph router (SGR) and tempo-
ral graph router (TGR). The SGR aims to discover the con-
nectivity relationships among the joints based on sub-group
clustering along the spatial dimension, while the TGR ex-
plores the structural information by measuring the correla-
tion degrees between temporal joint node trajectories. The
proposed scheme is naturally and seamlessly incorporated
into the framework of graph convolutional networks (GCNs)
to produce a set of skeleton-joint-connectivity graphs, which
are further fed into the classification networks. Moreover, an
insightful analysis on receptive field of graph node is pro-
vided to explain the necessity of our method. Experimental
results on two benchmark datasets (NTU-RGB+D and Kinet-
ics) demonstrate the effectiveness against the state-of-the-art.

Introduction

As a challenging problem in computer vision, skeleton-
based human action recogntion takes 3d human body co-
ordinates as input and outputs action class, which attracts
increasing attention recently (Wang et al. 2018b). Typically,
human body skeletons characterize the geometric body con-
figuration as rigid body, and their dynamics capture mo-
tion patterns in a continuous way. This dynamic geomet-
ric structure expresses relation among the joints not only
spatially but also temporally. By this means, graph repre-
sentation is the natural way to express the intrinsic human
structure. Therefore, it is crucial to automatically represent
joints on the given graph. Recent success of Spatial Tem-
poral Graph Convolution Networks (ST-GCN) (Yan, Xiong,
and Lin 2018) has justified the effectiveness by a graph
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Figure 1: Illustraion of three routing ways: (a) fixed routing
by physical connections; (b) spatial routing by considering
local clustering; (c) temporal routing by modeling the corre-
lation degrees of node trajectories.

aggregation scheme with physical human skeleton, against
the existing literatures such as pseduo images (Wang et al.
2018a; Xie et al. 2018), variants of LSTM (Shahroudy et al.
2016; Song et al. 2017; Liu et al. 2017).

In general, the graph-based method applies a fixed hu-
man skeleton to graph convolution operation and iteratively
aggregates the hidden feature with neighbourhood features.
However, it is challenging to capture changeable human
structure in complex scene. This brings three-fold problems
for further improvement: 1) The skeleton itself is change-
able and depends on specific dataset, e.g., 25 joints in NTU-
RGB+D (Shahroudy et al. 2016) while 18 joints in Kinet-
ics (Kay et al. 2017), resulting in confusion on real human
skeleton; 2) The joint connections are highly unbalanced.
While torso joints become over-smoothing, limb joints may
still be under-smoothing, which causes extreme difficulty on
feature sharing for two limb joints; 3) A global graph struc-
ture is applied to each sample, raising the question “one size
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fits all”, which is possibly sub-optimal. With a fixed graph,
dataflow is restricted in predefined entries, which greatly de-
creases the flexibility of the model. We term this as “static
routing” by analogy with Computer Networking.

In contrast, we pay much attention to seeking more flexi-
ble connection scheme, which adaptively learns the intrinsic
high-order connectivity among skeleton joints for specific
sample, referring to “dynamic routing”. In real world scenar-
ios, the dynamic skeleton itself embeds rich information that
implicitly shows strong connection between two physically
apart joints, e.g., two hand joints in action class “clapping”.
Therefore, we formulate this dynamic routing problem as a
graph topology learning problem that automatically select
the most informative connections for all joints. We show
that dynamic routing scheme and static routing scheme are
equally important in the task.

Motivated by this observation, we formulate this problem
as a joint learning problem. We first learn dynamic graph
topology via position and motion of the skeleton and then
apply them as a prior to the GCN recognition framework.
In particular, we propose a novel Spatio-Temporal Graph
Routing (STGR) scheme to model the semantic connections
among the joints in a disentangled way. Rather than us-
ing fixed human skeleton, two sub-networks are responsible
to capture both spatial and temporal dependancies between
each two nodes, serving as routers for all nodes. As shown
in Figure 1, a spatial graph router (SGR) discovers the con-
nectivity relationships among the joints based on sub-group
clustering along the spatial dimension. A temporal graph
router (TGR) explores the structural information by mea-
suring the correlation degrees between temporal joint node
trajectories. The spatio-temporal skeleton-joint-connectivity
graphs are then fed into ST-GCN in multiple routing ways.

To explain the necessity, we further introduce “receptive
field on graph” by analogy with the same term in CNNs. Re-
ceptive field on graph refers to coverage range that a node
can draw information from. By introducing this concept, we
show that fixed human skeleton would lead to highly unbal-
anced problem, which could be solved by our work.

Our contribution can be summarized as follows:

• We propose a novel spatio-temporal graph routing
scheme, which is used to exploit intrinsic high-order re-
lationship among skeleton joints. The module is jointly
learned with classification network and better matches the
action recognition task.

• We present receptive field on graph nodes to prove that
the bottleneck of previous model is unbalanced receptive
field for different joints, which shows effectiveness of our
spatio-temporal graph routing scheme.

Related Works

Skeleton-based Action Recognition. Traditional ap-
proaches for skeleton-based action recognition mainly focus
on hand-crafted features to capture the dynamics of joint
motion, such as covariance matrix of the trajectories(Hus-
sein et al. 2013), lie groups (Vemulapalli, Arrate, and Chel-
lappa 2014).

With the success of the deep learning, many CNN-based
methods are proposed in an end-to-end manner.To better
ultilize existed powerful structures, many efforts have been
made to transform raw skeleton into pseduo image in multi-
ple ways, including skepxels(Liu, Akhtar, and Mian 2017),
temporal-then-spatial recalibration scheme(Xie et al. 2018),
and jointwise co-occurence(Li et al. 2018a).

Recurrent Neural Networks, on the other hand, effec-
tively models temporal dependency. LSTMs and GRUs are
proposed to learn temporal context of sequences(Shahroudy
et al. 2016; Li et al. 2017). To better handle complex spatio-
temporal variation factors, attention mechanism is proposed
to ensure requirement of robustness, such as key frame se-
lection (Song et al. 2017) and global informative joints min-
ing(Liu et al. 2017).

Graph Neural Networks. Graph neural networks (GCNs)
can be roughly categorized into two streams: 1) spectral
domain, which is based on the Graph Fourier Transform
(GFT) (Shuman et al. 2013), performs transformation on
graph basis(Bruna et al. 2014). By a parameterization of K-
localized convolutions, computationally efficient and local-
ized filtering has been recently achieved(Defferrard, Bres-
son, and Vandergheynst 2016). To alleviate expensive cost
of computing eigenvalues of Laplacian matrix, Chebyshev
polynomials are introduced as a truncated expansion (Ham-
mond, Vandergheynst, and Gribonval 2011). 2) spatial do-
main, on the other hand, learns to aggregate each node’s
neighbourhood as its new hidden representation iteratively.
A first-order approximation is proposed(Kipf and Welling
2017), which succeeds in semi-supervised classification.
Meanwhile, some literature(Niepert, Ahmed, and Kutzkov
2016) explores to greedly converts graph into sequence and
make use of 1D convolution networks.

Recently, a few works attempt to reveal the mechanism of
GCNs with either metric learning (Li et al. 2018b) or jump-
ing knowledge networks (Xu et al. 2018). However, cur-
rent methods are mainly focused on semi-supervised clas-
sification problem. In this work, we first conduct analysis on
skeleton-based action recognition with the help of receptive
field on graph.

Methods

In this section, we first formulate our problem and then intro-
duce our Spatio-Temporal Graph Routing (STGR) scheme
by describing two sub-networks—SGR and TGR respec-
tively. Later we describe the overall architecture and opti-
mization. At last, we discuss receptive field on graph to fur-
ther verify the necessity of STGR.

Problem Formulation

A 3D human skeleton is denoted as X = {xtn} ∈
R

Cin×T×N with T frames and N joints. Each individual is
represented as a xyz-coordinate feature vector for n-th joint
at t-th time step and henceCin = 3. For further convenience,
we describe single frame skeleton as Xt ∈ R

Cin×N for t-th
frame and node trajectory as Xn ∈ R

Cin×T for n-th joint.
Let A ∈ R

N×N be the simple adjacency matrix whose
entry Aij denotes whether joint i and joint j are connected.

8562



Spatial Graph Router

Temporal Graph Router

Concat
Graph 

Convolution

Global Average 

Pooling

FC

Framewise skeleton

Node trajectory

Classification

Figure 2: Overview of spatio-temporal graph router. The input 3d-skeleton sequence is first transformed as framewise skele-
ton and node trajectories respectively. Then Spatial Graph Router (SGR) and Temporal Graph Router (TGR) produce new
skeleton-joint-connectivity graphs respectively. ST-GCN receives this graphs and outputs action class.

D is the corresponding degree matrix. The default graph is
denoted by:

Gdefault = D̃− 1

2 ÃD̃− 1

2 (1)

where Ã = A + I is the generalized adjacency matrix in-

cluding node itself. D̃ is the corresponding degree matrix of

Ã. Thus, Gdefault is the diagonal normalized matrix of Ã.
As discussed above, the fixed human skeleton is insuffi-

cient to model the changeable human structure in complex
scenes. Our goal is to learn the mapping from the raw skele-
ton to the graph topology representation:X → G in multiple
views such as pose and motion. Therefore we have:

{

Gspat,G temp
}

= fSTGR

(

X; θspat, θtemp
)

(2)

where Gspat and G temp are spatial and temporal graph topol-
ogy representation. θspat and θtemp represent corresponding
parameters. Gspat and G temp will concatenate with default
graph Gdefault to form a graph set S = {Gdefault,Gspat,G temp}.
In the following parts, we will provide a detailed description
on two sub-networks.

Spatial Graph Router Sub-network

In real world scenarios, joints usually gather in a group to ex-
press a specific action. In other words, the position of each
joint and the distance between pairwise joints encode the in-
tensity of the relation, which is crucial to guide information
flow.

Spatial Graph Pool. In order to extract spatially con-
nected graph, we first use a non-parametric graph cut clus-
tering method (Shi and Malik 2000) for each frame skeleton
Xt ∈ R

Cin×N , forming K sub-groups. As for each sub-
group, we treat it as a completely connected graph, which
means each two nodes are connected within the same sub-
group. In this way, we define a spatially connected graph for
each frame t and gather all these graphs to form the “Spatial
Graph Pool”:

G =
{

G1, ...,GT
}

(3)

where for each single Gt:

Gt
ij =

{

1, if i and j in the same sub-group
0, otherwise

(4)

Squeeze-and-Excitation Attention. Since we have al-
ready obtained a series of spatially connected graphs, our
goal is to select the most informative one as representative.
To this end, a frame attention scheme for jointly learning
framewise importance is proposed for graph fusion.

As shown in Figure 3, we model the frame attention in
a Squeeze-and-Excitation way (Hu, Shen, and Sun 2018).
A large 7 × 7 convolution is first applied to aggregate lo-
cal feature. Squeeze operation is then conducted via a global
average pooling layer to obtain the intermediate feature:

min
t =

1

N ×N

N
∑

i=1

N
∑

j=1

fConv

(

Gt
)

ij
(5)

where min = (min
1 , ...,m

in
T ) denotes a collection of inter-

mediate features in temporal space. Since min contains the
complete information for the whole graph, the Excitation op-
eration can model the internal dependancy across frames.

µ = Sigmoid
(

W2 · σ
(

W1 ·m
in
))

(6)

where µ = (µ1, ..., µT ) denotes importance score for each

frame. W1 ∈ R
T

r
×T and W2 ∈ R

T×T

r are 1 × 1 transfor-
mation matrix. r is the dimension reduction parameter and σ
is ReLU activation function. This dimensionality reduction
scheme is mainly used for exploiting the relations for tem-
poral dimension. We make a weighted fusion with each of
its frame importance µt to form the Gspat:

Gspat =
1

T

T
∑

t=1

µt · G
t (7)
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Figure 3: Network structure for Spatial Graph Router (SGR).

Temporal Graph Router Sub-network

Different from SGR sub-network, TGR sub-network consid-
ers the spatio-temporal graph in a global way. Based on a
simple observation, joints with high correlation degrees usu-
ally implies close relation. For example, in class “walking”,
hands and feet are highly correlated(swing in opposite direc-
tions), indicating the discriminative relation. Inspired by this
idea, TGR first encodes each node trajectory with a LSTM
encoder, then models relation for each pair nodes in a self-
attentive way.

LSTM encoder. As discussed above, TGR first rearranges
the input sequence as N independant node trajectories
Xn, n = 1, ..., N , each of which is regarded as Xn ∈
R

Cin×T . As shown in Figure 4, a LSTM unit first encodes
each input node trajectory and outputs the hidden state at the
last time step:

hn,t = ψ(Xn, hn,t−1) (8)

where ψ denotes LSTM module. hn,t is the output at the last
time steps. hn,t is then taken as input of the relation model-
ing network to capture the interaction between two nodes.
For clarity, we denote hn,t as vn for each node.

Relation modeling. We model the pairwise node relation
in the encoded feature space. Similar to rencent work (Wang
et al. 2018c), we measure the relation by normalized dot
product. Particularly, given each trajectory’s encoded feature
v = [v1, ..., vN ], The pairwise similarity is proposed as:

D (vi, vj) = θ (vi)
T
· ϕ (vj) (9)

where θ and ϕ are two 1 × 1 transformation operations. By
performing a dot-product, we examine two nodes by their
cosine distance. After computing each pairwise distance, we

LSTM Enc.

MLP: 𝜃

Softmax

Node Trajectories

𝐶 × 𝑁
MLP: 𝜑𝐶′ ×𝑁 𝐶′ ×𝑁

𝑁 × 𝑁

𝒢Temp
Figure 4: Network structure for Temporal Graph Router
(TGR).

further apply a softmax operation in each row, ensuring sum
of all entries of a single node will be set to 1.

G temp
ij =

expD(vi, vj)
∑N

k=1
expD(vk, vj)

(10)

Network Architecture and Optimization

In this section, we introduce the overall network architec-
ture. Our model is constructed by STGR and ST-GCN. In
particular, STGR is responsible to explore intrinsic connec-
tivity relationships for semantically related joints in both
spatial and temporal domains. ST-GCN takes both 3D skele-
ton and the graph as input and output action class. In particu-
lar, ST-GCN stacks multiple “GCN-TCN” units(Yan, Xiong,
and Lin 2018) for representation learning, of which each
“GCN-TCN” unit is seen as one layer. Each GCN unit per-
forms graph convolution operation with default graph Gdefault

and learned graph Gspat and G temp in spatial dimension while
TCN unit is applied in temporal dimension to get high-level
feature maps.

To make it clear, suppose hidden feature of specific node
n in l-th layer is denoted by hlv ∈ R

dl . For consistency, we
assume h0 = X and d0 = Cin. Vanilla ST-GCN can then be
interpreted as:

hl+1
v = σ

((

M ⊗ Gdefault
)

hlvw
l
)

+ hlv (11)

where M represents a learnable mask to further enlarge the
model’s expressive power. ⊗ is element-wise product and
wl denotes a regular convolution operation right after graph
convolution. Along with our STGR, we produce a series of

spatial and temporal graph Gspat
i , G temp

i , i = 1, ..., L for each
layer respectively. We do not share weights of each unit of
STGR since the model is lightweight.

Therefore, the spatial and temporal graph is embedded
into each “GCN-TCN” unit. Joints can aggregate features
from not only fixed skeleton but also these learned semantic
connections:

8564



(b)(a) (c)

Graph Representation

Visualization of connections

Figure 5: Comparison of 3 types of connections. (a) phys-
ical connection; (b) learned spatial connection with SGR;
(c) learned temporal connection with TGR. Above are ma-
trix representaions of graphs. Below are the corresponding
visualizations of joint connections. For better view, the con-
nections are binarized with threshold 0.05 in visualizations.

hl+1
v = σ

(

∑

G∈S

(MG ⊗ G)hlvw
l
G

)

+ hlv (12)

where S =
{

Gdefault,Gspat,G temp
}

. MG and wl
G are the cor-

responding mask and convolution for the specific graph. We
stack multiple GCN-TCN units and then apply global av-
erage pooling and full connected layer to obtain the action
score ŷ:

ŷ = fST-GCN

(

X;Gspat
1 ,G temp

1 , ...Gspat
L ,G temp

L

)

(13)

We employ standard cross-entropy loss for classification. As
for the two sub-networks, to ensure the graph sparsity, the
L1 loss is employed:

Lcls = −
M
∑

i=1

yclog(ŷi),

Lsparse =

L
∑

i=1

∥

∥Gspat
i

∥

∥

1
+
∥

∥G temp
i

∥

∥

1
,

L = Lcls + λLsparse + ‖Θ‖
2

(14)

where M is the overall the number of action classes, yc rep-
resents the ground truth label. Θ is the overall parameters for
both ST-GCN and STGR. λ is used to balance the weights
of classification loss and sparsity loss.

Discussion

In this section, we verify the necessity of STGR in an analyt-
ical way. We first introduce an intuitive definition on “recep-
tive field” and then point out that “star-structure” of human
skeleton makes it hard for feature sharing between two limb
nodes.

(a)

(b)

Figure 6: Comparison of the receptive of torso joint (lower
back) and non-torso joint (right hand). (a) Receptive field of
joint “right hand”, left: after 3 steps diffusion. right: after
8 steps diffusion; (b) Receptive field of joint “lower back”.
left: after 3 steps diffusion. right: after 8 steps diffusion.
Red color denotes high probability, purple color denotes low
probability.

Receptive field is an important notation in CNNs which
reveals the spatial context for a single neuron. By analogy
with this idea, we introduce the concept “receptive field on
graph”, refering to the coverage range where a single node
could draw information.

Figure 5 illustrates 3 types of connection mode. (a) de-
notes the predefined human skeleton while (b) and (c) show
the learned connections with our SGR and TGR respectively.
It is straightforward that the predefined skeleton organizes
itself to form a “star-structure”, in which a torso connects
head and all four limbs. In this way, the centeral torso joints
would spread far quicker than marginal limb joints, leading
to great imbalance.

For illustration, we check the receptive field of a limb
joint(right hand) and a torso joint(lower back) in Figure 6.
Following previous literature(Xu et al. 2018), we cast the
spreation of the Graph convolution into a k-step random
walk process. The color represents the proportion of infor-
mation which a node receive. As shown in Figure 6, after
3 steps diffusion, both two joints receive information from
a relatively small range. After 8 steps the torso joint can
nearly receive global information while the right hand joint
still struggling in a small region.

Our proposed STGR scheme, from another point of view,
learns pairwise connections from either postion or motion of
joints, which breaks the above limitation. As depicted in Fig-
ure 5, the SGR learned graph mainly focuses on local gath-
ering, in which close joints have strong connections. On the
other hand, the TGR learned graph mainly put more atten-
tion to correlated joints in a long term. In this way, our STGR
scheme effectively enlarges the receptive field for each joint
and further promotes the trianing process.
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Experiments

In this section we evaluate our STGR scheme in skeleton-
based action recognition datasets. We conduct experiments
on two large-scale datasets: NTU-RGB+D and Kinetics. We
first introduce our implementation details and then perform
an ablation study on various settings of the spatio-temporal
graph routing scheme. Last we compare our full model with
other state-of-the-art approaches. All experiments are con-
ducted on 4 GTX 1080Ti GPUs.

Datasets

NTU-RGB+D. NTU-RGB+D (Shahroudy et al. 2016) is a
widely used large scale skeleton-based human action recog-
nition dataset. It contains 56880 skeleton sequences with
60 action classes. The overall action classes are roughly di-
vided as daily action, medical condition, and mutual action.
Each action is captured by cameras at the same height but
from three different horizontal angles: −45◦, 0◦, and 45◦.
Each human skeleton is represented as 3D-coordinates of
25 joints. Mutual action classes contain two subjects while
the others contain only one subject. NTU-RGB+D recom-
mends two evaluation protocals: 1). Cross-subject (X-Sub):
The training and testing sets are divided into 40320 clips
and 16560 clips respectively according to the difference of
experiment subjects. 2). Cross-view (X-View): The train-
ing set is collected with camera view 2 and 3 with 37920
clips, while the evaluation set is collected from camera view
1 with 18960 clips. By following the convention of existing
works (Yan, Xiong, and Lin 2018) for skeleton-based action
recogntion, we report the top-1 accuracy on both two proto-
cals.

Kinetics. Deepmind Kinetics is recently one of the largest
human action dataset. The dataset contains nearly 300,000
video clips lasts around 10 seconds. To cover as many
real occasions as possible, Kinetics collects videos from
YouTube, composing 400 action classes. Note that raw Ki-
netics dataset contains only raw video clips. Following the
previous practice (Yan, Xiong, and Lin 2018), we first ex-
tract raw 2D-coordinates with the help of OpenPose toolbox
(Cao et al. 2017), then apply our model. Similar to NTU-
RGB+D, we extract 18 human joints and select 2 people
with highest average joint confidence as main subject. In
practice, we use the released data from (Yan, Xiong, and Lin
2018) to evaluate our model. The dataset is divided as train-
ing set with 240,000 clips and testing set with 20,000 clips.
In this experiment, we report both top-1 and top-5 accuracy.

Implementation Details

To ease computational burden, different from previous zero
padding (Yan, Xiong, and Lin 2018), we first downsample
sequence length to a fixed size 64 frames, which we conduct
uniform sampling with bilinear interpolation when sequence
length is larger than 64 while zero padding when the given
sequence is shorter than 64. In practice, we also conduct
normalization for each frame, which makes training process
more stable.

As for training, the whole network is trained with SGD
optimizer with learning rate 0.1 for ST-GCN and 0.01 for

(a) (b)

Figure 7: (a) Comparison of receptive field trends for torso
joints and non-torso joints with increase of number of layers;
(b) Recognition accuracy trend with increase of number of
layers.

STGR. The weight decay is 1e − 4 and the batch size is
set as 32. The balance parameter λ of classification loss and
L1 loss is set as 0.2 since we mainly focus on classification
result. We divide learning rate by 10 for both modules when
monitoring validation loss stoping decrease over 5 epoches.
Inspired by recent success (Li et al. 2018a) on skelteton-
based action recognition, a “two-stream” scheme is applied
to fuse both skeleton feature and motion feature. We need 60
training epoches for model convergence.

Ablation Study

In this section, we examine the effectivenss of our proposed
STGR method and conduct experiments to test various pa-
rameter settings. All experiments are conducted on X-Sub
benchmark on NTU-RGB+D dataset.

Receptive field In this work, we examine the necessity of
STGR. According to Figure 7(a), we first divide all 25 joints
into torso joints (root, lower back, upper back) and non-torso
joints (the others). Then we calculate the average receptive
field from 1 layer (1-step forward) to 10 layers (which we
use in model) for two set respectively. The figure shows
both two sets enlarge their receptive field with more layers.
However, torso joints increase with an obvious faster speed,
which verifies our analysis on human skeleton structure.

Additionally, we test the vanilla ST-GCN with different
number of layers. We find the recognition accuracy follows
the same trend with average receptive field. As shown in Fig-
ure 7(b), The accuracy increases fast initially. After 5 layers,
the increasing speed becomes slow down. When approach-
ing to 10 layers, the accuracy becomes stable. Stacking more
layers would not affect the overall accuracy.

When reaching certain stage, both torso and limb joints
are restricted into a relatively fixed range, which limits fur-
ther improvement. It would be beneficial to very deep struc-
ture. However, such model brings large computational bur-
den. In contrast, STGR effectively solves this problem by
directly learning joint-joint connections.

Number of Groups As discussed before, in SGR, we first
cluster skeleton in each frame into K sub-groups. This pro-
cedure mines the implicit prior by directly exploring the rel-
ative distance. In practice, the cluster number K is set as 5
by experiments. The results are shown in Table 1.
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# Clusters K Accuracy (%)

3 84.63
4 84.79
5 85.22
6 85.02
7 84.84
8 84.01

Table 1: Comparison of the accuracies for different number
of clusters.

In theory, too many clusters usually lead to over-splitting
while under-splitting is mainly caused by too few clusters.
We found that the performance is generally robust with its
value ranging from 3 to 7. Therefore, our choice just keeps
a good balance.

Spatio-Temporal Graph Router As introduced above,
the STGR is composed by two sub-networks – SGR and
TGR. Table 2 shows that our proposed STGR can benefit
for the vanilla ST-GCN.

Methods Accuracy (%)

Baseline (ST-GCN) 83.38

STGR-GCN (w/SGR) 85.22
STGR-GCN (w/TGR) 84.70

STGR-GCN (full) 85.80
2s-STGR-GCN (full) 86.98

Table 2: Recognition accuracies with STGR module in
NTU-RGB+D X-Sub.

In this part, we examine four variants of STGR-GCN to
test the effectiveness of STGR module. The four variants
includes: 1) GCN with spatial graph router; 2) GCN with
temporal graph router; 3) GCN with spatio-temporal graph
router; 4) Two stream GCN with spatio-temporal graph
router.

The proposed method improves the baseline accuracy by
1.84% and 1.32% for SGR and TGR respectively. From the
results, SGR performs slightly better than TGR. With the
“two stream trick”, the proposed model further improves by
1.18%, which is an effective practice in skeleton-based ac-
tion recognition.

Comparison with state-of-the-art

In this section, we evaluate our full STGR-GCN model
with existed state-of-the-art skeleton-based action recogni-
tion models in NTU-RGB+D and Kinetics dataset.

NTU-RGB+D We roughly divide previous state-of-the-
art methods into four categories: 1) Hand-crafted meth-
ods: Lie group (Vemulapalli, Arrate, and Chellappa 2014);
2) RNN-based methods: STA-LSTM (Song et al. 2017),
RNN-T/ACH (Li et al. 2017), GCA-LSTM (Liu et al. 2017);
3) CNN-based methods: Joint Trajectory Maps(Wang et
al. 2018a), Skepxels (Liu, Akhtar, and Mian 2017), Tem-
poral Conv (Kim and Reiter 2017), HCN (Li et al. 2018a);
4) Graph-based method: ST-GCN (Yan, Xiong, and Lin
2018).

Methods
Accuracy (%)

X-Sub X-View

Lie group 50.1 52.8

STA-LSTM 73.4 81.2
RNN-T/ACH 74.6 83.2
GCA-LSTM 74.4 82.8

Joint Trajectory Maps 76.3 81.1
Temporal Conv 74.3 84.1

Skepxels 81.3 89.2
HCN 86.5 91.1

ST-GCN 81.5 88.3

STGR-GCN 86.9 92.3

Table 3: Recognition performance on NTU-RGB+D dataset.
We compare out model with previous state-of-the-art on
both crsss-subject(X-Sub) and cross-view(X-View).

Our STGR-GCN model, with simple spatio-temporal
routing method, presents better results compared with
vanilla ST-GCN and further achieves state-of-the-art, im-
plying the effectiveness of dynamic routing scheme among
graph convolution layers.

Kinetics On Kinetics, we compare our mdoel with one
hand crafted approach: Feature encoding (Fernando et al.
2015); one RNN method: Deep LSTM (Shahroudy et al.
2016); a temporal-based CNN method: (Kim and Reiter
2017) and ST-GCN (Yan, Xiong, and Lin 2018). Following
routine, we report both Top-1 and Top-5 accuracy.

Methods
Accuracy (%)
Top-1 Top-5

Feature Enc. 14.9 25.8
Deep LSTM 16.4 35.3

Temporal Conv 20.3 40.0
ST-GCN 30.7 52.8

STGR-GCN 33.6 56.1

Table 4: Recognition performance on Kinetics dataset. We
report Top-1 and Top-5 accuracy.

Conclusion

This paper presents a novel routing scheme to generate
spatio-temporal related graph for physically apart joints in
skeleton-based action recognition, which solves the weak-
ness of predefined human structure. Furthermore, we show
the importance of constructing necessary connections by in-
troducing receptive field on graph, which is effectively en-
larged by our work. Qualitative and quantitative results are
presented to verify the effectiveness of our method.
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