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Abstract

West Nile virus (WNV) is a mosquito-transmitted Flavivirus belonging to the Japanese

encephalitis antigenic complex of the Flaviviridae family. Its spread in the Mediterranean

basin and the Balkans poses a significant risk to human health and forces public health offi-

cials to constantly monitor the virus transmission to ensure prompt application of preventive

measures. In this context, predictive tools indicating the areas and periods at major risk of

WNV transmission are of paramount importance. Spatial analysis approaches, which use

environmental and climatic variables to find suitable habitats for WNV spread, can enhance

predictive techniques. Using the Mahalanobis Distance statistic, areas ecologically most

suitable for sustaining WNV transmission were identified in the Mediterranean basin and

Central Europe. About 270 human and equine clinical cases notified in Italy, Greece, Portu-

gal, Morocco, and Tunisia, between 2008 and 2012, have been considered. The environ-

mental variables included in the model were altitude, slope, night time Land Surface

Temperature, Normalized Difference Vegetation Index, Enhanced Vegetation Index, and

daily temperature range. Seasonality of mosquito population has been modelled and

included in the analyses to produce monthly maps of suitable areas for West Nile Disease.

Between May and July, the most suitable areas are located in Tunisia, Libya, Egypt, and

North Cyprus. Summer/Autumn months, particularly between August and October, charac-

terize the suitability in Italy, France, Spain, the Balkan countries, Morocco, North Tunisia,

the Mediterranean coast of Africa, and the Middle East. The persistence of suitable condi-

tions in December is confined to the coastal areas of Morocco, Tunisia, Libya, Egypt, and

Israel.
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Introduction

West Nile Disease (WND) is a mosquito-borne disease caused by West Nile virus (WNV), a

Flavivirus belonging to the Japanese encephalitis antigenic complex of the family Flaviviridae

[1].

The WNV transmission cycle involves birds and mosquitoes. Wild and domestic species of

birds act as amplifying and disseminating hosts while mosquitoes, particularly Culex spp.,

actively transmit the infection in bird populations. Humans, horses, and other mammals may

incidentally be infected by a mosquito bite, yet they are not able to transmit the infection and

are considered incidental or dead-end hosts [2,3]. Although frequently asymptomatic or char-

acterized by mild febrile illness, in less than 1% of cases, infection in humans may develop

severe neurological symptoms [4,5]. Clinical signs generally appear in 2–9 days in horses and

in 2–14 days in humans [6–8].

WNV was isolated for the first time in a febrile patient from the West Nile district of North-

ern Uganda in 1937 [9]. From 1950 up to 1994, the virus was reported in different European,

African, and Asian countries, but infection in humans, horses, and birds was mainly asymp-

tomatic or mild [10–12]. Relevant clinical outbreaks were observed only in horses in Camargue

(France) in 1962 and 1963 [13], and in humans in South Africa in 1974 [14].In the recent

decades outbreaks of WND have been recorded in Eastern, Central, and Southern Europe

[6,11,15–18], in Northern Africa [19–21], and in Israel from 1998 to 2000, where a significant

mortality in birds was also observed [22]. Since 2008WNV has spread into areas not previously

affected, including Greece [23], Portugal [24], Turkey [25], and many eastern European coun-

tries (Albania, Bosnia, Bulgaria, Croatia, FYROM, Kosovo, Montenegro, Serbia) [26–28]. In

the same period the disease has been reported in Israel, Italy, Spain, Hungary, Romania, Russia,

and Ukraine [27–30].

The ecological aspects of WNV infection were first described in the 1950s in Egypt [31].

Since then, the relationship between the transmission cycle elements–birds (reservoir), mos-

quitoes (vector), equine and humans (dead-end hosts)–and the climatic and environmental

factors have been extensively investigated.

The number of statistical and mathematical models aiming at exploring the association

among the occurrence of WND and climatic and environmental variables, both in the Old and

NewWorld, has increased significantly over the past decade, and many factors have been

proved to be of importance for WNV spread [32].

Temperature is one of the most important drivers in WNV transmission. Warmer air tem-

peratures influence vector competence [33–35], by accelerating the virus replication within

mosquito vectors and prolonging their breeding season [36]. Several studies showed a clear

association between warmer temperature and outbreak intensity in Europe and USA [37–39].

Significant positive deviation of temperatures in Summer 2010 from perennial weekly average,

calculated for the period 1981–2010, was proved to be associated with WND outbreaks in

humans in Europe [37]. These results were further confirmed by Tran et al. [38], who demon-

strated that anomalies of temperatures in July were the main predictors of WNV risk in Europe

and neighbouring countries. Reisen et al. [40] indicate that the WNV spread into new areas

from 2002 to 2004 in USA was associated with the occurrence of above-average Summer tem-

peratures. Hahn et. al [39] found out that above average annual temperature was associated

with national WNV disease incidence z-scores during 2004–2012 in the U.S.

The role of precipitation is controversial and scientific literature reports contradictory find-

ings, as the timing and the amount of rainfall may have different effects on the density of adult

mosquito population. The number of days with precipitation above the 95th percentile value of

monthly distribution or precipitation greater than 50 mm in a day, were proven to be positively
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correlated to the occurrence of WND in horses in Morocco and in humans in USA [41,42].

Whereas, positive correlation between WND cases and below-average precipitation has been

found in Florida (USA) [43], which has been explained with a major concentration of nutrients

for larvae in the remaining water pools. In addition, drought may facilitate a closer contact

between birds and vector mosquitoes around the remaining water sources, thus facilitating the

transmission of the virus [44]. The difference in the breeding habitat requirements for different

Culex species can also help explain the contradictory effect of precipitation on WNV disease

incidence [39]. Rainfall data mainly derive from ground measurements usually sparse and

irregularly distributed on the territory; but other data sources, such as remote sensing data,

offer an attractive alternative to ground measurements, enabling regular data collections, both

spatially and temporally [45]. However, the coarse spatial resolution of these products (approx-

imately 20 x 20 km) compared to the Mediterranean landscape, the ranges of available latitude,

and the difficulty in validating these data, make vegetation indices more appealing as rainfall

surrogate.

The Normalized difference vegetation index (NDVI) is the most common vegetation index

used as covariate in WND risk studies [46,47]. It captures the strong relationship between vege-

tation cover and climatic elements, like temperature and rainfall, and can therefore be used as

an indicator of climatic/environmental conditions suitable for vegetation growth and vector

mosquito habitats. In a study of an outbreak of WNV encephalomyelitis in horses located in

northern Indiana (USA), the median NDVI value for case premises within an identified cluster

was significantly greater than the median NDVI calculated for other case and control premises

[48]. Calistri et al. [41] investigated the possible association between NDVI and the occurrence

of WND cases in 2003 and in 2010 in Morocco. The study noted that the NDVI values

recorded during the Summers of 2003 and 2010, in the zones where WND occurred, were sig-

nificantly higher than those registered during the same months in the rest of the decade.

Although the above variables are the ones more often investigated, many other predictors

have been associated with WND occurrence. An extensive review of these factors can be found

in two recent papers [32,47].

The different studies performed so far with the aim of establishing the association between

the disease and possible risk factors, include various definitions of ‘case’, different predictors,

and different geographical levels of aggregation (from geo-referenced cases to different admin-

istrative units–regions, province, district, etc.). This heterogeneity of approaches mainly derives

from the complex epidemiology of WNV infection, which implies different proxies for WNV

transmission [32]. It also depends on the different information collected by national surveil-

lance plans [28]. The difficulty in collecting comparable data (in terms also of spatial location

accuracy) and the complexity of the epidemiological relationships in WNV transmission cycle,

force most of the studies to a national, regional, or local scale [49]. Although in U.S. and North

America, since the last decade several studies have been conducted on a larger scale [42,50–52],

in Europe studies focusing on a continental scale started to appear only during the last couple

of years [37,38,53].

Without discounting the usefulness of the models already developed, the aim of this study is

to analyse climatic and environmental data to identify, in space and time, areas potentially suit-

able for WND in Central Europe and in the Mediterranean basin.

Materials and Methods

Study area and data onWND cases

The study area was the Central Europe and the Mediterranean basin. It extended from 29.9° to

50°N and from 15.5° to 46.7°E and included 43 countries, 25 of which have experienced WNV

WND in Mediterranean Basin and Central Europe
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in the recent decades. Autochthonous WND cases in horses (animals with clinical symptoms)

and humans (West Nile neuroinvasive disease andWest Nile fever syndromes) which occurred

between 2008–2012 were included in the study. For each case, information about clinical signs

onset date along with the address of infected patients or coordinates of the place where equine

cases occurred were recorded into the database. A total of 274 case-locations were analysed

(Fig 1). Horse cases revealed by serology only were not considered, due to the difficulty of trac-

ing back the date of infection.

Equine clinical cases (4 cases for Greece and 1 for Portugal) were from OIEWorld Animal

Health Information System (WAHIS) [24], from the Italian National Surveillance Information

System (111 cases), and from the Moroccan National Laboratory BIOPHARMA (Société de

Productions Biologiques et Pharmaceutiques Veterinaries, RABAT) (23 cases). Data on human

cases were provided by the National Centre for Epidemiology, Surveillance and Health Promo-

tion of the the Istituto Superiore di Sanità for Italy (52 cases) and by the Primary Health Care

Directorate (DSSB) of Ministry of Health in Tunisia (83 cases). A minimal data set underlying

the findings in the study is reported in S1 Table (Italian data on humans have been removed

because of legal restriction).

Data on humans were collected from the National Surveillance Systems for communicable

diseases in force in Tunisia and Italy. The use of data was approved by the Ministries of Health

of the different Countries; all data on patients were treated anonymously and de-identified

prior to analysis.

Climatic and environmental data

All human and equine cases enrolled in the study have been assumed to be exposed to

the infection in the place where the disease was detected and notified and, therefore, their

Fig 1. Study area: distribution of reportedWest Nile virus by country, region, and province since the 90s (light red polygons) and case locations
included in the study between 2008–2012 (red points).

doi:10.1371/journal.pone.0146024.g001
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geographical locations were used to extract the values of climatic and environmental

variables.

The selection of predictors used to characterize places in which WND cases occurred was

based on literature and raster data availability for the Mediterranean basin and Central Europe.

Data were divided in two groups: static and dynamic. The static variables were altitude and

slope, whereas the dynamic ones were the night time Land Surface Temperature (LSTN), the

Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), and

the daily temperature range; the latter variable expressed as the absolute value of the difference

between the LSTN and the daytime land surface temperature (LSTD).

Altitude values were extracted from the Global 30-Arc-Second Elevation Dataset for the

World, developed by the United States Geological Survey (USGS) (http://eros.usgs.gov, last

access on 03/21/2014). Slope data were derived using the Spatial Analyst extension in ArcGIS

10 software (ESRI1 Inc., Redlands, CA).

NDVI and EVI were extracted fromMOD13Q1 NASA product (250 m spatial resolution and

a temporal resolution of 16 days) and LSTN and LSTD were extracted fromMOD11A2 NASA

product (1 km spatial resolution, temporal resolution 8 days) for the 2008–2012 period. Data

were downloaded from the Land Processes Distributed Active Archive Center (LP DAAC) ser-

vice at NASA website, (http://e4ftl01.cr.usgs.gov/MOLT, accessed on the 06/10/2014). Data were

first submitted to a pre-processing phase of missing data interpolation to fill in pixels without

data. All the data were then aggregated (average) at the same temporal resolution of 16 days.

All the environmental and climatic datasets were converted to Geotiff raster format with the

same extent, spatial resolution (5 km), and Geographic Reference System (GCS- WGS84).

To cover the entire extent of the Mediterranean basin, 1,840 images were downloaded and

processed for LST (46 images per year, 5 years, 8 tiles) and 920 for NDVI and EVI (23 images

per year, 5 years, 8 tiles).

Statistical analysis

Analysis steps. The analysis was based on two main steps: the first (Mahalanobis Distance

analysis) aimed at identifying geographical areas ecologically similar to those where equine and

humanWND cases were detected; the second one (potential mosquito growth) aimed at moni-

toring the daily growth rate of mosquitoes, based on environmental temperature. The two out-

puts were then combined to take into consideration both the environmental suitability and the

seasonality of mosquito growth during the year. The analyses were run using ArcGIS 10 (ESRI1

Inc., Redlands, CA) and R software, version 2.13.1 (R Development Core Team, 2011).

Mahalanobis analysis. The first step was to associate each WND case to the correspond-

ing value of each predictor. In particular, each WND case was assigned to one of 118 16-days

periods (from the 1st of January 2008 to the 29th of December 2012), according to the date of

clinical symptoms onset. Then, the value of each dynamic predictor (NDVI, EVI, LSTD,

LSTN), calculated in the same 16-days period, was associated to the WND case.

The Mahalanobis Distance Statistic (MD) [54] was calculated for the entire set of raster pre-

dictors per each year (from 2008 to 2012).

The Mahalanobis distance in each pixel was calculated as follows:

MD ¼ ðX �mÞ
T
C

�1ðX �mÞ

where X is the vector of environmental and climatic data for each pixel in the raster,m is the

vector of mean values of independent variables for the areas location with WND human and

equine cases, C-1 is the inverse covariance matrix of independent variables for the areas with

WND human cases, and T indicates a vector should be transposed.

WND in Mediterranean Basin and Central Europe
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The MD statistics produced 23 MD values for each pixel in each year. To be able to combine

MD results and daily growth rate of mosquitoes, the MD values for the same 16-days period in

the different years were interpolated through a cubic spline function (‘splinefun’ in R package

‘stats’) returning 365 MD values for a hypothetic year. S1 Fig shows two examples of the 23

MD values obtained each year from 2008 to 2012, and the spline interpolation used to test the

significance of the MD values.

The estimated daily MD statistics follows an approximate Chi-square distribution with n-1

degrees of freedom, where n is the number of predictors. The analysis produced 365 raster

images, in which for each pixel the p-value was reported. P-values close to zero indicate that

the climatic and environmental conditions are statistically different from those present in pix-

els where WND cases were present.

Mosquito growth. The mosquito lifecycle was modelled considering two age compart-

ments model: an aquatic stage (eggs, larvae, pupae) called “L”, and a terrestrial stage (adult

mosquitoes) with “N” being the total density of adult mosquitoes [55]. The model, driven by

environmental temperature (T), was implemented considering density-dependent population

growth rates of mosquitoes (bounded by the carrying capacity of the mosquito larvae), daily

temperature, and daytime length at every geographical latitude. The following system of Ordi-

nary Differential equations (ODEs) was implemented:

dL

dt
¼ ðb

L
ðTÞd N �m

L
ðTÞLÞ 1�

L

K

� �

� b
N
ðTÞL

dN

dt
¼ b

N
ðTÞL �m

N
ðTÞN

8

>

>

<

>

>

:

The birth rate functions for larvae (bL) and adults (bN), the fraction of active mosquitoes δ,

the mortality rate for adultsmN(T) were derived from Rubel et al. [55], all functions are

described in Table 1. The mortality rate for larvae (mL) was modeled through a U-shape func-

tion according to Beck-Johnson et al. [56] in order to consider a wider range of temperature

activity, and lower mortality rate at higher temperatures. Enlarging the range of temperatures

with mosquito activity was necessary to adapt a model developed at Austria latitudes to all

Mediterranean locations. Table 1 shows detailed formulas, parameters, and references of the

mosquito growth model. Birth and mortality parameters and initial values adopted in the

ODEs are reported in S2 Table.

Table 1. Formulas, parameters, and references of the mosquito growthmodel: ordinary differential equations.

Parameter Value Description Reference

L L(temperature, latitude, day of the
year)

Density function of larvae

N N(temperature, latitude, day of the
year)

Density function of adult mosquitoes

T degree Celsius Temperature in degree Celsius

bL bL(T) = 2.325 k(T) birth rate of larvae [55]

bN bN(T) = bL(T)/10 birth rate of adult mosquitoes. It is of the same shape as larvae birth rate, one order of
magnitude lower.

[55]

K 3,300,000 carrying capacity, bounding the growth of mosquito larvae population [57]

mL
mLðTÞ ¼ gL m3

exp T�m4
m5

� �2
� �

Mortality rate of larvae. It is an U-shaped function. [56]

mN mN(T) = mL(T)/10 Mortality rate of adult mosquitoes. It is of the same shape as larvae mortality rate, one
order of magnitude lower.

[55,56]

doi:10.1371/journal.pone.0146024.t001
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The ODEs were run considering daily temperature data calculated as follow: for each

16-days period of each year (from 2008 to 2012), the mean daily temperature was calculated

for each pixel, averaging LSTN and LSTD. This calculation produced 23 mean temperature val-

ues per each pixel and each year. The values of the same 16-days period in the different years

were interpolated through a cubic spline function (‘splinefun’ in R package ‘stats’) to obtain a

series of 365 values (referred to as a hypothetic year).

The outputs were represented in 365 raster images with the modelled number of adult mos-

quitoes for each pixel derived from an initial value of 500,000.

To integrate mosquito growth values with the outputs of the Mahalanobis analysis, the esti-

mated numbers of adult mosquitoes were normalized in a [0–1] interval, by dividing each

value in each pixel by the maximum value reached in the pixel. This permitted to include the

seasonal pattern of mosquito population, without having to take into account the absolute val-

ues of abundance (that is unknown), but considering the probability for the mosquito popula-

tion of being at its maximum in a pixel in a day.

Mapping suitable areas for WND. The 365 raster images of MD p-values and the 365 ras-

ter images of normalized mosquito growth values were then combined with an ‘AND’ operator

to produce 365 maps of suitable areas. Finally, the 365 results were aggregated considering the

maximum value in a 30-day period producing 12 suitability maps (Fig 2).

Validation. The suitability maps were validated using the receiver operating characteristic

(ROC) curve method [58]. The ROC area under the curve (AUC) assesses the capacity of the

model to discriminate the locations where the WND is present from those where it is absent.

AUC values can be interpreted on the scale proposed by Swets [59]: AUC<0.7 poor;

0.7< AUC< 0.90 useful; AUC> 0.9 good. The method requires independent data represent-

ing both disease presence and absence.

Considering the limited number of cases, which made impossible a division into training and

testing sets, k-fold cross validation was used. The original dataset onWND occurrence was ran-

domly partitioned into k subsamples of equal size. Of the k subsamples, one subsample was used

for the model validation, and the other k-1 subsamples were used as model’s input data. The

cross-validation process was then repeated k times, for each of the k subsamples. In particular,

the 274 cases, were randomly subdivided into k partitions, with k = 7. In each of the 7 iterations,

234 cases were used as input data and 40 for the validation of the model (in the last iteration 240

data points were used as model’s input and 34 for the validation). As far as negatives are con-

cerned, 600 background data points for each iteration were created. These data were randomly

generated through a selection of 50 points in each of the 12 final prediction results (to take into

account the different predictions in the different months). The random selection occurred within

a defined area based on the following criteria: (i) more than 5 km away from a disease occurrence

point (i.e. occurrence and background points could not occur in the same cell), (ii) more than 5

km away from another background point, to ensure that there was nomore than one background

point per cell, (iii) the points were randomly located on land.

In each iteration the AUC was calculated and the mean value of the 7 AUC derived from

the k-fold cross validation was retained.

Results

Suitability maps

The final 12 suitability maps, derived by the combination of MD analysis and the mosquito

growth model, revealed an interesting spatio-temporal pattern of WND distribution between

May and December (Fig 2).

WND in Mediterranean Basin and Central Europe
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During the period from May to June, the more suitable areas are recorded in Tunisia (east-

ern coast and central part), Libya, Egypt, and Northern Cyprus; while suitable conditions start

to be recognised also in the European continent only in July. The following months (August,

September, and October) show increased significance in Italy, France, Spain, the Balkan coun-

tries, Morocco, northern Tunisia, and all along the Mediterranean coast of Africa and Middle

East. In November, Europe returns to unsuitable conditions, with the exception of limited

coastal areas facing the Mediterranean Sea (Italy, France, Spain, and Greece). The persistence

of suitable conditions in December is confined to coastal areas in Morocco, Tunisia, Libya,

Egypt, and Israel.

The contribution of the mosquito growth model was significant in the final prediction,

accounting for extreme temperatures (either too high or too low) unsuitable for mosquito sur-

vival. An example of seasonality is reported in S2 Fig. The graph shows how the potential avail-

ability of mosquitoes varies in three different points: desert in Algeria, Padan Plain, and

Apennine Chain (at an altitude of 1000 m). In the desert, temperature was suitable for

Fig 2. West Nile Disease suitability maps (on a monthly basis) fromMay to December for the study area. From January to April, no areas suitable for
WND were predicted (probability was less than 1%).

doi:10.1371/journal.pone.0146024.g002
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mosquito survival only between April and June, whereas in temperate regions such as Padan

Plain, the survival period is longer and lasts fromMay to November.

Validation

According to the ROC method, the capacity of the model to discriminate between presence/

absence locations was excellent: all the iterations had an AUC higher than 0.90, with an average

value of 0.944 (ranging from 0.91 to 0.97) (Fig 3).

Discussion

Both biotic and abiotic factors contribute to the WND occurrence and spread. These factors

include: favourable climatic conditions, suitable habitats for mosquito reproduction and sur-

vival, the presence of migratory birds settlements, the existence of local bird populations able

to sustain the WNV transmission and amplification, the presence of competent bridge vectors

for the transmission to humans, and the presence of susceptible human and equine populations

[32,47,51]. In this study, a two-step approach was used to identify suitable areas for WND in

Central Europe and Mediterranean basin. In a first step, the MD statistic was applied to

Fig 3. Validation of West Nile Disease presence prediction: receiver operating characteristic (ROC) curves in the k-fold (k = 7) iterations.

doi:10.1371/journal.pone.0146024.g003
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climatic and environmental variables, identifying areas similar to those where WND has

occurred in the past. The MDmodel was based on the geographical location of WND horse

and human cases reported in the study area from 2008 to 2012. These data are considered

more reliable than records on WNV detected in mosquitoes or birds, for which the geographi-

cal dispersal range would have been difficult to estimate [60,61]. In a second step, the normal-

ized abundance of mosquito population across the year was estimated through a compartment

model [55,57], considering daily temperature and daytime length at each geographical latitude.

The temporal component (included in both the MD and mosquito growth models) permitted

to combine the two steps and contributed to identifying risk areas in space and time. The

obtained results are consistent to the WNV spread recorded in Europe and in the Mediterra-

nean basin and are in accordance to similar studies performed locally [49]; potential new areas

at risk are also identified providing public health authorities with information on targeted

areas to implement preventive/surveillance measures.

In Northern Africa the model identified areas where WNV actually circulated in the past:

the Egyptian coast [62], Tunisia [63], and Morocco [20,41]. In the eastern part of the Mediter-

ranean basin, Israel represents a country with a long experience of WNV circulation since the

‘50s [64], as well as an important point of entry for pathogens, including those carried by

migratory birds flying from Asia. Phylogenetic studies identified the strain circulating in Israel

in 1998 as the likely ancestor of the virus introduced into North America the following year

[65,66]. A recent review onWNV infection in Israel indicates that nearly 1,400 human cases

have been reported from 2000 to 2012, with the highest incidence in the coastal cities and

peaks in the late Summer months and early Autumn [67]. These findings are fully in agreement

with the spatio-temporal distribution of the model estimates.

In the Balkans, suitable areas were predicted in Romania, with higher risk values in the

proximity of the Danube delta. Since 1996, Romania experienced several WND cases, both in

humans and in horses [15,68–70]. In 2010 human cases were confirmed in the central and

northern provinces of Romania [71], zones correctly identified at major risk by the model.

Other areas in Croatia, Serbia, Bosnia-Herzegovina, and in Russia were identified as suitable.

In particular, in Russia, the model indicated the provinces of Astrakhan, Volgograd, and Ros-

tov as at major risk. Actually, these provinces represent the “core” of WNV circulation in Rus-

sia, accounting for the 58% of the 2,283 human cases recorder in the country from 1999 to

2013 [72].

In Southern Europe, the Camargue region in France was confirmed to be a suitable area.

This region experienced WND several times in the past, both in humans and horses [73–75].

More recently (from 2003 to 2006), neurological syndromes in horses were observed also in the

Var and Eastern Pyrenees Departments [71].

The model predicted high levels of suitability in the western inland part of France, where

WNV infection has not been detected. Though all the considered climatic and environmental

variables tend to support the possibility of occurrence of mosquito-borne infections, the rea-

sons for the absence of WNV circulation in this area of France are difficult to be determined. A

possible explanation could be the absence of wetland locations used by migratory birds as rest-

ing sites [38]. Western migratory flyways only marginally touch the area, being confined along

the Atlantic coast [38].

In Spain, humanWND cases were reported in the 60s and the 70s in the northwest of the

country and in the Ebro delta region, respectively [76]. The Ebro delta is a stopping-off point

for birds migrating between African and European regions. Recently the disease was reported

in Spain in both humans (2001, 2004) and horses (2007–2008). In September 2010 the first

clinical case of WND was detected in a horse in Cadiz, the southernmost province of Spain,

and 35 further cases were reported in three provinces of Andalusia, in southern Spain [77] up
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to December 2010. Between September and October 2011, five new cases in horse stables were

confirmed in the same area [71,78]. Concordantly, the model predicts high probability of dis-

ease occurrence in southern areas of Spain, close to Portugal border, all along the Mediterra-

nean coast and the Ebro valley from August till November.

In Greece the model has produced results comparable to those obtained by Valiakos et al.

[49], who used wild bird surveillance and human data collected between 2010 and 2012 to

identify areas at risk for WND. They identified clusters of disease and potential risk areas in

places at low altitudes and in proximity of water, thus identifying wetland habitat used as rest-

ing and breeding sites for migratory and resident birds.

One of the areas underestimated by the model was Turkey. In the last decade, WNV circula-

tion in Turkey has been extensively documented in humans, birds, mosquitoes, and horses

[25,79–81]. The model identified the Mediterranean coastal zones of Turkey as suitable for

WNV circulation, but underestimated the risk in other areas, such as the Central Anatolia,

where the infection was reported in the past in horses and humans [25,79]. Other climatic and

environmental factors, such as marshy areas and resting sites for migratory birds, already iden-

tified as relevant in Greece [82] as well as in Tunisia [63], might play a significant role and a

more accurate investigation is needed.

The model identified suitable areas in countries that have never reported the disease (e.g.

Libya). These areas deserve a deeper analysis to understand if the absence of the disease in the

countries is associated to a lack of surveillance, to underreporting, or if other climatic and envi-

ronmental characteristics might inhibit the spread of the disease.

At the same time a possible overestimation by the model cannot be excluded. In Europe,

transmission of WNV has two basic cycles and ecosystems: rural (sylvatic) cycle and an urban

cycle [83,84]. Biotic and abiotic factors characterizing the two cycle can be significantly differ-

ent (e.g. altitude, slope, vegetation cover). In our study, clinical cases associated to both cycles

were included in the analysis, this might have brought a greater variability for some climatic

and environmental variables with a potential overestimation of some areas in terms of risk.

The two most relevant variables in driving the MD results were altitude and slope. This was

derived analyzing the box-plots of predictors in two groups: in pixels with high similarity (MD

p-value> = 0.75) and in pixels with low similarity (MD p-value< = 0.25). For all the predic-

tors, the variability in the two groups was very similar, with the exception of altitude and slope,

in which dispersion in the high similarity pixels was much lower than the dispersion in the low

similarity pixels.

The limited number of cases for which the exact geographical location was known seems to

have not affected the accuracy of the outcome, confirming areas in which WND occurred in

the past, but also revealing new risk areas, which require further investigation. Nevertheless,

the accuracy of the model could be improved by adding additional high resolution geolocated

WND cases, as the information on time and place of exposure become available. Another com-

ponent certainly to be improved is the estimate of the seasonal abundance of vectors, this could

be done considering additional variables, such as the presence of water, important for the avail-

ability of mosquito breeding sites [38] or acquiring longitudinal entomological data. This can

be achieved, though, only through a supranational collaborative approach, needed to better

understand the mechanisms behindWNV dissemination and to effectively monitor the spread

of the infection. International surveillance systems, based on agreed standardised criteria [85]

and able to function as effective early warning systems along with the availability of accurate

disease data are pivotal in preventing the spreading of infectious diseases [86]. Spatial models

based on MD analysis can be successfully applied to several vector borne diseases, in which cli-

matic and environmental characteristics play a fundamental role (i.e. Bluetongue, African

horse sickness, Rift Valley fever, Crimean Congo haemorragic fever, etc.).
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The suitability maps produced in this study provide a valuable tool for better planning sur-

veillance activities and fine-tuning preventive measures to decrease the risk for WND occur-

rence in both humans and animals.
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