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���������17 

Estimated trends in relative stock abundance are a primary input to fish stock assessments. 18 

Accurate and precise estimates are essential for successful conservation and management. 19 

Scientifically designed data collection ensures that estimates of relative abundance are unbiased. 20 

However, the statistical efficiency of a design8based estimator may be low under certain 21 

circumstances. We apply a recently developed spatio8temporal model that incorporates habitat 22 

variables to estimate a model8based abundance index for northern shrimp (���������	
����
�) in 23 

the Gulf of Maine. We contrast this spatio8temporal index with a classical design8based index 24 

and evaluate the impacts of differences between the two abundance indices on the stock 25 

assessment. We show that using the spatio8temporal index in the assessment model greatly alters 26 

the estimates of recruitment and spawning stock biomass and the determination of stock status. 27 

Also, incorporating the spatio8temporal index leads to less retrospective bias and outperforms the 28 

model with design8based index in terms of predictive performance through a retrospective cross829 

validation test. Our results suggest that temporal variability of population abundance could be 30 

exaggerated by the design8based estimator and such imprecision may greatly affect the 31 

performance of a stock assessment and subsequent development of management decisions.  32 

 33 

�	 !����"�abundance index,�delta8generalized linear mixed model,�Gaussian random field, 34 

spatial modeling, size8structured assessment model  35 
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� Periodic fishery independent surveys provide important information for fisheries stock 37 

assessment and management. Abundance indices are often the primary information derived from 38 

the surveys, and are essential to perform an adequate assessment. Contemporary assessments 39 

largely rely upon abundance indices which are assumed to be proportional to population 40 

abundance (Maunder and Punt 2004). The precision of these estimates is critical in influencing 41 

uncertainty associated with stock assessment and subsequent development of management 42 

decisions (e.g., total allowable catches).  43 

 There are mainly two types of methods used to estimate abundance indices from fishery 44 

independent surveys: classical design8based estimators and model8based estimators. Fishery 45 

independent surveys are generally well designed statistically with randomized sampling locations. 46 

They usually have stratified random design as appropriate stratification can increase the 47 

precision of estimates with limited sampling effort (Cao et al. 2015). The design8based 48 

estimators infer the population abundance according to the randomness induced by the sampling 49 

design. For example, the commonly used stratified8random design estimator generates the 50 

abundance index as the stratified mean for each stratum weighted by area (Smith 1990). 51 

However, model8based approaches analyze the survey data conditional on a hypothesized 52 

statistical model to control for confounding effects (e.g., differences in survey catchability; 53 

Helser et al. 2004; Thorson and Ward 2014) and make inference according to an assumed 54 

probability function for the response variable (Chen et al. 2004). These two different estimators 55 

have different philosophies of statistical inference (Smith 1990). For design8based theory, 56 

inferences about population quantities are based on assuming they are fixed, whereas application 57 

of models assumes that there is an underlying stochastic process generating the data (Smith 58 
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1990). Both design8 and model8based estimators are commonly used in the United States (Helser 59 

et al. 2004; Thorson et al. 2015).  60 

 Conventional models could produce biased estimates of abundance (Ye and Dennis 2009). 61 

However, spatio8temporal models developed recently have been demonstrated to produce more 62 

precise and accurate abundance indices than either design8based or conventional model8based 63 

approaches (Shelton et al. 2014; Thorson et al. 2015). A spatio8temporal model can account for 64 

spatial dependence which results in estimating a smoothed surface representing spatial variation 65 

in density (Thorson et al. 2015). Also, habitat variables, e.g. (depth, bottom substrate type, 66 

temperature and salinity), can be incorporated into the spatio8temporal model as covariates. This 67 

can potentially lead to more precise estimates of abundance, especially when the underlying 68 

population distribution is largely dependent on habitat variables. In contrast, conventional 69 

design8based approaches cannot explicitly incorporate habitat variables and may produce 70 

imprecise estimates of abundance, particularly in the situation where habitat preference occurs 71 

and when strata included in the sampling design do not capture a large portion of spatial 72 

variation in density. Shelton et al. (2014) showed that the habitat preference of darkblotched 73 

rockfish in selected sampling locations can largely explain the variation in survey catch rates. 74 

Therefore, the temporal variability of population abundance may be exaggerated by a design875 

based estimator when the randomized sampling locations happen to fall in good habitat for some 76 

years, and vice versa (Shelton et al. 2014).  77 

 The spatio8temporal model has been applied to data for 28 groundfish species off the U.S. 78 

West Coast and the results were compared to a conventional model8based approach (Thorson et 79 

al. 2015). In general, the spatio8temporal and stratified indices showed similar trends (Thorson et 80 

al. 2015), while the uncertainty associated with the stratified index was substantially larger than 81 
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that associated with the spatio8temporal index (Thorson et al. 2015). In some cases, a statistically 82 

inefficient annual estimate from a design8based estimator (i.e., spikes in abundance index with 83 

high expected imprecision) could be avoided by using a spatio8temporal model (Shelton et al. 84 

2014). However, few studies have shown the impacts of disparity between spatio8temporal and 85 

design8based indices on stock assessment results and performance. Given that the abundance 86 

index provides primary information for stock assessment, such studies are needed to better 87 

understand the practical importance of spatio8temporal index standardization.   88 

 We implement the spatio8temporal model to data collected from a summer shrimp bottom 89 

trawl survey designed specifically for monitoring northern shrimp (���������	
����
�) in the 90 

western Gulf of Maine (GOM), and results are compared with an existing design8based index 91 

used in the stock assessment. Habitat variables are included in the spatio8temporal model to 92 

evaluate whether inclusion of habitat covariates helps explain the distribution of this species. We 93 

then estimate parameters for a stock assessment model for northern shrimp using the spatio894 

temporal index and compare the assessment model performance and outputs with those obtained 95 

based on the design8based index. Northern shrimp serves as our case study for two reasons: (1) 96 

there is high temporal variation observed in its design8based index, including an unlikely high 97 

spike in 2006; and (2) northern shrimp are considered to be sensitive to environmental changes 98 

(Richards et al. 2012) and there might be high inter8annual variation in their spatial distribution. 99 

This paper presents a real fishery example to demonstrate that spatio8temporal index 100 

standardization can improve the performance of a stock assessment model.  101 

�102 

�(�)%&��103 

���������	��
���
���������
�����
������
�	���
�	�
����104 
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A zero8inflated generalized linear mixed modeling framework was used in this study. 105 

This framework explains the catch (in numbers) as function of two processes: (1) the probability 106 

of sampling habitat where the species is present; and (2) the distribution of catches in habitat 107 

where the species is present.  Sampling in unoccupied habitat will always generate a catch of 108 

zero (a “true zero”), while sampling in occupied habitat may also generate a catch of zero (a 109 

“false zero”; see Martin et al. (2005)).  Specifically, catches were assumed to follow a zero8110 

inflated negative binomial distribution:  111 

Pr�� = �|� > 0
 = �(1 − �) + � × NB(�|�, �) if	� = 0
� × NB(�|�, �) if	� > 0    (1) 112 

where � is the probability of sampling in where the species is present (so 1 − � is the probability 113 

of a “true” zero), and NB(�|�, �) is the negative binomial probability density function evaluated 114 

at value � with size � and probability �.  We specified a quadratic function for the variance of the 115 

negative binomial distribution as a function of the mean: 116 

�� = (1 + ��)� + ����     (2a) 117 

where � is the expected catch in occupied habitat, and where this variance was then used to 118 

calculate the size and probability parameters (� and �) for the negative binomial distribution: 119 

� = �/��      (2b) 120 

� = ��/(1 − �)      (2c) 121 

This distribution involves estimating the probability of sampling occupied habitat (�), the 122 

expected catch in occupied habitat (�), and two variance parameters (�� and ��), and its 123 

expectation is then easily calculated (!(�) = � × �).  124 

 We accounted for spatial dependence in both the probability of occupied habitat (�) and 125 

the density given occupied habitat (�).  Accounting for spatial dependence can lead to better 126 

inference, superior prediction, and a more accurate characterization of the variability of estimates, 127 
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and we did so in this model using Gaussian Markov random fields. Random fields describe 128 

random processes defined over parameter spaces with multiple dimensions. For example, in 129 

fisheries science the spatial parameter might represent variation in population density over two 130 

dimensions (latitude and longitude). Specifically, spatial dependence can be imposed by 131 

modeling a zero8mean stationary Gaussian random field, which defines the expected value, 132 

variance, and covariance of a multivariate realization from a stochastic process. For a zero mean 133 

stationary Gaussian random field w, the value of w at a given location s = (x, y) (where x and y 134 

are the easting and northing for that location) follows a normal distribution and the value of w at 135 

a finite number of locations follows a multivariate normal distribution: 136 

w�#
~	%&(0, ∑Θ),      (3) 137 

where �� is a multivariate normal distribution, and ∑Θ is the covariance matrix of the two 138 

dimensional normal density. We specified that the covariance follows a Matern function (with 139 

smoothness ) =1), which measures spatial proximity in terms of distances between the locations. 140 

The Matern function is slightly more smooth than the exponential correlation function used in 141 

other recent spatio8temporal models in fisheries science (e.g., Kristensen et al. 2014). While we 142 

assumed that the random field is stationary, we included the potential impact of geometric 143 

anisotropy in order to deal with the situation that dependence may be different in different 144 

directions: 145 

∑(#, #*) = �+� ∙ %-./��(‖H(# − #*)‖),    (4) 146 

where H is a linear transformation representing geometric anisotropy and can be derived from 147 

two parameters (see Thorson et al. 2015, Appendix A for details), # − #* is the difference in 148 

eastings and northings between locations # and #*, and ‖H(# − #*)‖ is the distance between 149 
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locations after accounting for geometric anisotropy (see Cressie and Wikle 2011, Eq. 4.9 for 150 

details).  151 

 A piecewise constant approximation, which consists of reducing a random field w 152 

defined over a spatial domain Ω to a set of knots, was used to approximate the random field w 153 

(Thorson et al. 2015). To accomplish this, a desired number of knots �� need to be pre8specified. 154 

Each knot is associated with a constant value of w and covariates, and the value of w at a given 155 

location �
 is determined from the value w at the knot that is nearest to �
. A �8means algorithm 156 

was applied to the location of survey data to determine the locations of all knots. The derived 157 

distribution of knots reflects the sampling intensity of survey locations and stays the same among 158 

years. The area �� of each knot � was then calculated using the Voronoi tool in the �������
�� 159 

package in R (Schnute et al. 2013). The number of pre8specified knots is a compromise between 160 

accuracy of the piecewise constant approximation and computational speed, and we confirmed 161 

that all results are invariant to small increases in the number of knots used.  162 

 The probability of occupied habitat was modeled as a combination of linear predictors 163 

(including random fields):  164 

�3 = logit8� 9:;(<)
(=) + ∑ >?(=)@A(<),BCD?E� + FA(<)

(=) + GA(<),;(<)(=) H,   (5) 165 

where �3 is the probability of occupied habitat for sample 
 at location �
, :;(<) 	is the average 166 

density in year �, >? is the coefficient of covariate @?,  I3 is the nearest knot to sample 
, F3 is the 167 

value of random field at knot � that is persistent among years, GJ,K is the value of random field at 168 

knot � in year �, and �� is the number of covariates that are included in the model. The two 169 

random fields were specified as: 170 

F(=)~%& 90, ΣM(=)H       (6) 171 
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GK(=)~%& 90, ΣNO(=)H      (7) 172 

Similarly, the expected positive catches � given occupied habitat for sample 
 (i.e., the second 173 

model component) was specified as: 174 

�3 = P3exp 9:;(<)
(T) + ∑ >?(T)@A(<),BCD?E� + FA(<)

(T) + GA(<),;(<)(T) H,   (8) 175 

where �
 is the area swept for sample 
. Random fields for positive catches are defined in the 176 

same way as probability of occupied habitat.  177 

The total abundance across the entire modeled spatial domain can then be calculated by 178 

summing up the total abundance of all the knots: 179 

																																				UVK = ∑ -JCW
JE� logit8� 9:XK(=) +∑ >X?(=)@J,?CD?E� +FYJ(=) + GĴ,K(=)H3 exp  180 

																						9:XK(T) + ∑ >X?(T)@J,?CD?E� + FYJ(T) + GĴ,K(T)H,      (9) 181 

where 	UVK is the total abundance in year �, :XK(=), >X?(=), :XK(T), and >X?(T) are fixed effects in the model 182 

and FYJ(=), GĴ,K(=), FYJ(T), and GĴ,K(T) are random effects in the model.  183 

 184 

�����������������
���
����
�	��185 

 Northern shrimp in the GOM are at the southern extent of their range, concentrated in the 186 

southwestern region of the Gulf (Haynes and Wigley 1969; Clark et al. 1999). They are 187 

protandric hermaphrodites, maturing first as males and then transforming to females (Berkely 188 

1931; Bergstrom 2000). In the GOM, northern shrimp are most frequently found in depths less 189 

than 300m (Haynes and Wigley 1969), with juveniles and immature males inhabiting shallower, 190 

inshore waters and adults occupying deeper offshore waters (Apollonio and Dunton 1969; 191 

Haynes and Wigley 1969; Apollonio et al. 1986). Factors that might influence shrimp 192 
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distribution include water temperature, salinity, depth, and substrate type (Haynes and Wigley 193 

1969; Shumway et al. 1985; Apollonio et al. 1986).  194 

We applied the spatio8temporal generalized linear mixed model to data collected from a 195 

summer shrimp bottom trawl survey, which is designed specifically for monitoring northern 196 

shrimp in the western GOM, operated with consistent sampling protocol by the Northeast 197 

Fisheries Science Center in cooperation with the Atlantic States Marine Fisheries Commission 198 

from 1984 to 2013. A stratified random sampling design is used to select stations sampled during 199 

the survey. The survey area is divided into 12 strata and stratification is based primarily on depth, 200 

latitude/longitude, and historical fishing patterns (Figure 1; Clark 1989). However, additional 201 

fixed stations are also visited each year. Design8based indices of abundance and biomass for 202 

stock assessment are derived from data collected at the random stations within six strata (i.e., 203 

strata 1, 3, 5, 6, 7, and 8; Figure 1) that have been sampled most intensively and consistently 204 

over time. Extreme fluctuations have been observed in the design8based survey indices in recent 205 

years, including a spike in the 2006 abundance estimate (see NEFSC 2014, Figure C5. 12.). Such 206 

high variability could not be explained by the stock assessment models, which was one of the 207 

reasons that the recent assessment was not successful for northern shrimp in the GOM (NEFSC 208 

2014). In this study, we included all the data from the summer survey including non8random 209 

stations in the spatio8temporal model assuming that the process of selecting sampling locations is 210 

independent of the process generating differences in population density (Diggle et al. 2010).  211 

 We overlaid a 2 km × 2km grid on the entire survey spatial domain, which resulted in 212 

4977 grid cells.  For each cell we extracted the centroid and recorded the corresponding eastings 213 

and northings. The value of the random field in each cell was assumed to be equal to its value at 214 

the nearest knot according to the piecewise constant approximation. The value of covariates for a 215 
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given knot is the average value of the covariates for all grids that are closest to the knot. The area 216 

of a given knot can be calculated as the summation of areas of all the grid cells associated with it.  217 

 218 

������������
��������
�	�
��������������219 

 We included two static habitat variables (depth and sediment grain size), and two 220 

dynamic habitat variables (bottom temperature and bottom salinity) to estimate the occurrence 221 

and positive model. We assume that these static and dynamic habitat variables are the primary 222 

drivers of spatial variation of shrimp distribution (Shumway et al. 1985; Apollonio et al. 1986; 223 

Clark et al. 2000). During spring through autumn, adult shrimp are distributed primarily in 224 

depths between 90m and 180m (Clark et al. 2000). Temperature may impose restrictions on the 225 

amount of available habitat for northern shrimp in the GOM as seasonal bottom water 226 

temperatures in some areas can exceed the preferred range (085
o
C, Shumway et al. 1985; 227 

Mountain and Jessen 1987). Adult shrimp are thought to seek deep basins as cold water refuges 228 

(Apollonio et al. 1986), therefore depth is likely to explain some variation in shrimp spatial 229 

distribution. Northern shrimp prefer an organic8rich muddy bottom (Hjort and Ruud 1938; 230 

Bigelow and Schroeder 1939; Wigley 1960; Haynes and Wigley 1969), but they are not limited 231 

to this habitat (Schick 1991). Depth and bottom temperature were recorded at each station in the 232 

survey; however, we used habitat data which are available for the entire spatial domain from 233 

other sources. Depth data were from U. S. Geological Survey, Coastal and Marine Geology 234 

Program (http://pubs.usgs.gov/of/1998/of988801/bathy/data.htm). Sediment grain size was 235 

obtained from U. S. Geological Survey Open8File Report 200581001 236 

(http://woodshole.er.usgs.gov/openfile/of200581001/htmldocs/datacatalog.htm#surficial_ 237 
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sediment). The Finite8Volume Community Ocean Model (FVCOM) was used to produce bottom 238 

temperature and bottom salinity data (Chen et al. 2006).  239 

 We only considered the habitat covariates as main effects and did not consider any 240 

interactions among the covariates. For dynamic habitat variables, i.e., bottom temperature and 241 

bottom salinity, effects on the response variable were assumed to be constant across years. Each 242 

of the covariates was standardized to have mean of zero and unit variance prior to inclusion in 243 

the model. This facilitates the interpretation of their coefficients via comparison with others in 244 

the model. The value of covariates in each knot was calculated as the average values in the area 245 

associated with the knot. Models with and without covariates were compared to evaluate if 246 

inclusion of covariates would improve the model fit and provide more accurate and precise 247 

estimates of abundance. This also allowed us to identify which habitat variable has the largest 248 

influence over shrimp spatial density. We looked at whether inclusion of habitat variables 249 

decreased the marginal standard deviation (MSD) of spatial and spatio8temporal variables (see 250 

Thorson et al. 2015, Appendix A for details of calculating MSD). We also calculated the pseudo8251 

R
2
 to determine the proportion of variance from the null model (i.e., the model has no habitat 252 

variables) that was explained by including habitat variables. To do so, we compared the sum of 253 

spatial and spatio8temporal variance from the null model with the same value from a model that 254 

included habitat variables, and calculated the reduction in variance (pseudo8R
2
) as: 255 

�#/[:\	]� = 1 − ^_,`a b^c,`a
^_,deffa b^c,deffa ,    (10) 256 

where subscript � and ���� indicate a particular model � and the null model, respectively.  257 

 258 

��
�������	������259 
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 The model includes both fixed effects (i.e., year and habitat covariates) and random 260 

effects (i.e., random fields). Fixed8effect parameters were estimated by identifying their values 261 

that maximized the marginal likelihood function.  We used Template Model Builder (TMB, 262 

Kristensen et al. 2016), which approximates the marginal likelihood using the Laplace 263 

approximation and then calculates the gradient of the marginal likelihood with respect to all 264 

fixed effects. The probability of random fields was approximated using the stochastic partial 265 

differential equation approach (Lindgren et al. 2011), as explained in detail in Thorson et al. 266 

(2015). The marginal likelihood was maximized using conventional gradient8based non8linear 267 

optimization in the R statistical platform (R Core Development Team 2013). The bias of derived 268 

quantities (e.g., UVK) caused by transforming nonlinear function of fixed and random effects was 269 

accounted for by using a newly developed bias8correction algorithm. Further details can be found 270 

in Thorson and Kristensen (2016). We used R package SpatialDeltaGLMM to estimate all the 271 

parameters of the spatio8temporal index standardization model (https://github.com/nwfsc8272 

assess/geostatistical_delta8GLMM). 273 

 274 

��	��
�������������	�
�������
���
�
����������
���
������275 

 We compared the performance of a stock assessment model for northern shrimp when fit 276 

with spatio8temporal indices and design8based indices (stratified mean). The model was a 277 

seasonal size8structured assessment model developed for hermaphroditic Pandalidae (Cao et al. 278 

2016) and first vetted in a northern shrimp benchmark stock assessment (NEFSC 2014). The 279 

spatio8temporal index used to fit the assessment model was derived from the estimated densities 280 

restricted to the same six strata used to estimate the design8based index. We compared model fit 281 

and retrospective patterns for spawning stock biomass and recruitment produced by the 282 
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assessment model using both spatio8temporal and design8based indices. Retrospective bias was 283 

quantified using a revised rho statistic of Mohn (1999) (Hurtado8Ferro et al. 2014). We also 284 

evaluated the discrepancy between model outputs (i.e., spawning stock biomass and recruitment) 285 

and biological reference points estimated based on spatio8temporal and design8based indices. 286 

Spawning potential ratio8based metrics were calculated to determine the stock status for both 287 

assessments using spatio8temporal and design8based indices.  288 

 Finally, we conducted cross8validation tests using a retrospective method for evaluating 289 

the predictive performance of the size8structured assessment model using design8based and 290 

spatio8temporal indices. One8year8ahead abundance index was forecasted based on the estimates 291 

from the stock assessment with a series of fits in which y = 1,…,13 years of data are left out at 292 

the end. Relative error was calculated to quantify the disparity between model forecast and the 293 

observed index for a given year: 294 

]gh = iajklmn
opqr 8iajklmnstu

iajklmnstu       (11) 295 

where v�w�x8h=yz{
 is the median forecasted value in log8space for year 20148y and  v�w�x8h|}~  is the 296 

design8based or spatio8temporal index in log8space for year 20148y. Uncertainty in the forecasted 297 

abundance index arises from uncertainty in estimated recruitment of the forecasting year. 298 

Average absolute relative error was calculated for comparing the model predictive performance 299 

with design8based and spatio8temporal indices: 300 

�]g = ∑ ��+n�k�n�k
��        (12) 301 

�302 

�(�'*���303 

Page 14 of 41

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences



D
raft

� The estimated MSD was very close to zero for spatial and spatio8temporal variation in 304 

“true” zeros (i.e., F(=) and G(=)). Therefore, we turned off the random fields for modeling the 305 

probability of occupied habitat (i.e., F(=) and G(=)). Including habitat variables did not decrease 306 

the MSD of spatio8temporal variation (�N(T)). However, it slightly reduced the MSD of spatial 307 

variation  �M(T) (Table 1). In combination, habitat variables explained 25.9% of spatial and spatio8308 

temporal variation, which suggests that these habitat variables have an important impact on (but 309 

do not by themselves fully explain) spatial variation in shrimp density.  In general, spatial 310 

variation that is constant over time has a greater magnitude than spatial variation that changes 311 

annually. Therefore, we identified the model included depth, sediment grain size and salinity as 312 

covariates, which had the lowest MSD for spatial variation and highest pseudo8R
2
 (0.262), as the 313 

base model for further analysis. 314 

Comparison of the MSDs of spatial and spatio8temporal variation estimated from the 315 

model with and without each habitat variable indicates that the largest portion of the decreased 316 

spatial variation for shrimp densities was explained by sediment grain size (Table 1), so we 317 

concluded that this variable had the most significant impact on shrimp densities. Salinity, by 318 

itself, did not lead to decreased spatial variation but made an important contribution in the 319 

presence of other habitat variables. Temperature, alone or in the presence of other variables, did 320 

not contribute to the decreased spatial variation for shrimp densities.  321 

The spatio8temporal variation in shrimp density is shown in Figure 2, estimated from the 322 

base model. The highest densities were generally found in the vicinity of Jeffreys Ledge, while 323 

the lowest densities were found in the southeast of Cape Cod and southeast boundary of the 324 

survey area (Figure 2). However, shrimp densities dropped dramatically in the recent two years, 325 

especially for the southern portion of the survey domain where almost no shrimp could be found. 326 
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The model’s raw residuals did not show a strong spatial pattern over years (Figure 3). However, 327 

the model fits to data after 2005 were worse than the fits to data from years prior. The estimated 328 

anisotropy for the model component for positive catches showed that spatial residuals in positive 329 

catches were stretched along the Northeast – Southwest, suggesting that densities are correlated 330 

over a longer distance moving along the shoreline than perpendicular to the shoreline. 331 

 We next compared the estimated spatio8temporal and design8based indices. Given that 332 

the assessment model freely estimates the catchability coefficient associated with this index, the 333 

only information it provides is regarding relative trends.  We therefore standardize all indices 334 

prior to comparing them. The design8based index showed greater temporal variation than the 335 

spatio8temporal index. The spatio8temporal indices for 2006 were much lower than the 336 

corresponding design8based index (spatio8temporal indices: 3.92; design8based index: 6.86).  337 

However, the design8based and spatio8temporal indices showed similar temporal trends, except 338 

some minor discrepancies during the early time period (Figure 4). Trends in spatio8temporal 339 

indices calculated based on six strata and the entire area were almost identical (Figure 4).   340 

 We then fit the size8structured assessment model using the estimated spatio8temporal 341 

index (based on six strata) and compared the results with those obtained from the model using 342 

the design8based index. The results showed improvement in the assessment model fit overall 343 

(total likelihood decreased from 9971.02 to 9945.33). More specifically, there was a substantial 344 

decrease in the likelihood of the abundance index (from 17.993 to 86.795). The predicted 345 

abundance index from the assessment model was within or very close to the 95% interval of the 346 

centered spatio8temporal index for every year (Figure 5a). However, the assessment model 347 

prediction disagreed with the design8based index for some years, e.g., 1994, 2006 and 2007 348 

(Figure 5b). More importantly, the assessment model based on the design8based index failed to 349 
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capture the spike observed in the design8based index of 2006 (Figure 5b). However, the 350 

assessment model using the spatio8temporal index captured this variation reasonably well 351 

(Figure 5a). This suggests that the index derived from the spatio8temporal model provided more 352 

consistent information with other assessment data inputs (e.g., total catch, catch and survey 353 

compositions). Improvement in model diagnostics when using the spatio8temporal index was 354 

also found in retrospective patterns. Retrospective pattern was reduced when the assessment 355 

model was fitted to the spatio8temporal index (Figure 6). Revised Mohn’s rho, measured for 356 

estimated spawning stock biomass and recruitment, reduced by 66.7% and 20%, respectively, 357 

when the spatio8temporal index was used in the assessment model.  358 

 We also compared the outputs from assessment models (i.e., estimated recruitment and 359 

spawning stock biomass) using the spatio8temporal and design8based indices. Both recruitment 360 

and spawning stock biomass estimates based on the spatio8temporal index were more than 50% 361 

larger than those based on design8based index for the recent years, i.e., 2010 – 2013 (Figure 7), 362 

which are of high importance to managers. On average, spawning stock biomass was more 363 

sensitive to the changes in abundance index than recruitment, and spawning stock biomass 364 

estimates based on the design8based index were larger than those based on the spatio8temporal 365 

index on average. Proxy reference points based on spawning potential ratio were calculated to 366 

determine the stock status. F40% based on spatio8temporal and design8based indices were 0.78 367 

and 0.83, respectively. Forty percent of unexploited spawning stock biomass based on spatio8368 

temporal and design8based indices were 2375.9 and 2433.3 mt, respectively. Historical stock 369 

status determined based on design8based index was more optimistic than that based on spatio8370 

temporal index (Figure 8).  371 
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 Finally, we evaluated the predictive performance of assessment models (i.e., forecasting 372 

one8year8ahead abundance index) using spatio8temporal and design8based indices. On average, 373 

the assessment model using the spatio8temporal index performed better in forecasting the one8374 

year8ahead abundance index (��� for spatio8temporal index: 0.52; ��� for design8based index: 375 

0.62) (Figure 9). The assessment model using the design8based index did not converge when 376 

forecasting the abundance index for years 2005, 2010, 2012 and 2013. However, the assessment 377 

model using the spatio8temporal index successfully forecasted the abundance indices for all the 378 

13 years. The models showed similar performance in forecasting abundance indices of 2002, 379 

2008 and 2011, but for 2001, 2004 and 2009 the model using the design8based index had relative 380 

error closer to zero than the model using spatio8temporal index (Figure 9). However, the 381 

assessment model using the spatio8temporal index greatly outperformed the model using the 382 

design8based index in forecasting abundance indices of 2006 and 2007 when the abundance 383 

indices showed large temporal variation.  384 

 385 

&#��'��#%$�386 

 In this study, we evaluated a potential improvement to a size8structured assessment 387 

model for northern shrimp in the GOM. We showed that using a spatio8temporal abundance 388 

index (rather than an abundance index derived from classical design8based estimators) resulted in 389 

improved predictive performance (from a one8step8ahead predictive evaluation) and 390 

retrospective performance (using Mohn’s rho). We therefore conclude that using the spatio8391 

temporal index resulted in improvements in assessment model performance for this stock.  The 392 

spatio8temporal and design8based estimators resulted in particularly large differences in 2006, 393 

but otherwise had similar abundance trends.  Despite these similarities in abundance trends, 394 
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utilizing the spatio8temporal index in the assessment model greatly alters the estimates of 395 

recruitment and spawning stock biomass, especially for the recent years (Figure 7), and also 396 

alters the determination of stock status for some years (Figure 8). Based on the spawning 397 

potential ratio8based metrics, the assessment using a design8based estimator leads to a more 398 

optimistic perception of historical stock status for northern shrimp in the GOM (Figure 8). 399 

 Spatially correlated variation in density is observed in almost all fisheries data collected 400 

from both fishery8dependent and fishery8independent sources (Booth 2000). However, spatial 401 

variation is often ignored or not properly dealt with in statistical analysis and inference. 402 

Consequently, it results in inaccurate and imprecise estimates of relative abundance (Swartzman 403 

et al. 1992; Petitgas 1993) and/or misleading interpretations of various aspects of a species’ 404 

biology (Thorson 2015). By contrast, the spatio8temporal index standardization can provide a 405 

more precise abundance index than design8based estimator or conventional models by explaining 406 

spatial variation in densities (Shelton et al. 2014; Thorson et al. 2015). Specifically, densities in 407 

different locations are assumed to have distinct expected values based on habitat covariates and 408 

spatial terms, and densities at nearby sites are more similar than densities at geographically 409 

remote sites. In contrast, design8based estimator assumes that the mean of a given stratum is 410 

fixed and all locations within that stratum provide exchangeable samples of a single mean. Thus, 411 

the design8based estimator is often more sensitive to outlier observations (Shelton et al. 2014). 412 

This effect can be particularly significant in conjunction with decreasing sampling effort. This 413 

might be the reason that the centered design8based index of 2006 is much larger than 414 

corresponding spatio8temporal index in this study. The number of sampling locations used to 415 

derive the design8based index in 2006 (29) is smaller than other years (40 – 50), and 5 out of 29 416 

sampling locations fell in ‘hot spots’ which had one order of magnitude higher tows than average. 417 
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In this case, relative abundance estimates can benefit greatly from filling spatial gaps (i.e., 418 

predicting un8sampled locations) using a spatio8temporal model.  419 

We included habitat covariates in the spatio8temporal model to capture the important 420 

structure in the mean. This could partially account for the non8stationarity which could arise 421 

from two sources. However, we did not use non8stationary Gaussian random fields in our study 422 

because a previous study suggested that non8stationary Gaussian random fields are not always 423 

necessary to model non8stationary spatial data (Fuglstad et al. 2015). We have shown that 424 

including depth, sediment grain size and salinity as covariates in the model explained 425 

approximately 26.2% percent of spatial and spatio8temporal variation relative to the model that 426 

had no habitat variables, and did so by decreasing the spatial (constant over time) component. 427 

Northern shrimp prefer fine8grained sediments according to our study, perhaps because they 428 

provide more food, e.g., soft bottom benthic invertebrates. Depth had a positive effect on shrimp 429 

density as deeper basins are thought to provide cold water refuges (Apollonio et al. 1986). These 430 

results are consistent with previous studies (Haynes and Wigley 1969; Shumway et al. 1985). 431 

The range of salinity fields used in the model was relatively narrow (31.3 – 35.0 psu), which is 432 

well within the salinity range reported in the previous study (Shumway et al. 1985). Within that 433 

range of salinity, our study indicated that shrimp prefer slightly lower salinity in the study area.  434 

However, bottom temperature did not contribute to explaining spatial variation in our study, 435 

despite its well8documented influence on shrimp population dynamics in this region (Apollonio 436 

et al. 1986; Richards et al. 2012; Richards et al. 2016). Summer bottom temperatures in shrimp 437 

habitat areas have remained several degrees cooler than upper thermal tolerance levels for adult 438 

northern shrimp (Shumway et al. 1985; Bergstrom 2000), even with warming in recent years. 439 

Thus the thermal gradient may have been too weak during the study period to influence the 440 

Page 20 of 41

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences



D
raft

distribution of shrimp. Also, it is possible that the effect of temperature on shrimp density is at 441 

much finer spatial scale which could not be well approximated by the knots. To evaluate this 442 

possibility, we calculated the percentage of total variance in the habitat variables that was 443 

explained by variance among knots. The results showed that except for depth (72%) the 444 

percentages for other variables are about 50%, suggesting that fine8scale variability of habitat 445 

covariates was not used in the model.   446 

Additionally, our spatio8temporal model, which can be considered as an extension of 447 

generalized linear model, assumes that the relationship between habitat and response variables is 448 

linear. Thus, the model would need to be modified to account for dome8shaped or saturating 449 

relationships between habitat variables and shrimp density. We avoided adding polynomial 450 

expansion x
2
, x

3
 and interaction terms to the model because of the risk of overfitting and the 451 

extensive cross8validation testing required to avoid overfitting. Using a habitat suitability index 452 

as the only habitat covariate in the spatio8temporal model might better explain the spatial 453 

variation while keeping the model parsimonious (Breece et al. 2016).  454 

We also note that sampling intensity in marginal strata changed over time as a result of 455 

preferential sampling that led to the over8sampling locations corresponding to high densities (i.e., 456 

strata used to derive design8based index). The standard deviations of predicted densities were 457 

high in the area where sampling intensity was low (Figure S1). Therefore, we cannot eliminate 458 

the possibility that model8based inference for the entire survey domain is biased. However, we 459 

used the spatio8temporal index derived from six strata for comparison, so the conclusions of this 460 

study are less likely to be influenced by violating the model assumption of non8preferential 461 

sampling. We suggest that future research could explore the spatio8temporal models for 462 

preferential sampling (Diggle et al. 2010). The spatio8temporal abundance index was estimated 463 
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from the spatio8temporal model based on the data including non8random stations. However, 464 

excluding the data from non8random stations did not appreciably change the abundance estimates 465 

(Figure S2). 466 

We envision several important topics for future applications of spatio8temporal 467 

estimation methods. Most importantly, spatio8temporal methods could be used to estimate 468 

density for different size or age8classes of fishes and invertebrates (Kristensen et al. 2014). These 469 

estimates could then be processed to generate age or size8composition data for assessment 470 

models.  A model8based approach to estimating age8 or size8composition may be more 471 

statistically efficient for species with spatial segregation of size or age groups (e.g. life history 472 

stages). This spatial predictability is not currently used by design8based or stratified approaches 473 

to compositional standardization (Thorson 2014).  For example, if male northern shrimp are 474 

preferentially distributed in shallow waters, then we expect that design8based estimates of size 475 

composition would be skewed towards male due to the preferential random allocation of sample 476 

locations (i.e., sampled most intensively in strata 1, 3, 5, 6, 7, and 8).  Compositional data have a 477 

strong effect on assessment results for many species (for better or worse; Francis 2011), so we 478 

highly recommend methods to improve statistical efficiency for these data.   479 

 We also recommend continuing research to improve statistical efficiency when 480 

estimating abundance trends from survey samples. We note that multispecies data are a generally 481 

under8utilized source of information regarding habitat suitability.  In particular, detecting a 482 

species with similar habitat preferences may be informative about the likely density of a target 483 

species (Thorson et al. 2015).  We therefore suspect that jointly analyzing survey catch rates for 484 

multiple species may improve density estimates for rare or poorly8sampled species.  Planned 485 

surveys following a randomized design continue to be the most reliable source of information 486 
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regarding stock status for fisheries worldwide.  We therefore encourage any research that allows 487 

better inference to be made using limited historical and expensive ongoing surveys.  488 

 489 

 490 
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��-�	�./�Marginal standard deviation (MSD) of spatial and spatio8temporal variables and 607 

pseudo8R
2
 showing the proportion of variance from the null model (i.e., the model with no 608 

habitat covariates included) that is explained by including covariate(s) in the model. Note that 609 

model with temperature and depth as covariates could not produce converged results. The 610 

saturated model includes depth, sediment, temperature, and salinity as covariates. The model in 611 

boldface is the base model.�612 

���	��
��
��
���	����0��&1�

2�	�����
3�

�M(T) �N(T) 
Saturated model 0.705 0.215 0.259 

�������	��
��	�����	
�	�����	� 4/546� 4/3.6� 4/373�

Saturated model 8 salinity 0.748 0.217 0.173 

Saturated model 8 depth 0.716 0.217 0.237 

Saturated model 8 sediment 0.757 0.213 0.157 

Null model + depth + sediment 0.752 0.215 0.166 

Null model + temperature + salinity  0.818 0.211 0.027 

Null model + depth + salinity  0.760 0.212 0.151 

Null model + temperature + depth  8 8 8 

Null model + temperature + sediment  0.742 0.217 0.185 

Null model + sediment + salinity  0.715 0.215 0.240 

Null model + depth 0.803 0.210 0.061 

Null model + sediment 0.748 0.215 0.174 

Null model + temperature 0.830 0.210 0.001 

Null model + salinity 0.823 0.209 0.017 

Null model 0.831 0.207   

�M(T) and �N(T)are the MSDs of spatial and spatio8temporal random fields for the expected positive 613 

catches given occupied habitat, i.e., the standard deviation of different realizations of density 614 

governed by the same stochastic process. � �615 
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�617 

,�8��	�.. Northern shrimp summer survey area and strata in the Gulf of Maine (coastlines data 618 

from R package ocedata). 619 

,�8��	�3. Density of northern shrimp 1984 – 2013, estimated by the spatio8temporal generalized 620 

linear mixed model. Predicted density is shown for the centroid of each 2 km × 2km grid cell.  621 

,�8��	�9. The raw residuals (1984 – 2013) from the spatio8temporal generalized linear mixed 622 

model. Positive and negative values are in red and blue circles, respectively. 623 

,�8��	�6. Centered abundance indices derived from design8based and model8based spatio8624 

temporal approaches. Design8based index is calculated based on data from six strata (i.e., strata 1, 625 

3, 5, 6, 7, and 8; Figure 1). Two spatio8temporal indices are estimated for different spatial areas 626 

(i.e., strata 1, 3, 5, 6, 7, and 8 and all strata). Note that coefficients of variance (CV) of 627 

abundance indices derived from design8based and model8based spatio8temporal estimators 628 

(based on six strata and all strata) are 1.20, 0.69, and 0.71, respectively. 629 

,�8��	�:. Comparison of stock assessment model fits to (a) spatio8temporal index and (b) 630 

design8based index. Points show predictions from stock assessment model and red lines 631 

represent estimated abundance index with 95% intervals for the (a) spatio8temporal model and 632 

(b) design8based approach. 633 

,�8��	�7. Retrospective analysis of spawning stock biomass and recruitment for assessment 634 

based on design8based and spatio8temporal indices. The full assessment time series (line 635 

extending through 2013) is compared with model runs of identical structure but with 1, 2, …, 8 636 

years of data removed (lines extending through 2005 to 2012) to illustrate retrospective bias, 637 
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which is quantified by Mohn’s ρ (the value is zero when the peeled assessments match exactly 638 

with full time series assessment). 639 

,�8��	�5. Relative changes in percentage for estimated recruitment and spawning stock biomass 640 

based on spatio8temporal and design8based indices. Note that the reference value is the estimates 641 

based on design8based index (for values greater than the reference value, the relative change in 642 

percentage should be a positive number). 643 

,�8��	�;. Status of northern shrimp stock in the Gulf of Maine determined based on stock 644 

assessment with (a) design8based index and (b) spatio8temporal index. The horizontal line (red 645 

and yellow) represents F40% (the fishing mortality at which spawning stock biomass per recruit is 646 

40% of virgin level) and the area above the line indicates that overfishing is occurring. The 647 

vertical line represents spawning stock biomass at 40% of virgin spawning stock biomass and the 648 

area to the left indicates that the stock has been overfished.  649 

,�8��	�<. Relative error of one8year8ahead forecast index based on assessment model using 650 

design8based and spatio8temporal indices. Note that the assessment model using design8based 651 

index fails to forecast the abundance index for years 2005, 2010, 2012 and 2013 because of non8652 

convergence. 653 
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Figure 6. Retrospective analysis of spawning stock biomass and recruitment for assessment based on 
design�based and spatio�temporal indices. The full assessment time series (line extending through 2013) is 
compared with model runs of identical structure but with 1, 2, …, 8 years of data removed (lines extending 

through 2005 to 2012) to illustrate retrospective bias, which is quantified by Mohn’s ρ (the value is zero 
when the peeled assessments match exactly with full time series assessment).  
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