Canadian Journal of Fisheries and Aquatic Sciences

Spatio-temporal index standardization improves the stock assessment of northern shrimp in the Gulf of Maine

Journal:	Canadian Journal of Fisheries and Aquatic Sciences
Manuscript ID	cjfas-2016-0137.R4
Manuscript Type:	Article
Date Submitted by the Author:	22-Feb-2017
Complete List of Authors:	Cao, Jie; University of Maine, school of marine sciences Thorson, James T.; Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA Richards, R. Anne; Northeast Fisheries Science Center, National Marine Fisheries Service Chen, Yong; University of Maine,
Keyword:	abundance index, delta-generalized linear mixed model, Gaussian random field, spatial modeling, size-structured assessment model

SCHOLARONE ${ }^{\text {" }}$
Manuscripts

Spatio-temporal index standardization improves the stock assessment of northern shrimp in the Gulf of Maine

 Jie Cao ${ }^{1 *}$ James T. Thorson ${ }^{2}$ R. Anne Richards ${ }^{3}$ Yong Chen ${ }^{1}$${ }^{1}$ School of Marine Sciences, University of Maine, Orono, Maine 04469, USA
${ }^{2}$ Fisheries Resource Assessment and Monitoring Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA, USA
${ }^{3}$ Northeast Fisheries Science Center, 166 Water St., Woods Hole, MA 02543

Correspondence Email: jie.cao@maine.edu

Abstract

Estimated trends in relative stock abundance are a primary input to fish stock assessments. Accurate and precise estimates are essential for successful conservation and management. Scientifically designed data collection ensures that estimates of relative abundance are unbiased. However, the statistical efficiency of a design-based estimator may be low under certain circumstances. We apply a recently developed spatio-temporal model that incorporates habitat variables to estimate a model-based abundance index for northern shrimp (Pandalus borealis) in the Gulf of Maine. We contrast this spatio-temporal index with a classical design-based index and evaluate the impacts of differences between the two abundance indices on the stock assessment. We show that using the spatio-temporal index in the assessment model greatly alters the estimates of recruitment and spawning stock biomass and the determination of stock status. Also, incorporating the spatio-temporal index leads to less retrospective bias and outperforms the model with design-based index in terms of predictive performance through a retrospective crossvalidation test. Our results suggest that temporal variability of population abundance could be exaggerated by the design-based estimator and such imprecision may greatly affect the performance of a stock assessment and subsequent development of management decisions.

Keywords: abundance index, delta-generalized linear mixed model, Gaussian random field, spatial modeling, size-structured assessment model

INTRODUCTION

Periodic fishery independent surveys provide important information for fisheries stock assessment and management. Abundance indices are often the primary information derived from the surveys, and are essential to perform an adequate assessment. Contemporary assessments largely rely upon abundance indices which are assumed to be proportional to population abundance (Maunder and Punt 2004). The precision of these estimates is critical in influencing uncertainty associated with stock assessment and subsequent development of management decisions (e.g., total allowable catches).

There are mainly two types of methods used to estimate abundance indices from fishery independent surveys: classical design-based estimators and model-based estimators. Fishery independent surveys are generally well designed statistically with randomized sampling locations. They usually have stratified random design as appropriate stratification can increase the precision of estimates with limited sampling effort (Cao et al. 2015). The design-based estimators infer the population abundance according to the randomness induced by the sampling design. For example, the commonly used stratified-random design estimator generates the abundance index as the stratified mean for each stratum weighted by area (Smith 1990). However, model-based approaches analyze the survey data conditional on a hypothesized statistical model to control for confounding effects (e.g., differences in survey catchability; Helser et al. 2004; Thorson and Ward 2014) and make inference according to an assumed probability function for the response variable (Chen et al. 2004). These two different estimators have different philosophies of statistical inference (Smith 1990). For design-based theory, inferences about population quantities are based on assuming they are fixed, whereas application of models assumes that there is an underlying stochastic process generating the data (Smith
1990). Both design- and model-based estimators are commonly used in the United States (Helser et al. 2004; Thorson et al. 2015).

Conventional models could produce biased estimates of abundance (Ye and Dennis 2009). However, spatio-temporal models developed recently have been demonstrated to produce more precise and accurate abundance indices than either design-based or conventional model-based approaches (Shelton et al. 2014; Thorson et al. 2015). A spatio-temporal model can account for spatial dependence which results in estimating a smoothed surface representing spatial variation in density (Thorson et al. 2015). Also, habitat variables, e.g. (depth, bottom substrate type, temperature and salinity), can be incorporated into the spatio-temporal model as covariates. This can potentially lead to more precise estimates of abundance, especially when the underlying population distribution is largely dependent on habitat variables. In contrast, conventional design-based approaches cannot explicitly incorporate habitat variables and may produce imprecise estimates of abundance, particularly in the situation where habitat preference occurs and when strata included in the sampling design do not capture a large portion of spatial variation in density. Shelton et al. (2014) showed that the habitat preference of darkblotched rockfish in selected sampling locations can largely explain the variation in survey catch rates. Therefore, the temporal variability of population abundance may be exaggerated by a designbased estimator when the randomized sampling locations happen to fall in good habitat for some years, and vice versa (Shelton et al. 2014).

The spatio-temporal model has been applied to data for 28 groundfish species off the U.S. West Coast and the results were compared to a conventional model-based approach (Thorson et al. 2015). In general, the spatio-temporal and stratified indices showed similar trends (Thorson et al. 2015), while the uncertainty associated with the stratified index was substantially larger than
that associated with the spatio-temporal index (Thorson et al. 2015). In some cases, a statistically inefficient annual estimate from a design-based estimator (i.e., spikes in abundance index with high expected imprecision) could be avoided by using a spatio-temporal model (Shelton et al. 2014). However, few studies have shown the impacts of disparity between spatio-temporal and design-based indices on stock assessment results and performance. Given that the abundance index provides primary information for stock assessment, such studies are needed to better understand the practical importance of spatio-temporal index standardization.

We implement the spatio-temporal model to data collected from a summer shrimp bottom trawl survey designed specifically for monitoring northern shrimp (Pandalus borealis) in the western Gulf of Maine (GOM), and results are compared with an existing design-based index used in the stock assessment. Habitat variables are included in the spatio-temporal model to evaluate whether inclusion of habitat covariates helps explain the distribution of this species. We then estimate parameters for a stock assessment model for northern shrimp using the spatiotemporal index and compare the assessment model performance and outputs with those obtained based on the design-based index. Northern shrimp serves as our case study for two reasons: (1) there is high temporal variation observed in its design-based index, including an unlikely high spike in 2006; and (2) northern shrimp are considered to be sensitive to environmental changes (Richards et al. 2012) and there might be high inter-annual variation in their spatial distribution. This paper presents a real fishery example to demonstrate that spatio-temporal index standardization can improve the performance of a stock assessment model.

METHODS

Spatio-temporal delta generalized linear mixed model

A zero-inflated generalized linear mixed modeling framework was used in this study.
This framework explains the catch (in numbers) as function of two processes: (1) the probability of sampling habitat where the species is present; and (2) the distribution of catches in habitat where the species is present. Sampling in unoccupied habitat will always generate a catch of zero (a "true zero"), while sampling in occupied habitat may also generate a catch of zero (a "false zero"; see Martin et al. (2005)). Specifically, catches were assumed to follow a zeroinflated negative binomial distribution:

$$
\operatorname{Pr}[C=c \mid C>0]=\left\{\begin{array}{cc}
(1-p)+p \times \mathrm{NB}(C \mid n, r) & \text { if } C=0 \tag{1}\\
p \times \mathrm{NB}(C \mid n, r) & \text { if } C>0
\end{array}\right.
$$

where p is the probability of sampling in where the species is present (so $1-p$ is the probability of a "true" zero), and $\mathrm{NB}(c \mid n, r)$ is the negative binomial probability density function evaluated at value c with size n and probability r. We specified a quadratic function for the variance of the negative binomial distribution as a function of the mean:

$$
\begin{equation*}
\sigma^{2}=\left(1+\theta_{1}\right) \lambda+\theta_{2} \lambda^{2} \tag{2a}
\end{equation*}
$$

where λ is the expected catch in occupied habitat, and where this variance was then used to calculate the size and probability parameters $(r$ and p) for the negative binomial distribution:

$$
\begin{align*}
& r=\lambda / \sigma^{2} \tag{2b}\\
& n=\lambda r /(1-r) \tag{2c}
\end{align*}
$$

This distribution involves estimating the probability of sampling occupied habitat (p), the expected catch in occupied habitat (λ), and two variance parameters (θ_{1} and θ_{2}), and its expectation is then easily calculated $(\mathbb{E}(C)=p \times \lambda)$.

We accounted for spatial dependence in both the probability of occupied habitat (p) and the density given occupied habitat (λ). Accounting for spatial dependence can lead to better inference, superior prediction, and a more accurate characterization of the variability of estimates,
and we did so in this model using Gaussian Markov random fields. Random fields describe random processes defined over parameter spaces with multiple dimensions. For example, in fisheries science the spatial parameter might represent variation in population density over two dimensions (latitude and longitude). Specifically, spatial dependence can be imposed by modeling a zero-mean stationary Gaussian random field, which defines the expected value, variance, and covariance of a multivariate realization from a stochastic process. For a zero mean stationary Gaussian random field w, the value of w at a given location $s=(x, y)$ (where x and y are the easting and northing for that location) follows a normal distribution and the value of w at a finite number of locations follows a multivariate normal distribution:

$$
\begin{equation*}
\mathrm{w}[s] \sim M N\left(0, \sum \Theta\right), \tag{3}
\end{equation*}
$$

where $M N$ is a multivariate normal distribution, and $\sum \Theta$ is the covariance matrix of the two dimensional normal density. We specified that the covariance follows a Matern function (with smoothness $v=1$), which measures spatial proximity in terms of distances between the locations. The Matern function is slightly more smooth than the exponential correlation function used in other recent spatio-temporal models in fisheries science (e.g., Kristensen et al. 2014). While we assumed that the random field is stationary, we included the potential impact of geometric anisotropy in order to deal with the situation that dependence may be different in different directions:

$$
\begin{equation*}
\sum\left(s, s^{\prime}\right)=\sigma_{E}^{2} \cdot \operatorname{Matern}\left(\left\|\mathrm{H}\left(s-s^{\prime}\right)\right\|\right) \tag{4}
\end{equation*}
$$

where H is a linear transformation representing geometric anisotropy and can be derived from two parameters (see Thorson et al. 2015, Appendix A for details), $s-s^{\prime}$ is the difference in eastings and northings between locations s and s^{\prime}, and $\left\|\mathrm{H}\left(s-s^{\prime}\right)\right\|$ is the distance between
locations after accounting for geometric anisotropy (see Cressie and Wikle 2011, Eq. 4.9 for details).

A piecewise constant approximation, which consists of reducing a random field w defined over a spatial domain Ω to a set of knots, was used to approximate the random field w (Thorson et al. 2015). To accomplish this, a desired number of knots n_{j} need to be pre-specified. Each knot is associated with a constant value of w and covariates, and the value of w at a given location s_{i} is determined from the value w at the knot that is nearest to s_{i}. A k-means algorithm was applied to the location of survey data to determine the locations of all knots. The derived distribution of knots reflects the sampling intensity of survey locations and stays the same among years. The area a_{j} of each knot j was then calculated using the Voronoi tool in the PBSmapping package in R (Schnute et al. 2013). The number of pre-specified knots is a compromise between accuracy of the piecewise constant approximation and computational speed, and we confirmed that all results are invariant to small increases in the number of knots used.

The probability of occupied habitat was modeled as a combination of linear predictors (including random fields):

$$
\begin{equation*}
p_{i}=\operatorname{logit}^{-1}\left(d_{T_{(i)}}^{(p)}+\sum_{k=1}^{n_{x}} \beta_{k}^{(p)} x_{J_{(i), k}}+\omega_{J_{(i)}}^{(p)}+\varepsilon_{J_{(i)}, T_{(i)}}^{(p)}\right), \tag{5}
\end{equation*}
$$

where p_{i} is the probability of occupied habitat for sample i at location $s_{i}, d_{T_{(i)}}$ is the average density in year t, β_{k} is the coefficient of covariate x_{k}, J_{i} is the nearest knot to sample i, ω_{i} is the value of random field at knot j that is persistent among years, $\varepsilon_{j, t}$ is the value of random field at knot j in year t, and n_{x} is the number of covariates that are included in the model. The two random fields were specified as:

$$
\begin{equation*}
\omega^{(p)} \sim M N\left(0, \Sigma_{\omega}^{(p)}\right) \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\varepsilon_{t}^{(p)} \sim M N\left(0, \Sigma_{\varepsilon_{t}}^{(p)}\right) \tag{7}
\end{equation*}
$$

Similarly, the expected positive catches λ given occupied habitat for sample i (i.e., the second model component) was specified as:

$$
\begin{equation*}
\lambda_{i}=w_{i} \exp \left(d_{T_{(i)}}^{(\lambda)}+\sum_{k=1}^{n_{x}} \beta_{k}^{(\lambda)} x_{J_{(i), k}}+\omega_{J_{(i)}}^{(\lambda)}+\varepsilon_{J_{(i)}, T_{(i)}}^{(\lambda)}\right), \tag{8}
\end{equation*}
$$

where w_{i} is the area swept for sample i. Random fields for positive catches are defined in the same way as probability of occupied habitat.

The total abundance across the entire modeled spatial domain can then be calculated by summing up the total abundance of all the knots:

$$
\begin{align*}
\hat{b}_{t}= & \sum_{j=1}^{n_{j}} a_{j} \operatorname{logit}^{-1}\left(\hat{d}_{t}^{(p)}+\sum_{k=1}^{n_{x}} \hat{\beta}_{k}^{(p)} x_{j, k}+\widehat{\omega}_{j}^{(p)}+\hat{\varepsilon}_{j, t}^{(p)}\right)_{i} \exp \\
& \left(\hat{d}_{t}^{(\lambda)}+\sum_{k=1}^{n_{x}} \hat{\beta}_{k}^{(\lambda)} x_{j, k}+\widehat{\omega}_{j}^{(\lambda)}+\hat{\varepsilon}_{j, t}^{(\lambda)}\right), \tag{9}
\end{align*}
$$

where \hat{b}_{t} is the total abundance in year $t, \hat{d}_{t}^{(p)}, \hat{\beta}_{k}^{(p)}, \hat{d}_{t}^{(\lambda)}$, and $\hat{\beta}_{k}^{(\lambda)}$ are fixed effects in the model and $\widehat{\omega}_{j}^{(p)}, \hat{\varepsilon}_{j, t}^{(p)}, \widehat{\omega}_{j}^{(\lambda)}$, and $\hat{\varepsilon}_{j, t}^{(\lambda)}$ are random effects in the model.

Application to northern shrimp

Northern shrimp in the GOM are at the southern extent of their range, concentrated in the southwestern region of the Gulf (Haynes and Wigley 1969; Clark et al. 1999). They are protandric hermaphrodites, maturing first as males and then transforming to females (Berkely 1931; Bergstrom 2000). In the GOM, northern shrimp are most frequently found in depths less than 300 m (Haynes and Wigley 1969), with juveniles and immature males inhabiting shallower, inshore waters and adults occupying deeper offshore waters (Apollonio and Dunton 1969; Haynes and Wigley 1969; Apollonio et al. 1986). Factors that might influence shrimp
distribution include water temperature, salinity, depth, and substrate type (Haynes and Wigley 1969; Shumway et al. 1985; Apollonio et al. 1986).

We applied the spatio-temporal generalized linear mixed model to data collected from a summer shrimp bottom trawl survey, which is designed specifically for monitoring northern shrimp in the western GOM, operated with consistent sampling protocol by the Northeast Fisheries Science Center in cooperation with the Atlantic States Marine Fisheries Commission from 1984 to 2013. A stratified random sampling design is used to select stations sampled during the survey. The survey area is divided into 12 strata and stratification is based primarily on depth, latitude/longitude, and historical fishing patterns (Figure 1; Clark 1989). However, additional fixed stations are also visited each year. Design-based indices of abundance and biomass for stock assessment are derived from data collected at the random stations within six strata (i.e., strata $1,3,5,6,7$, and 8 ; Figure 1) that have been sampled most intensively and consistently over time. Extreme fluctuations have been observed in the design-based survey indices in recent years, including a spike in the 2006 abundance estimate (see NEFSC 2014, Figure C5. 12.). Such high variability could not be explained by the stock assessment models, which was one of the reasons that the recent assessment was not successful for northern shrimp in the GOM (NEFSC 2014). In this study, we included all the data from the summer survey including non-random stations in the spatio-temporal model assuming that the process of selecting sampling locations is independent of the process generating differences in population density (Diggle et al. 2010).

We overlaid a $2 \mathrm{~km} \times 2 \mathrm{~km}$ grid on the entire survey spatial domain, which resulted in 4977 grid cells. For each cell we extracted the centroid and recorded the corresponding eastings and northings. The value of the random field in each cell was assumed to be equal to its value at the nearest knot according to the piecewise constant approximation. The value of covariates for a
given knot is the average value of the covariates for all grids that are closest to the knot. The area of a given knot can be calculated as the summation of areas of all the grid cells associated with it.

Habitat covariates and model selection

We included two static habitat variables (depth and sediment grain size), and two dynamic habitat variables (bottom temperature and bottom salinity) to estimate the occurrence and positive model. We assume that these static and dynamic habitat variables are the primary drivers of spatial variation of shrimp distribution (Shumway et al. 1985; Apollonio et al. 1986; Clark et al. 2000). During spring through autumn, adult shrimp are distributed primarily in depths between 90 m and 180 m (Clark et al. 2000). Temperature may impose restrictions on the amount of available habitat for northern shrimp in the GOM as seasonal bottom water temperatures in some areas can exceed the preferred range $\left(0-5^{\circ} \mathrm{C}\right.$, Shumway et al. 1985 ; Mountain and Jessen 1987). Adult shrimp are thought to seek deep basins as cold water refuges (Apollonio et al. 1986), therefore depth is likely to explain some variation in shrimp spatial distribution. Northern shrimp prefer an organic-rich muddy bottom (Hjort and Ruud 1938; Bigelow and Schroeder 1939; Wigley 1960; Haynes and Wigley 1969), but they are not limited to this habitat (Schick 1991). Depth and bottom temperature were recorded at each station in the survey; however, we used habitat data which are available for the entire spatial domain from other sources. Depth data were from U. S. Geological Survey, Coastal and Marine Geology Program (http://pubs.usgs.gov/of/1998/of98-801/bathy/data.htm). Sediment grain size was obtained from U. S. Geological Survey Open-File Report 2005-1001 (http://woodshole.er.usgs.gov/openfile/of2005-1001/htmldocs/datacatalog.htm\#surficial_
sediment). The Finite-Volume Community Ocean Model (FVCOM) was used to produce bottom temperature and bottom salinity data (Chen et al. 2006).

We only considered the habitat covariates as main effects and did not consider any interactions among the covariates. For dynamic habitat variables, i.e., bottom temperature and bottom salinity, effects on the response variable were assumed to be constant across years. Each of the covariates was standardized to have mean of zero and unit variance prior to inclusion in the model. This facilitates the interpretation of their coefficients via comparison with others in the model. The value of covariates in each knot was calculated as the average values in the area associated with the knot. Models with and without covariates were compared to evaluate if inclusion of covariates would improve the model fit and provide more accurate and precise estimates of abundance. This also allowed us to identify which habitat variable has the largest influence over shrimp spatial density. We looked at whether inclusion of habitat variables decreased the marginal standard deviation (MSD) of spatial and spatio-temporal variables (see Thorson et al. 2015, Appendix A for details of calculating MSD). We also calculated the pseudoR^{2} to determine the proportion of variance from the null model (i.e., the model has no habitat variables) that was explained by including habitat variables. To do so, we compared the sum of spatial and spatio-temporal variance from the null model with the same value from a model that included habitat variables, and calculated the reduction in variance $\left(p s e u d o-R^{2}\right)$ as:

$$
\begin{equation*}
\text { pseudo } R^{2}=1-\frac{\sigma_{\omega, m}^{2}+\sigma_{\varepsilon, m}^{2}}{\sigma_{\omega, \text { null }}^{2}+\sigma_{\varepsilon, n u l l}^{2}}, \tag{10}
\end{equation*}
$$

where subscript m and null indicate a particular model m and the null model, respectively.

Model estimation

The model includes both fixed effects (i.e., year and habitat covariates) and random effects (i.e., random fields). Fixed-effect parameters were estimated by identifying their values that maximized the marginal likelihood function. We used Template Model Builder (TMB, Kristensen et al. 2016), which approximates the marginal likelihood using the Laplace approximation and then calculates the gradient of the marginal likelihood with respect to all fixed effects. The probability of random fields was approximated using the stochastic partial differential equation approach (Lindgren et al. 2011), as explained in detail in Thorson et al. (2015). The marginal likelihood was maximized using conventional gradient-based non-linear optimization in the R statistical platform (R Core Development Team 2013). The bias of derived quantities (e.g., \hat{b}_{t}) caused by transforming nonlinear function of fixed and random effects was accounted for by using a newly developed bias-correction algorithm. Further details can be found in Thorson and Kristensen (2016). We used R package SpatialDeltaGLMM to estimate all the parameters of the spatio-temporal index standardization model (https://github.com/nwfsc-assess/geostatistical_delta-GLMM).

Comparison between model-based and design-based indices

We compared the performance of a stock assessment model for northern shrimp when fit with spatio-temporal indices and design-based indices (stratified mean). The model was a seasonal size-structured assessment model developed for hermaphroditic Pandalidae (Cao et al. 2016) and first vetted in a northern shrimp benchmark stock assessment (NEFSC 2014). The spatio-temporal index used to fit the assessment model was derived from the estimated densities restricted to the same six strata used to estimate the design-based index. We compared model fit and retrospective patterns for spawning stock biomass and recruitment produced by the
assessment model using both spatio-temporal and design-based indices. Retrospective bias was quantified using a revised rho statistic of Mohn (1999) (Hurtado-Ferro et al. 2014). We also evaluated the discrepancy between model outputs (i.e., spawning stock biomass and recruitment) and biological reference points estimated based on spatio-temporal and design-based indices. Spawning potential ratio-based metrics were calculated to determine the stock status for both assessments using spatio-temporal and design-based indices.

Finally, we conducted cross-validation tests using a retrospective method for evaluating the predictive performance of the size-structured assessment model using design-based and spatio-temporal indices. One-year-ahead abundance index was forecasted based on the estimates from the stock assessment with a series of fits in which $y=1, \ldots, 13$ years of data are left out at the end. Relative error was calculated to quantify the disparity between model forecast and the observed index for a given year:

$$
\begin{equation*}
R E_{y}=\frac{I_{2014-y}^{p r e I_{2014-y}}}{I_{2014-y}^{o b s}} \tag{11}
\end{equation*}
$$

where $I_{2014-y}^{p r e d}$ is the median forecasted value in log-space for year 2014-y and $I_{2014-y}^{o b s}$ is the design-based or spatio-temporal index in log-space for year 2014-y. Uncertainty in the forecasted abundance index arises from uncertainty in estimated recruitment of the forecasting year.

Average absolute relative error was calculated for comparing the model predictive performance with design-based and spatio-temporal indices:
$A R E=\frac{\sum_{y=1}^{13}\left|R E_{y}\right|}{13}$

RESULTS

The estimated MSD was very close to zero for spatial and spatio-temporal variation in "true" zeros (i.e., $\omega^{(p)}$ and $\varepsilon^{(p)}$). Therefore, we turned off the random fields for modeling the probability of occupied habitat (i.e., $\omega^{(p)}$ and $\varepsilon^{(p)}$). Including habitat variables did not decrease the MSD of spatio-temporal variation $\left(\sigma_{\varepsilon}^{(\lambda)}\right)$. However, it slightly reduced the MSD of spatial variation $\sigma_{\omega}^{(\lambda)}$ (Table 1). In combination, habitat variables explained 25.9% of spatial and spatiotemporal variation, which suggests that these habitat variables have an important impact on (but do not by themselves fully explain) spatial variation in shrimp density. In general, spatial variation that is constant over time has a greater magnitude than spatial variation that changes annually. Therefore, we identified the model included depth, sediment grain size and salinity as covariates, which had the lowest MSD for spatial variation and highest pseudo- $\mathrm{R}^{2}(0.262)$, as the base model for further analysis.

Comparison of the MSDs of spatial and spatio-temporal variation estimated from the model with and without each habitat variable indicates that the largest portion of the decreased spatial variation for shrimp densities was explained by sediment grain size (Table 1), so we concluded that this variable had the most significant impact on shrimp densities. Salinity, by itself, did not lead to decreased spatial variation but made an important contribution in the presence of other habitat variables. Temperature, alone or in the presence of other variables, did not contribute to the decreased spatial variation for shrimp densities.

The spatio-temporal variation in shrimp density is shown in Figure 2, estimated from the base model. The highest densities were generally found in the vicinity of Jeffreys Ledge, while the lowest densities were found in the southeast of Cape Cod and southeast boundary of the survey area (Figure 2). However, shrimp densities dropped dramatically in the recent two years, especially for the southern portion of the survey domain where almost no shrimp could be found.

The model's raw residuals did not show a strong spatial pattern over years (Figure 3). However, the model fits to data after 2005 were worse than the fits to data from years prior. The estimated anisotropy for the model component for positive catches showed that spatial residuals in positive catches were stretched along the Northeast - Southwest, suggesting that densities are correlated over a longer distance moving along the shoreline than perpendicular to the shoreline.

We next compared the estimated spatio-temporal and design-based indices. Given that the assessment model freely estimates the catchability coefficient associated with this index, the only information it provides is regarding relative trends. We therefore standardize all indices prior to comparing them. The design-based index showed greater temporal variation than the spatio-temporal index. The spatio-temporal indices for 2006 were much lower than the corresponding design-based index (spatio-temporal indices: 3.92; design-based index: 6.86). However, the design-based and spatio-temporal indices showed similar temporal trends, except some minor discrepancies during the early time period (Figure 4). Trends in spatio-temporal indices calculated based on six strata and the entire area were almost identical (Figure 4).

We then fit the size-structured assessment model using the estimated spatio-temporal index (based on six strata) and compared the results with those obtained from the model using the design-based index. The results showed improvement in the assessment model fit overall (total likelihood decreased from 9971.02 to 9945.33). More specifically, there was a substantial decrease in the likelihood of the abundance index (from 17.993 to -6.795). The predicted abundance index from the assessment model was within or very close to the 95% interval of the centered spatio-temporal index for every year (Figure 5a). However, the assessment model prediction disagreed with the design-based index for some years, e.g., 1994, 2006 and 2007 (Figure 5b). More importantly, the assessment model based on the design-based index failed to
capture the spike observed in the design-based index of 2006 (Figure 5b). However, the assessment model using the spatio-temporal index captured this variation reasonably well (Figure 5a). This suggests that the index derived from the spatio-temporal model provided more consistent information with other assessment data inputs (e.g., total catch, catch and survey compositions). Improvement in model diagnostics when using the spatio-temporal index was also found in retrospective patterns. Retrospective pattern was reduced when the assessment model was fitted to the spatio-temporal index (Figure 6). Revised Mohn's rho, measured for estimated spawning stock biomass and recruitment, reduced by 66.7% and 20%, respectively, when the spatio-temporal index was used in the assessment model.

We also compared the outputs from assessment models (i.e., estimated recruitment and spawning stock biomass) using the spatio-temporal and design-based indices. Both recruitment and spawning stock biomass estimates based on the spatio-temporal index were more than 50% larger than those based on design-based index for the recent years, i.e., 2010 - 2013 (Figure 7), which are of high importance to managers. On average, spawning stock biomass was more sensitive to the changes in abundance index than recruitment, and spawning stock biomass estimates based on the design-based index were larger than those based on the spatio-temporal index on average. Proxy reference points based on spawning potential ratio were calculated to determine the stock status. $\mathrm{F}_{40 \%}$ based on spatio-temporal and design-based indices were 0.78 and 0.83 , respectively. Forty percent of unexploited spawning stock biomass based on spatiotemporal and design-based indices were 2375.9 and 2433.3 mt , respectively. Historical stock status determined based on design-based index was more optimistic than that based on spatiotemporal index (Figure 8).

Finally, we evaluated the predictive performance of assessment models (i.e., forecasting one-year-ahead abundance index) using spatio-temporal and design-based indices. On average, the assessment model using the spatio-temporal index performed better in forecasting the one-year-ahead abundance index (ARE for spatio-temporal index: 0.52 ; $A R E$ for design-based index: 0.62) (Figure 9). The assessment model using the design-based index did not converge when forecasting the abundance index for years 2005, 2010, 2012 and 2013. However, the assessment model using the spatio-temporal index successfully forecasted the abundance indices for all the 13 years. The models showed similar performance in forecasting abundance indices of 2002, 2008 and 2011, but for 2001, 2004 and 2009 the model using the design-based index had relative error closer to zero than the model using spatio-temporal index (Figure 9). However, the assessment model using the spatio-temporal index greatly outperformed the model using the design-based index in forecasting abundance indices of 2006 and 2007 when the abundance indices showed large temporal variation.

DISCUSSION

In this study, we evaluated a potential improvement to a size-structured assessment model for northern shrimp in the GOM. We showed that using a spatio-temporal abundance index (rather than an abundance index derived from classical design-based estimators) resulted in improved predictive performance (from a one-step-ahead predictive evaluation) and retrospective performance (using Mohn's rho). We therefore conclude that using the spatiotemporal index resulted in improvements in assessment model performance for this stock. The spatio-temporal and design-based estimators resulted in particularly large differences in 2006, but otherwise had similar abundance trends. Despite these similarities in abundance trends,
utilizing the spatio-temporal index in the assessment model greatly alters the estimates of recruitment and spawning stock biomass, especially for the recent years (Figure 7), and also alters the determination of stock status for some years (Figure 8). Based on the spawning potential ratio-based metrics, the assessment using a design-based estimator leads to a more optimistic perception of historical stock status for northern shrimp in the GOM (Figure 8).

Spatially correlated variation in density is observed in almost all fisheries data collected from both fishery-dependent and fishery-independent sources (Booth 2000). However, spatial variation is often ignored or not properly dealt with in statistical analysis and inference.

Consequently, it results in inaccurate and imprecise estimates of relative abundance (Swartzman et al. 1992; Petitgas 1993) and/or misleading interpretations of various aspects of a species’ biology (Thorson 2015). By contrast, the spatio-temporal index standardization can provide a more precise abundance index than design-based estimator or conventional models by explaining spatial variation in densities (Shelton et al. 2014; Thorson et al. 2015). Specifically, densities in different locations are assumed to have distinct expected values based on habitat covariates and spatial terms, and densities at nearby sites are more similar than densities at geographically remote sites. In contrast, design-based estimator assumes that the mean of a given stratum is fixed and all locations within that stratum provide exchangeable samples of a single mean. Thus, the design-based estimator is often more sensitive to outlier observations (Shelton et al. 2014). This effect can be particularly significant in conjunction with decreasing sampling effort. This might be the reason that the centered design-based index of 2006 is much larger than corresponding spatio-temporal index in this study. The number of sampling locations used to derive the design-based index in 2006 (29) is smaller than other years $(40-50)$, and 5 out of 29 sampling locations fell in 'hot spots' which had one order of magnitude higher tows than average.

In this case, relative abundance estimates can benefit greatly from filling spatial gaps (i.e., predicting un-sampled locations) using a spatio-temporal model.

We included habitat covariates in the spatio-temporal model to capture the important structure in the mean. This could partially account for the non-stationarity which could arise from two sources. However, we did not use non-stationary Gaussian random fields in our study because a previous study suggested that non-stationary Gaussian random fields are not always necessary to model non-stationary spatial data (Fuglstad et al. 2015). We have shown that including depth, sediment grain size and salinity as covariates in the model explained approximately 26.2% percent of spatial and spatio-temporal variation relative to the model that had no habitat variables, and did so by decreasing the spatial (constant over time) component. Northern shrimp prefer fine-grained sediments according to our study, perhaps because they provide more food, e.g., soft bottom benthic invertebrates. Depth had a positive effect on shrimp density as deeper basins are thought to provide cold water refuges (Apollonio et al. 1986). These results are consistent with previous studies (Haynes and Wigley 1969; Shumway et al. 1985). The range of salinity fields used in the model was relatively narrow (31.3-35.0 psu), which is well within the salinity range reported in the previous study (Shumway et al. 1985). Within that range of salinity, our study indicated that shrimp prefer slightly lower salinity in the study area. However, bottom temperature did not contribute to explaining spatial variation in our study, despite its well-documented influence on shrimp population dynamics in this region (Apollonio et al. 1986; Richards et al. 2012; Richards et al. 2016). Summer bottom temperatures in shrimp habitat areas have remained several degrees cooler than upper thermal tolerance levels for adult northern shrimp (Shumway et al. 1985; Bergstrom 2000), even with warming in recent years. Thus the thermal gradient may have been too weak during the study period to influence the
distribution of shrimp. Also, it is possible that the effect of temperature on shrimp density is at much finer spatial scale which could not be well approximated by the knots. To evaluate this possibility, we calculated the percentage of total variance in the habitat variables that was explained by variance among knots. The results showed that except for depth (72\%) the percentages for other variables are about 50%, suggesting that fine-scale variability of habitat covariates was not used in the model.

Additionally, our spatio-temporal model, which can be considered as an extension of generalized linear model, assumes that the relationship between habitat and response variables is linear. Thus, the model would need to be modified to account for dome-shaped or saturating relationships between habitat variables and shrimp density. We avoided adding polynomial expansion x^{2}, x^{3} and interaction terms to the model because of the risk of overfitting and the extensive cross-validation testing required to avoid overfitting. Using a habitat suitability index as the only habitat covariate in the spatio-temporal model might better explain the spatial variation while keeping the model parsimonious (Breece et al. 2016).

We also note that sampling intensity in marginal strata changed over time as a result of preferential sampling that led to the over-sampling locations corresponding to high densities (i.e., strata used to derive design-based index). The standard deviations of predicted densities were high in the area where sampling intensity was low (Figure S1). Therefore, we cannot eliminate the possibility that model-based inference for the entire survey domain is biased. However, we used the spatio-temporal index derived from six strata for comparison, so the conclusions of this study are less likely to be influenced by violating the model assumption of non-preferential sampling. We suggest that future research could explore the spatio-temporal models for preferential sampling (Diggle et al. 2010). The spatio-temporal abundance index was estimated
from the spatio-temporal model based on the data including non-random stations. However, excluding the data from non-random stations did not appreciably change the abundance estimates (Figure S2).

We envision several important topics for future applications of spatio-temporal estimation methods. Most importantly, spatio-temporal methods could be used to estimate density for different size or age-classes of fishes and invertebrates (Kristensen et al. 2014). These estimates could then be processed to generate age or size-composition data for assessment models. A model-based approach to estimating age- or size-composition may be more statistically efficient for species with spatial segregation of size or age groups (e.g. life history stages). This spatial predictability is not currently used by design-based or stratified approaches to compositional standardization (Thorson 2014). For example, if male northern shrimp are preferentially distributed in shallow waters, then we expect that design-based estimates of size composition would be skewed towards male due to the preferential random allocation of sample locations (i.e., sampled most intensively in strata $1,3,5,6,7$, and 8). Compositional data have a strong effect on assessment results for many species (for better or worse; Francis 2011), so we highly recommend methods to improve statistical efficiency for these data.

We also recommend continuing research to improve statistical efficiency when estimating abundance trends from survey samples. We note that multispecies data are a generally under-utilized source of information regarding habitat suitability. In particular, detecting a species with similar habitat preferences may be informative about the likely density of a target species (Thorson et al. 2015). We therefore suspect that jointly analyzing survey catch rates for multiple species may improve density estimates for rare or poorly-sampled species. Planned surveys following a randomized design continue to be the most reliable source of information
regarding stock status for fisheries worldwide. We therefore encourage any research that allows better inference to be made using limited historical and expensive ongoing surveys.

ACKNOWLEDEGEMENTS

Financial support for this study was provided by the Maine Sea Grant Program, the Maine Department of Marine Resources and the NOAA FATE program. We thank Margaret Hunter and the Atlantic States Marine Fisheries Commission Northern Shrimp Technical Committee for informative discussions on the northern shrimp stock assessment and for providing the data on which this study is based.

REFERENCES

Apollonio, S., and Dunton, E.E. 1969. The northern shrimp, Pandalus borealis, in the Gulf of Maine. Completion Rept., ME Dept. Sea and Shore Fisheries, Proj. 3-12-R, 81p.

Apollonio, S., Stevenson, D., and Dunton, E.E. 1986. Effects of temperature on the biology of the northern shrimp, Pandalus borealis, in the Gulf of Maine. NOAA Tech. Rep. NMFS 42. Available online at: http://spo.nwr.noaa.gov/tr42.pdf

Bigelow, H.A., and Schroeder, W.C. 1939. Notes on the fauna above mud bottoms in deep water in the Gulf of Maine. Biol. Bull. (Woods Hole) 76: 305-324.

Booth, A.J. 2000. Incorporating the spatial component of fisheries data into stock assessment models. ICES J. Mar. Sci. 57(4): 858-865.

Breece, M.W., Fox, D.A., Dunton, K.J., Frisk, M.G., Jordaan, A. and Oliver, M.J. 2016. Dynamic seascapes predict the marine occurrence of an endangered species: Atlantic Sturgeon Acipenser oxyrinchus oxyrinchus. Methods Ecol. Evol. 7: 725-733.

Cao, J., Chen, Y., Chang, J.H., and Chen, X. 2014. An evaluation of an inshore bottom trawl survey design for American lobster (Homarus americanus) using computer simulations. J. Northwest Atl. Fish. Sci. 46: 27-39.

Cao, J., Chen, Y., Richards, A. 2017. Improving assessment of Pandalus stocks using a seasonal, size-structured assessment model with environmental variables: Part I: Model description and application. Can. J. Fish. Aquat. Sci. 74(3): 349-362.

Chen, C., Beardsley, R.C., Cowles, G.W. 2006. An unstructured-grid, finite-volume coastal ocean model (FVCOM) system. Oceanography 19: 78-89.

Clark, S.H. 1989. State-Federal northern shrimp survey. In: Proceedings of a workshop on bottom trawl surveys. Azarovitz, T.R., McGurrin, J. and Seagraves, R. (eds.). ASMFC Spec. Rept. 17: 27-29.

Clark, S.H., Cadrin, S.X., Schick, D.F., Diodati, P.J., Armstrong, M.P., and McCarron, D. 2000. The Gulf of Maine northern shrimp (Pandalus borealis) fishery: a review of the record. J. Northw. Atl. Fish. Sci. 27: 193-226.

Cressie, N., and Wikle, C.K. 2011. Statistics for Spatio-Temporal Data. JohnWiley \& Sons.

Diggle, P.J., Menezes, R., and Su, T. 2010. Geostatistical inference under preferential sampling. J. Roy. Statist. Soc. Ser. C 59: 191-232.

Francis, R.I.C.C., 2011. Data weighting in statistical fisheries stock assessment models. Can. J. Fish. Aquat. Sci. 68: 1124-1138.

Fuglstad, G.A., Simpson, D., Lindgren, F. and Rue, H. 2015. Does non-stationary spatial data always require non-stationary random fields? Spat. Stat.14: 505-531.

Haynes, E.B., and Wigley, R.L. 1969. Biology of the northern shrimp, Pandalus borealis, in the Gulf of Maine. Trans. Am. Fish. Soc. 98(1): 60-76.

Helser, T.E., Punt, A.E., and Methot, R.D. 2004. A generalized linear mixed model analysis of a multi-vessel fishery resource survey. Fish. Res. 70: 251-264.

Hjort, J., and Ruud, J.T. 1938. Deep-sea prawn fisheries and their problems. Hvalr. Skr. 17: 144.

Hurtado-Ferro, F., Szuwalski, C.S., Valero, J.L., Anderson, S.C., Cunningham, C.J., Johnson, K. F., Licandeo, R., McGilliard, C.R., Monnahan, C.C., Muradian, M.L., Ono, K., Vert-Pre, K.A., Whitten, A.R., and Punt, A.E. 2014. Looking in the rear-view mirror: bias and retrospective patterns in integrated, age-structured stock assessment models. ICES J. Mar. Sci. 72: 99-110.

Kristensen, K., Thygesen, U.H., Andersen, K.H., and Beyer, J.E. 2014. Estimating spatiotemporal dynamics of size-structured populations. Can. J. Fish. Aquat. Sci. 71: 326-336.

Kristensen, K., Nielsen, A., Berg, C.W., Skaug, H., and Bell, B.M. 2016. TMB: Automatic Differentiation and Laplace Approximation. J. Stat. Softw. 70(5): 1-21.

Lindgren, F., Rue, H., and Lindstrom, J. 2011. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. J. Roy. Statist. Soc. Ser. B 73: 423-498.

Martin, T.G., Wintle, B.A., Rhodes, J.R., Kuhnert, P.M., Field, S.A., Low-Choy, S.J., Tyre, A.J. and Possingham, H.P., 2005. Zero tolerance ecology: improving ecological inference by modelling the source of zero observations. Ecol. Lett. 8(11): 1235-1246.

Maunder, M.N., and Punt, A.E. 2004. Standardizing catch and effort data: a review of recent approaches. Fish. Res. 70: 141-159.

Mountain, D.G., and Jessen, P.F. 1987. Bottom waters of the Gulf of Maine, 1978-1983. J. Mar. Res. 45: 319-345.

Northeast Fisheries Science Center (NEFSC). 2014. $58^{\text {th }}$ Northeast Regional Stock Assessment Workshop (58th SAW) Assessment Report. US Dept Commer, Northeast Fish Sci Cent Ref Doc.

14-04; 784 p. Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543-1026, or online at http://nefsc.noaa.gov/publications/

Petitgas, P. 1993. Geostatistics for fish stock assessments: a review and an acoustic application. ICES J. Mar. Sci. 50(3): 285-298.

R Core Development Team. 2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.

Richards, R. A., Fogarty, M., Mountain, D., Taylor, M. 2012. Climate change and northern shrimp recruitment variability in the Gulf of Maine. Mar. Ecol. Prog. Ser. 464: 167-178.

Richards, R.A., O'Reilly, J. E., Hyde, K.W.J. 2016. Use of satellite data to identify critical periods for early life survival of northern shrimp in the Gulf of Maine. Fish. Oceanogr. 25(3): 306-319.

Schick, D.F. 1991. Pandalid shrimp distribution relative to bottom type and availability to commercial and research trawls in the Gulf of Maine. ICES C.M. 1991/K:8 p. 7.

Schnute, J.T., Boers, N., Haigh, R., Grandin, C., Johnson, A., Wessel, P., and Antonio, F. 2013. PBSmapping: Mapping Fisheries Data and Spatial Analysis Tools. http://CRAN.Rproject.org/package $=$ PBSmapping

Shelton, A.O., Thorson, J.T., Ward, E.J., and Feist, B.E. 2014. Spatial semiparametric models improve estimates of species abundance and distribution. Can. J. Fish. Aquat. Sci. 71: 16551666.

Shumway, S.E., Perkins, H.C., Schick, D.F., and Stickney, A.P. 1985. Synopsis of the biological data of the pink shrimp Pandalus borealis (Krøyer, 1938) FAO Fisheries Synopsis, No 144; NOAA Tech. Rep., NMFS 30, 57p. Available online at: http://spo.nwr.noaa.gov/tr30.pdf

Skaug, H., and Fournier, D. 2006. Automatic approximation of the marginal likelihood in nonGaussian hierarchical models. Comput. Stat. Data An. 51: 699-709.

Smith, S. J. 1990. Use of statistical models for the estimation of abundance from groundfish trawl survey data. Can. J. Fish. Aquat. Sci. 47: 894-903.

Swartzman, G., Huang, C., and Kaluzny, S. 1992. Spatial analysis of Bering Sea groundfish survey data using Generalized Additive Models. Can. J. Fish. Aquat. Sci. 49: 1366-1378.

Thorson, J.T. 2014. Standardizing compositional data for stock assessment. ICES J. Mar. Sci. 71: 1117-1128.

Thorson, J.T. 2015. Spatio-temporal variation in fish condition is not consistently explained by density, temperature, or season for California Current groundfishes. Mar. Ecol. Prog. Ser. 526: 101-112.

Thorson, J.T., and Kristensen, K. 2016. Implementing a generic method for bias correction in statistical models using random effects, with spatial and population dynamics examples. Fish. Res. 175: 66-74.

Thorson, J.T., Scheuerell, M.D., Shelton, A.O., See, K.E., Skaug, H.J., Kristensen, K., 2015. Spatial factor analysis: a new tool for estimating joint species distributions and correlations in species range. Methods Ecol. Evol. 6: 627-637.

Thorson, J.T., Shelton, A.O., Ward, E.J., and Skaug, H.J. 2015. Geostatistical delta-generalized linear mixed models improve precision for estimated abundance indices for West Coast groundfishes. ICES J. Mar. Sci. 72(5): 1297-1310.

Thorson, J.T., and Ward, E. 2013. Accounting for space-time interactions in index standardization models. Fish. Res. 147: 426-433.

Thorson, J.T., and Ward, E.J. 2014. Accounting for vessel effects when standardizing catch rates from cooperative surveys. Fish. Res. 155: 168-176.

Wigley, R.L. 1960. Note on the distribution of Pandalidae (Crustacea, Decapoda) in New England waters. Ecol. 41: 564-570.

Ye, Y., and Darren, D. 2009. How reliable are the abundance indices derived from commercial catch-effort standardization? Can. J. Fish. Aquat. Sci. 66(7): 1169-1178.

Table 1. Marginal standard deviation (MSD) of spatial and spatio-temporal variables and pseudo- R^{2} showing the proportion of variance from the null model (i.e., the model with no habitat covariates included) that is explained by including covariate(s) in the model. Note that model with temperature and depth as covariates could not produce converged results. The saturated model includes depth, sediment, temperature, and salinity as covariates. The model in boldface is the base model.

Model	Random fields (MSD)		Pseudo-R ${ }^{2}$
	$\sigma_{\omega}^{(\lambda)}$	$\sigma_{\varepsilon}^{(\lambda)}$	
Saturated model	0.705	0.215	0.259
Saturated model - temperature	0.704	0.214	0.262
Saturated model - salinity	0.748	0.217	0.173
Saturated model - depth	0.716	0.217	0.237
Saturated model - sediment	0.757	0.213	0.157
Null model + depth + sediment	0.752	0.215	0.166
Null model + temperature + salinity	0.818	0.211	0.027
Null model + depth + salinity	0.760	0.212	0.151
Null model + temperature + depth	-	-	-
Null model + temperature + sediment	0.742	0.217	0.185
Null model + sediment + salinity	0.715	0.215	0.240
Null model + depth	0.803	0.210	0.061
Null model + sediment	0.748	0.215	0.174
Null model + temperature	0.830	0.210	0.001
Null model + salinity	0.823	0.209	0.017
Null model	0.831	0.207	

$\overline{\sigma_{\omega}^{(\lambda)}}$ and $\sigma_{\varepsilon}^{(\lambda)}$ are the MSDs of spatial and spatio-temporal random fields for the expected positive catches given occupied habitat, i.e., the standard deviation of different realizations of density governed by the same stochastic process.

FIGURE CAPTIONS

Figure 1. Northern shrimp summer survey area and strata in the Gulf of Maine (coastlines data from R package ocedata).

Figure 2. Density of northern shrimp 1984 - 2013, estimated by the spatio-temporal generalized linear mixed model. Predicted density is shown for the centroid of each $2 \mathrm{~km} \times 2 \mathrm{~km}$ grid cell.

Figure 3. The raw residuals (1984-2013) from the spatio-temporal generalized linear mixed model. Positive and negative values are in red and blue circles, respectively.

Figure 4. Centered abundance indices derived from design-based and model-based spatiotemporal approaches. Design-based index is calculated based on data from six strata (i.e., strata 1, 3, 5, 6, 7, and 8; Figure 1). Two spatio-temporal indices are estimated for different spatial areas (i.e., strata $1,3,5,6,7$, and 8 and all strata). Note that coefficients of variance (CV) of abundance indices derived from design-based and model-based spatio-temporal estimators (based on six strata and all strata) are $1.20,0.69$, and 0.71 , respectively.

Figure 5. Comparison of stock assessment model fits to (a) spatio-temporal index and (b) design-based index. Points show predictions from stock assessment model and red lines represent estimated abundance index with 95% intervals for the (a) spatio-temporal model and (b) design-based approach.

Figure 6. Retrospective analysis of spawning stock biomass and recruitment for assessment based on design-based and spatio-temporal indices. The full assessment time series (line extending through 2013) is compared with model runs of identical structure but with $1,2, \ldots, 8$ years of data removed (lines extending through 2005 to 2012) to illustrate retrospective bias,
which is quantified by Mohn's ρ (the value is zero when the peeled assessments match exactly with full time series assessment).

Figure 7. Relative changes in percentage for estimated recruitment and spawning stock biomass based on spatio-temporal and design-based indices. Note that the reference value is the estimates based on design-based index (for values greater than the reference value, the relative change in percentage should be a positive number).

Figure 8. Status of northern shrimp stock in the Gulf of Maine determined based on stock assessment with (a) design-based index and (b) spatio-temporal index. The horizontal line (red and yellow) represents $\mathrm{F}_{40 \%}$ (the fishing mortality at which spawning stock biomass per recruit is 40% of virgin level) and the area above the line indicates that overfishing is occurring. The vertical line represents spawning stock biomass at 40% of virgin spawning stock biomass and the area to the left indicates that the stock has been overfished.

Figure 9. Relative error of one-year-ahead forecast index based on assessment model using design-based and spatio-temporal indices. Note that the assessment model using design-based index fails to forecast the abundance index for years 2005, 2010, 2012 and 2013 because of nonconvergence.

Figure 1. Northern shrimp summer survey area and strata in the Gulf of Maine (coastlines data from R package ocedata).

Figure 2. Density of northern shrimp 1984 - 2013, estimated by the spatio-temporal generalized linear mixed model. Predicted density is shown for the centroid of each $2 \mathrm{~km} \times 2 \mathrm{~km}$ grid cell.

Figure 3. The raw residuals (1984-2013) from the spatio-temporal generalized linear mixed model. Positive and negative values are in red and blue circles, respectively.

Figure 4. Centered abundance indices derived from design-based and model-based spatio-temporal approaches. Design-based index is calculated based on data from six strata (i.e., strata 1, 3, 5, 6, 7, and 8; Figure 1). Two spatio-temporal indices are estimated for different spatial areas (i.e., strata 1, 3, 5, 6, 7, and 8 and all strata). Note that coefficients of variance (CV) of abundance indices derived from design-based and model-based spatio-temporal estimators (based on six strata and all strata) are 1.20, 0.69, and 0.71, respectively.

Figure 5. Comparison of stock assessment model fits to (a) spatio-temporal index and (b) design-based index. Points show predictions from stock assessment model and red lines represent estimated abundance index with 95% intervals for the (a) spatio-temporal model and (b) design-based approach.

Figure 6. Retrospective analysis of spawning stock biomass and recruitment for assessment based on design-based and spatio-temporal indices. The full assessment time series (line extending through 2013) is compared with model runs of identical structure but with $1,2, \ldots, 8$ years of data removed (lines extending through 2005 to 2012) to illustrate retrospective bias, which is quantified by Mohn's ρ (the value is zero when the peeled assessments match exactly with full time series assessment).

Figure 7. Relative changes in percentage for estimated recruitment and spawning stock biomass based on spatio-temporal and design-based indices. Note that the reference value is the estimates based on designbased index (for values greater than the reference value, the relative change in percentage should be a positive number).

Figure 8. Status of northern shrimp stock in the Gulf of Maine determined based on stock assessment with (a) design-based index and (b) spatio-temporal index. The horizontal line (red and yellow) represents F40\% (the fishing mortality at which spawning stock biomass per recruit is 40% of virgin level) and the area above the line indicates that overfishing is occurring. The vertical line represents spawning stock biomass at 40\% of virgin spawning stock biomass and the area to the left indicates that the stock has been overfished.

Figure 9. Relative error of one-year-ahead forecast index based on assessment model using design-based and spatio-temporal indices. Note that the assessment model using design-based index fails to forecast the abundance index for years 2005, 2010, 2012 and 2013 because of non-convergence.

