
PHYSICS OF FLUIDS 24, 054103 (2012)

Spatio-temporal linear stability of double-diffusive
two-fluid channel flow

Kirti Chandra Sahu1,a) and Rama Govindarajan2

1Department of Chemical Engineering, Indian Institute of Technology Hyderabad,
Yeddumailaram 502 205, Andhra Pradesh, India
2Engineering Mechanics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research,
Jakkur, Bangalore 560 064, India

(Received 12 January 2012; accepted 19 April 2012; published online 15 May 2012)

Absolute instabilities in shear flows can cause a catastrophic breakdown into a new

unsteady state, or even into turbulence. We demonstrate that in a double-diffusive

channel flow with a viscosity stratification across the channel, rapidly growing ab-

solute instability may be obtained at Reynolds numbers of a few hundreds. The

instability is much weaker in an equivalent single solute fluid with the same vis-

cosity contrast, or even in one which is made up only of the more dangerous of

the two diffusing species. This is a novel characteristic of double-diffusive sys-

tems driven by viscosity, rather than density variations. Convective instabilities too

are stronger in the double-diffusive case. C© 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4718775]

I. INTRODUCTION

The stability of core-annular flow through a channel of two miscible fluids is now a well-studied

problem, see, e.g., Refs. 1–7. A schematic of this flow, in a situation where there is a thin mixed

layer between the two fluids, is shown in Figure 1. When the two fluids are of the same density, and

differ only in their viscosity, it is known1, 5, 6 that if the more viscous fluid is in the annular region,

the laminar flow is greatly destabilized, whereas if the more viscous fluid occupies the core, a large

stabilization typically results, unless the diffusivity is very small. The former case has also been

shown to support regimes of absolute instability.8, 9 Our present focus is on absolute instability of a

two-solute flow, so we begin with a brief discussion on this.

In an absolutely unstable flow,10 disturbances grow locally as well as spread both upstream and

downstream. Thus, eventually the entire flow regime becomes unstable and the system behaves as

a self-sustained resonator, oscillating at an intrinsic frequency.11, 12 Such a flow is also referred to

as being globally unstable.10 In contrast, in a convectively unstable flow, disturbances amplify as

they advect downstream, away from their initial location. In the three-layer miscible channel flow

of Figure 1, Sahu et al.8 investigated convective and absolute instabilities with uniform layers of

more viscous fluid coated on the channel walls with the less viscous fluid in the core of the channel.

Identifying boundaries between convectively and absolutely unstable flows in the space of relevant

parameters, they showed the gradients of viscosity perturbations in the wall-normal direction to be

the main destabilizing influence. A similar flow of two fluids, in a pipe rather than a channel, was

studied by Selvam et al.9 They found absolute instability at high ratios of annular to core viscosity.

In this regime, their nonlinear simulations reveal self-excited intrinsic oscillations associated with

the global mode.

The studies above were for two fluids, which may equivalently be thought of as being a pure

solvent, and a solution containing a solute at a particular concentration. We refer to this below as a

single component (SC) flow. When the viscosity stratification results from not one, but two solutes
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FIG. 1. Schematic of the three-layer base state flow. The fluids “1” and “2” occupy the channel core and the region adjacent

to the channel walls, respectively. The two fluids are separated by a mixed layer of uniform thickness q, with fluid “1” located

in the region −h ≤ y ≤ h.

of vastly different diffusivities, we have a double-diffusive (DD) situation. Surprising behaviour

can result in this situation. Double-diffusive flows are often encountered in nature and in industry.

In the food industry, milk at various concentrations, sugar syrup, and water with added thickeners

are examples of fluids whose density does not vary much with concentration and temperature but

the viscosity does. Both temperature and concentration gradients arise in the shear flows of these

substances, and to make a homogeneous product, it can be beneficial if some degree of mixing is

achieved in the pipe or channel flow portion of the process. Instabilities arising out of the DD nature

of flows are well known in gravity-driven situations, see, e.g., Refs. 13–15. In contrast, the effect of

viscosity contrasts in DD instabilities are less studied. Recently, Sahu and Govindarajan16 showed

that in the two-fluid flow under discussion, two kinds of instability can result in a situation which

is expected to be stabilizing, namely, when viscosity decreases towards the wall. The Reynolds

numbers at which these instabilities occur are rather low, about 100. However, these instabilities

were only convective, and searches over a wide range of parameters yielded no absolute instability.

In the context of obtaining good mixing of components at relatively low Reynolds numbers,

one would wish to have absolute instability, which would be expected to lead to a catastrophic

breakdown of the steady laminar flow. This is the focus of the present paper, where we study the

double-diffusive instability of the case when the viscosity increases towards the wall. That this case

is more unstable than the constant viscosity fluid flow through a channel is no surprise. We however

do find a non-intuitive result, as follows. Most important, the DD flow is both convectively and

absolutely unstable over a much wider range of parameters than a SC flow, and the growth rates,

both convective and absolute, are significantly higher. In a SC flow, as the diffusivity of the solute

in the solvent decreases, i.e., the Schmidt number increases, one expects, and finds, that the flow

becomes increasingly unstable, with the instability setting in at very low Reynolds numbers.4 For

DD, the regime of instability increases even when the second solute is one which decreases the

average Schmidt number.

II. FORMULATION

The spatio-temporal linear stability analysis of pressure-driven three-layer flow of two miscible,

Newtonian and incompressible fluids of equal density and different viscosities in a horizontal, planar

channel is studied. The description of the flow, the base state, and the stability equations are available

in Ref. 16 but are included here for completeness. Fluid containing scalars S and F of concentration

S1 and F1, respectively, and of net viscosity µ1 (fluid 1) occupies the core of the channel. The outer

fluid (fluid 2) consists of scalars S and F in quantity S2 and F2 and is of viscosity µ2. In between

there is a mixed layer of thickness q. Here, F and S designate the faster and slower diffusing scalars.
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D f and Ds are the diffusion rates of the faster and slower diffusing scalars, respectively, such that

δ = D f /Ds ; and by definition δ ≥ 1.

The Cartesian coordinate system is used to formulate the problem, where x and y denote the

coordinates in the flow and the wall-normal directions, respectively. The channel walls are rigid and

impermeable, and are located at y = ±H as shown in Fig. 1. The viscosity, µ, is modeled as an

exponential function of both scalars

µ = µ1exp

[
Rs

(
S − S1

S2 − S1

)
+ R f

(
F − F1

F2 − F1

)]
, (1)

where Rs(≡ (S2 − S1)∂(lnµ)/∂S) and Rf (≡ (F2 − F1)∂(lnµ)/∂F) are the log-mobility ratios of the

scalars S and F, respectively. The following scaling is employed to render the governing equations

dimensionless:

(x, y) = H (̃x, ỹ) , (q, h) = H (̃q, h̃), t =
H 2

Q
t̃, (u, v) =

Q

H
(̃u, ṽ), p =

ρQ2

H 2
p̃,

(2)

µ = µ̃µ1, s̃ =
S − S1

S2 − S1

, f̃ =
F − F1

F2 − F1

,

where the tildes designate dimensionless quantities; Q denotes the total volume flow rate per unit

distance in the spanwise direction; u and v are the velocity components in the x and y directions,

respectively; ρ is the constant density; t is time and p denotes pressure. Now dropping tildes for

convenience, the dimensionless governing equations are given by

∇ · u = 0, (3)

[
∂u

∂t
+ u · ∇u

]
= −∇ p +

1

Re
∇ ·

[
µ(∇u + ∇u

T )
]
, (4)

∂s

∂t
+ u · ∇s =

1

Pe
∇2s, (5)

∂ f

∂t
+ u · ∇ f =

δ

Pe
∇2 f, (6)

where u is the velocity vector, Re(≡ ρQ/µ1) and Pe(≡ Q/Ds) are the Reynolds number and Péclet

number, respectively. The Péclet number (≡ ReSc) is defined based on the slower diffusing species,

where Sc is its Schmidt number. The effective Schmidt number of the faster diffusing fluid is Sc/δ.

A. Base state

The base state, about which linear stability characteristics will be analyzed, corresponds to a

steady, parallel, fully developed flow, i.e., V = 0, U is a function of y alone and P is linear in x.

The upper-case letters for the velocity components and pressure, and the subscript 0 for s, f and

viscosity are used to designate the base state. The locally parallel assumption for the base state is

a very good approximation, since the mixed layer is diffusing very slowly, with a divergence angle

scaling as Pe−1. In order to achieve this in an experiment, one would need a long channel, and a

careful inlet design. For very large Sc, momentum would diffuse faster than concentration and one

would achieve a base state profile which is nearly parallel over a long length of the channel. In

this study, we prescribe identical mean concentration profiles for both solutes. This however may

not be easy to achieve in an experiment, since the faster diffusing fluid will have a correspondingly

thicker mixed layer. Our prescription is consistent with our primary objective, which is to bring out

only the effect of different diffusivities on the disturbance growth. We have made computations with

concentration profiles of different thicknesses as well, but do not discuss those results here. The two

constant property fluids are thus separated by a mixed layer of uniform thickness q, with fluid “1”

located in the region −h ≤ y ≤ h, and fluid “2” in the region h + q < |y| < 1.
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A symmetry boundary condition is prescribed across the centerline. To obtained continuous

profiles up to the second derivative, we assume that s0 and f0 vary as fifth order polynomials in the

mixed layer. We confirm that other sufficiently smooth profiles give practically indistinguishable

results from those presented here. The base state velocity profile, U(y), is obtained by solving the

steady, fully developed version of Eq. (4), subject to no-slip and no-flux conditions at the wall and

the centerline of the channel, respectively. The nondimensional pressure gradient dP/dx is obtained

by using
∫ 1

0
Udy = 1. The functional dependence of dimensionless viscosity is given by

µ0 = e(Rs s0+R f f0). (7)

The component having negative log-mobility ratio makes the viscosity decrease towards the

wall, and is hence stabilizing, whereas the component with positive log-mobility ratio contributes a

positive viscosity stratification (increases the viscosity towards the wall), which is destabilizing. A

species with a null value of the log-mobility ratio does not contribute to the viscosity stratification.

B. Linear stability analysis

We examine the spatio-temporal linear stability of the base flow using a normal mode analysis.

Our approach uses a Briggs-type method17 to obtain absolute growth rates. We decompose the flow

variables and the concentration of the species into their steady base state parts and two-dimensional,

linear perturbations, designated by a hat18

(u, v, p, s, f )(x, y, t) = (U (y), 0, P, s0(y), f0(y)) + (û, v̂, p̂, ŝ, f̂ )(y)ei(αx−ωt). (8)

Here, i ≡
√

−1, and α and ω are the wavenumber and frequency of the disturbance, respectively,

both of which can be complex. The imaginary part, denoted by the subscript i, of ω gives the

temporal growth or decay rate of the perturbation. The perturbation viscosity may be written as

µ̂ = ∂µ0

∂s0
ŝ + ∂µ0

∂ f0
f̂ . In the usual simplification afforded by two-dimensional incompressible flow, the

components of velocity are replaced by a single streamfunction, i.e., (û, v̂) = (ψ ′,−iαψ), where the

prime denotes differentiation with respect to y. Substitution of Eq. (8) into Eqs. (3)–(6), linearization,

and elimination of the pressure terms yields the linear stability equations

iαRe
[(

ψ ′′ − α2ψ
)

(U − c) − U ′′ψ
]

= µ0

(
ψ iv − 2α2ψ ′′ + α4ψ

)

+ 2µ′
0

(
ψ ′′′ − α2ψ ′) + µ′′

0

(
ψ ′′ + α2ψ

)

+ U ′ (µ′′ + α2µ
)
+ 2U ′′µ′ + U ′′′µ, (9)

iαPe
[
(U − c) s − ψs ′

0

]
=

(
s ′′ − α2s

)
, (10)

iαPe
[
(U − c) f − ψ f ′

0

]
= δ

(
f ′′ − α2 f

)
, (11)

where c (≡ ω/α) is the phase speed of the disturbance. Note that the hat notation is suppressed in

the above equations. The boundary conditions are

ψ = ψ ′ = s = f = 0 at y = 1, (12)

ψ ′ = ψ ′′′ = s ′ = f ′ = 0 at y = 0. (13)

The above boundary conditions are for symmetric mode. We performed computations for the anti-

symmetric mode as well, and found the symmetric mode to be always dominant in this range of

parameters.

The eigenvalue problem described by Eqs. (9)–(11) along with the boundary conditions

(12) and (13) is solved using Chebyshev spectral collocation19 on a stretched grid, as described

in Ref. 16. In order to determine whether the flow is stable or unstable and, in the latter case,

whether absolutely or convectively unstable, we follow the approach used previously to analyze

the stability of mixing layers, jets and wakes, and in plasma flows.11, 17, 20–23 As mentioned earlier,
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this approach has also been applied to analyze convective-absolute instabilities in single-solute

miscible8, 9 two-layer channel flow. The procedure is briefly outlined below.

The linearized differential operator represents a dispersion relation in complex (ω, α) space.

The corresponding Green’s function, G(x, y, t), gives the response of the linearized system to an

impulse perturbation. For a chosen mode, the long-time behaviour of G along different “rays”, along

which x/t is constant, is then analyzed. It may be noted that this quantity corresponds to the group

velocity of the mode, i.e.,

x

t
=

∂ω

∂α
(α). (14)

We now distinguish between the maximum temporal growth rate, ωi, max, corresponding to a real

wavenumber α, and the imaginary part of the “absolute frequency,” ω0 = ω(α0), corresponding to

the “absolute wavenumber” α0, at which the saddle point condition

∂ω

∂α
(α0) = 0 (15)

is satisfied. We have absolute instability if ω0i > 0, that is, if the absolute growth rate is positive.

From Eqs. (14) and (15), it is clear that we then have an impulse response growing locally, and

usually spreading both upstream and downstream from its source. On the other hand, if ω0, i < 0 but

ωi, max > 0, the impulse disturbances grow as they move downstream from their source, giving rise

only to a convectively unstable flow.

III. RESULTS AND DISCUSSION

We begin by setting the wavenumber to a real value, αr, and evaluating the convective instability

of SC and DD systems, both of which are more viscous close to the wall. Shown in Figure 2(a) is a

typical result of the maximum temporal growth rate. In the DD case, the ratio of diffusivities δ has

been chosen to be 10 and the Schmidt number to be 50, so the faster diffusing component F diffuses

at a rate 5 times slower than momentum, and the other component S diffuses 10 times slower than

F. The SC system has the same average diffusivity as the DD system DSC = (Ds + D f )/2; so the

equivalent Schmidt number of the SC flow is given by 2Sc/(1 + δ). All other parameters are held the

same, but it is clear that, for this set of parameters, the DD is unstable with a significant growth rate,

while the SC is not. That the DD is in general more easily destabilizable than the SC is reinforced

by Figure 2(b) which shows the neutral boundaries for the two cases in the Re − αr plane. The

DD flow displays instability at a far lower Reynolds number than the equivalent SC system, and

is also unstable over a wider range of wavenumbers. The mechanism which is usually offered in
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FIG. 2. Comparison of DD with SC convective instability for h = 0.6 and q = 0.1: (a) dispersion curve (ωi, max versus αr)

for Re = 200, (b) neutral stability curve. Curves CDD, with Sc = 50, Rs = 5, Rf = −0.5, and δ = 10 are for a DD system.

The SC cases, denoted by CSC, are obtained by setting one of the stratification rates, Rf in this case, to zero. To make the two

systems equivalent, for the SC case we set Sc = 9.091 and Rs = 4.5. To obtain the maximum convective temporal growth

rate, we have set the imaginary part of the disturbance wavenumber, αi = 0.
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the analogous gravity-driven DD instability (the fingering mode), is that perturbations in the faster

diffusing (stabilizing in this case) species will be erased away sooner, leaving the slower diffusing

species to determine long time behaviour.

The reverse case, where the slower diffusing species is stabilizing and the faster diffusing one

destabilizes, is also known to give instability in the gravity-driven case (the oscillatory mode), but

this instability is usually weaker than the fingering mode. We now examine this reverse case in the

flow, with Rs < Rf, for convective instability. Figure 2 shows that the DD mode is now less unstable

than the SC, which is broadly consistent with the arguments made in the gravity-driven case. We

shall see, however, in the absolute instability results below, that the expectation that the slower

diffusing species will dominate is not sufficient to explain the large increase in absolute instability.

To begin our discussion on absolute instability, we demonstrate, in Figures 4 and 5, a typical

situation where the DD flow is absolutely unstable, whereas the equivalent SC flow is not. In fact,

the absolute growth rate is significant in the DD case, while the SC mode with zero group velocity is

damped out rapidly. In the DD flow shown, the slower diffusing component is destabilizing, while

the faster diffusing one is stabilizing.

To test out the argument that the DD flow with Rs > Rf would show the behaviour dictated by

the slower diffusing species, we make another comparison with a SC fluid, but this time with one

which has all the properties of the slower diffusing species. The result is shown in Figure 6. If one

had to guess a winner for the more unstable flow, this may be termed an unfair comparison, since

the average viscosity stratification of the SC fluid, as well as its average diffusion rate are now far

higher than the DD fluid. Both these are loaded in favour of the SC fluid being more unstable. This

case does show absolute instability, but its growth rate is six times lower than the DD case. In other

words, the DD flow, which is expected from heuristic arguments to be the more stable, shows a much

higher absolute instability, and is thus likely to degenerate more rapidly into a turbulent state.

The reverse case, where the faster diffusing species is destabilizing, and the slower one is

stabilizing, did not display any absolute instability in the parameter range of our search. A typical

example is shown in Figure 7. The flow was however seen earlier, in Figure 3 to be convectively

unstable with a large growth rate of ωi, max = 0.0842.

By repeating the exercise of finding the absolute frequency for a wide range of viscosity ratios,

we may summarise the effect of two different rates of diffusion as opposed to an equivalent single

one. We present results for the case where the slower diffusing species is destabilizing, and the

faster one stabilizing, since only this case shows absolute instability. The absolute growth rates for

two different thicknesses of mixed layer are shown in Figure 8. To get an SC fluid we set δ = 1,

i.e., equalise the rates of diffusivity of F and S. In both cases, the DD system is clearly absolutely
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FIG. 3. Comparison of DD with SC stability for the case where the slower diffusing species is stabilizing, with Re = 200,

h = 0.6, and q = 0.1. Curve CDD, with Sc = 50, Rs = −0.5, Rf = 4, and δ = 10 is for a DD system, while CSC with

Sc = 9.091, Rs = 3.5, and Rf = 0 is for an SC fluid. Here, αi = 0.
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FIG. 4. Isocontours of (a) ωr and (b) ωi in the complex wavenumber plane for a DD system at Re = 200. The rest of the

parameters are Sc = 50, δ = 10, h = 0.6, q = 0.1, Rs = 4, and Rf = −0.5. The absolute frequency ω0, i.e., ω at the saddle

point, is 1.156 + 0.041i, showing absolute instability.

unstable over a wider range of viscosity ratio. Also the absolute growth rate is much higher. The

difference between SC and DD is particularly stark in the case of a thicker stratified layer.

Finally, in Figure 9, we show the regimes of absolute and convective instability in the

Rs − Re plane for the DD flow. In the region above Rs + Rf = 0, we have an “unstable” stratification

of viscosity, i.e., the more viscous fluid occupies the annular region. Such a flow is convectively

unstable above a Reynolds number of about 15. In fact, the answer is not very sensitive to the strength

of viscosity stratification. However, it may be noticed that the case of Rf = −1, which affords a net

viscosity stratification which is lower than Rf = −0.5, is already convectively unstable for slightly

lower values of Rs, indicating that the contrast in the two contributions enhances instability, and

can be more important than the total stratification. At negative values of Rs, at the right hand lower

corner of the figures, we have another region of convective instability. This is the DD instability in

the “stably” stratified regime already discussed in Ref. 16. A wide region of absolute instability is

FIG. 5. Isocontours of (a) ωr and (b) ωi in the complex wavenumber plane for a single component system equivalent to the

double-diffusive system of Figure 4. The parameters are Re = 200, Sc = 9.091, h = 0.6, q = 0.1, Rs = 3.5, and Rf = 0. At the

saddle point, ω0 is 1.265 − 0.266i, i.e., the flow is not absolutely unstable. In fact, the zero group velocity mode is damped

out rapidly.
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FIG. 6. Isocontours of (a) ωr and (b) ωi in the complex wavenumber plane. The parameters are Re = 200, Sc = 50, δ = 10,

h = 0.6, q = 0.1, Rs = 4, and Rf = 0. At the saddle point, ω0 is 0.787 + 0.007i.

FIG. 7. Isocontours of (a) ωr and (b) ωi in the complex wavenumber plane. The parameters are the same as those used to

generate the CDD curve of Figure 3. The absolute frequency ω0, i.e., ω at the saddle point, is 1.366 − 0.485i, showing that

the flow is not absolutely unstable.
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FIG. 8. Variation of the absolute growth rate with Rs for different δ values for (a) q = 0.1 and (b) q = 0.05, respectively. The

rest of the parameter values are Rf = −1, Re = 200, Sc = 50, and h = 0.6. The absolute instability is stronger for a DD case

than for an SC one.
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FIG. 9. Stability diagrams showing the regions of convective and absolute instabilities in Rs-Re space for (a) q = 0.1 and

(b) q = 0.05, respectively. The rest of the parameter values are Sc = 50, δ = 10, h = 0.6, and q = 0.1. The horizontal lines

in each case show the location where Rs + Rf = 0. Above this line, the average viscosity increases as we move from the

centerline of the channel towards the wall.

seen above a Reynolds number of above 100, when the viscosity stratification is high, i.e., Rs + Rf

larger than about 3 for this choice of parameters.

IV. SUMMARY

The double-diffusive spatio-temporal instability of the pressure-driven three-layer flow of two

miscible, Newtonian and incompressible fluids of equal density and different viscosities through a

channel is studied. The two fluids consist of different concentrations of two scalar species of different

diffusion rates. The viscosity is modelled as an exponential function of both scalars, and a Briggs-

type method is used in order to investigate the convective and absolute nature of the instabilities.

The linear stability equations for complex wavenumber and frequency are solved using Chebyshev

spectral collocation method on a stretched grid, which provides a larger number of grid points in the

mixed layers and in the near wall regions.

The main finding is a large enhancement in both the parameter range and strength of absolute

instability, when one uses a double-diffusive rather than a single component system. This happens

when the slower diffusing species is destabilizing, i.e., contributes a viscosity which is higher near

the channel walls than in the centerline. In the more usually studied gravity-driven DD systems,

when the slower diffusing species is destabilizing, and the faster one is stabilizing, concentration

perturbations in the latter diffuse away sooner than those in the former, leaving a net driving of

the instability by the slower diffusing species. This simple argument is not sufficient to explain the

present findings, since the DD system shows a far higher absolute growth rate than even a SC system

made up of only the slower diffusing species. Furthermore, increasing the contrast in diffusion rates

makes the flow more convectively unstable, even while we decrease the net stratification of the

system, and therefore expect a net stabilization.

Since absolute instabilities are typically catastrophic, one may extrapolate that good mixing

and an early transition to turbulence would be natural consequences. In industrial double-diffusive

flows, a Reynolds number of the order of a thousand is realistic. Since absolute instabilities are likely

to dominate over convective ones, in such flows, if mixing is desired, one might thus benefit from

imposing such a viscosity stratification. We hope the present predictions will motivate experimental

verification of viscosity-driven DD channel flows.
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