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Abstract In this work we consider a hierarchical spatio-temporal model for 
particulate matter (PM) concentration in the North-Italian region Piemonte. 
The model involves a Gaussian Field (GF), affected by a measurement error, 
and a state process characterized by a first order autoregressive dynamic model 
and spatially correlated innovations. This kind of model is well discussed and 
widely used in the air quality literature thanks to its flexibity in modeling the 
effect of relevant covariates (i.e. meteorological and geographical variables) as 
well as time and space dependence. However, Bayesian inference - through 
Markov chain Monte Carlo (MCMC) techniques - can be a challenge due to 
convergence problems and heavy computational loads. In particular, the com-
putational issue refers to the infeasibility of linear algebra operations involv-
ing the big dense covariance matrices which occur when large spatio-temporal 
datasets are present. The main goal of this work is to present an effective 
estimating and spatial prediction strategy for the considered spatio-temporal 
model. This proposal consists in representing a GF with Matérn covariance 
function as a Gaussian Markov Random Field (GMRF) through the Stochas-
tic Partial Differential Equations (SPDE) approach. The main advantage of 
moving from a GF to a GMRF stems from the good computational properties 
that the latter enjoys. In fact, GMRFs are defined by sparse matrices that 
allow for computationally effective numerical methods. Moreover, when deal-
ing with Bayesian inference for GMRFs, it is possible to adopt the Integrated 
Nested Laplace Approximation (INLA) algorithm as an alternative to MCMC 
methods giving rise to additional computational advantages. The implemen-
tation of the SPDE approach through the R-library INLA (www.r-inla.org) 
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is illustrated with reference to the Piemonte PM data. In particular, providing 
the step-by-step R-code, we show how it is easy to get prediction and proba-
bility of exceedence maps in a reasonable computing time. 

Keywords hierarchical models · Integrated Nested Laplace Approximation · 
particulate matter PM10 · covariance functions · Gaussian fields · Gaussian 
Markov random fields 

1 Introduction 

Many environmental phenomena, even if defined continuously over a region 
and in time, can be monitored and measured only at a limited number of spa-
tial locations and time points. This is the case, for example, of air pollutant 
concentration, meteorological fields (temperature, precipitation, wind veloc-
ity, etc.) as well as geohydrological and oceanographic variables (soil moisture, 
wave height, etc.). In the geostatistical approach (see for example Cressie 1993; 
Cressie and Wikle 2011; Gelfand et al 2010), data coming from monitoring net-
works are assumed to be realizations of a continuously indexed spatial process 
(random field) changing in time denoted by 

Y (s, t) ≡ {y(s, t) : (s, t) ∈ D ⊆ R2 × R}. 

These realizations are used to make inference about the process and to pre-
dict it at desired locations. Usually, we deal with a Gaussian field (GF) that 
is completely specified by its mean and spatio-temporal covariance function 
Cov (y(s, t), y(s ′, t′)) = σ2C((s, t), (s ′, t′)), defined for each (s, t) and (s ′, t′) in 
R

2 × R. Moreover, the process is second-order stationary if its mean is con-
stant and the spatio-temporal covariance function depends on the locations 
and time points only through the spatial distance vector h = (s − s ′) ∈ R2 

and the temporal lag l = (t − t′) ∈ R. 
Even if a GF is easily defined directly through its first and second moments, 

its implementation suffers from the so-called “big n problem” (Banerjee et al 
2004, page 387), that arises especially in case of large datasets in space and 
time. This problem is related to the computational costs of linear algebra 
operations required for model fitting and spatial interpolation and prediction. 
In fact, these computations involve dense covariance matrices, defined through 
the spatio-temporal covariance function σ2C(·, ·), whose dimension is given by 
the number of observations at all spatial locations and time points. Besides, 
this computational challenge gets worse in the Bayesian inference framework 
when linear algebra operations with dense matrices are computed for each 
iteration of the MCMC algorithm. 

For facing the “big n problem” in the recent literature some solutions have 
been suggested such as, for example, covariance tapering, predictive process 
models and low rank kriging (see Banerjee et al 2008; Cressie and Johan-
nesson 2008; Furrer et al 2006). These proposals generally try to reduce the 
dimension or simplify the structure of the dense covariance matrix of the GF. 
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In this work we consider a different approach that consists in representing a 
continously indexed GF with Matérn covariance function as a discretely in-
dexed random process, i.e. a Gaussian Markov Random Field (GMRF, see 
Rue and Held 2005 for a complete discussion). This proposal is based on the 
work of Lindgren et al (2011), where an explicit link between GFs and GM-
RFs - formulated as a basis function representation - is provided through the 
Stochastic Partial Differential Equations (SPDE) approach. The key point is 
that the spatio-temporal covariance function and the dense covariance matrix 
of a GF are substituted, respectively, by a neighbourhood structure and by 
a sparse precision matrix, that together define a GMRF. The advantage of 
moving from a GF to a GMRF stems from the good computational proper-
ties that the latter enjoys. In fact, GMRFs are defined by a precision matrix 
with a sparse structure for which it is possible to use computationally effec-
tive numerical methods, especially for fast matrix factorization (see Rue and 
Held 2005). Moreover, when dealing with Bayesian inference for GMRFs, it is 
possible to make use of the Integrated Nested Laplace Approximation (INLA) 
algorithm proposed by Rue et al (2009) as an alternative to MCMC methods 
for latent Gaussian field models. The most outstanding advantage of INLA is 
computational because it produces almost immediately accurate approxima-
tions to posterior distributions, also in case of complex models. Thus, the joint 
use of the SPDE approach together with the INLA algorithm is a candidate 
for being a powerful solution in overcoming the computational issues related 
to GF modeling. 

The main goal of this paper is to illustrate the implementation of the 
SPDE approach through the R-library INLA (www.r-inla.org) focusing on the 
motivating problem of particulate matter concentration in the North-Italian 
region Piemonte and on the following spatio-temporal model: 

y(s, t) = z(s, t)β + ξ(s, t) + ε(s, t) 

ξ(s, t) = aξ(s, t − 1) + ω(s, t). 

In brief, the equations define a hierarchical model characterized by a GF y(s, t) 
built from covariate information z(s, t), measurement error ε(s, t), and a first 
order autoregressive dynamic model for the latent process ξ(s, t) with spatially 
correlated innovations ω(s, t). This kind of model is well discussed and widely 
used in the air quality literature thanks to its flexibity in modeling the effect 
of relevant covariates (i.e. meteorological and geographical variables) as well 
as time and space dependence (e.g. Cameletti et al 2011; Cocchi et al 2007; 
Sahu 2011). 

The structure of the paper is as follows. In Section 2 we introduce our mo-
tivating problem regarding PM10 (particulate matter with an aerodynamic di-
ameter of less than 10 µm) in Piemonte region, Italy. Here, after discussing the 
available data, we describe the geostatistical spatio-temporal model sketched 
out above. In Section 3 we provide the essential details for understanding the 
link between GFs and GMRFs: firstly we introduce the basics about GMRFs 
and secondly the SPDE approach with the basis function representation in a as 
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simple as possible way. We refer to Lindgren et al (2011) and Rue et al (2009) 
for all the details. In Section 4 we explain how the SPDE approach works for 
the considered spatio-temporal model, also with reference to parameter esti-
mation and spatial prediction. Finally, in Section 5 we return to the analysis of 
the PM10 data described in Section 2. In particular, the section is devoted to 
the R-library INLA and provides a step-by-step description of the code required 
for the implementation of the SPDE approach for the considered case study, 
including spatial prediction and simple model validation. A discussion ends 
the paper, including also a comparison in terms of prediction capability and 
computational costs with a similar model presented in Cameletti et al (2011) 
and implemented with MCMC algorithms for the same PM10 data. 

2 A hierarchical spatio-temporal model for air quality data 

For some countries in southern Europe air pollution is an environmental emer-
gency due to the adverse effects that high levels of pollutant concentrations 
could have on human health and the ecosystems. With regard to PM10, the 
situation is particularly critical in the Po river basin located in northern Italy 
between the Alps and the Appenines. In this area the annual and daily limit 
values fixed by the European Union for human health protection (see EU 
Council Directive 1999/30/EC) are periodically exceeded. As a consequence, 
the population is exposed to pollution levels that can cause a multitude of 
harmful consequences, ranging from minor effects on the cardio-respiratory 
system to premature mortality (Samet et al 2000; Samoli et al 2008). The 
particular situation of Po valley is related to the complex orography of the 
area. In fact, the shelter effect of the Alps strongly influences meteorological 
phenomena that, in turn, have a major role in dispersion processes, removal 
mechanisms, and chemical formation of atmospheric particles. Moreover, the 
Po plain is characterized by urbanized areas where the most important emis-
sion sources of primary PM10 and secondary precursor pollutants are located, 
such as industrial sites and main roads with high levels of traffic. 

In this context environmental agencies have to assess air quality in order 
to take proper and effective actions for improving the situation of the most 
polluted zones. Thus, continuous maps of PM10 concentration are required. To 
this aim, we propose a hierarchical spatio-temporal model able to catch the 
complex spatio-temporal dynamics of PM10 concentration, including also me-
teorological and geographical covariates. In particular, we consider Piemonte 
region which is situated in the western part of the Po valley. 

2.1 PM10 data and covariates for Piemonte region 

We analyze daily PM10 concentration measured by the Piemonte region mon-
itoring network during the winter season October 2005 - March 2006 for a 
total of T = 182 days (the data are provided by the information system called 



5 Spatio-temporal modeling of PM concentration through the SPDE approach 

AriaWeb Regione Piemonte). In particular, we consider d = 24 monitoring 
stations for estimation purposes (see red triangles in Figure 1) and 10 sites for 
validation purposes (see blue dots in Figure 1). For an exploratory analysis of 
the PM10 data refer to Cameletti et al (2011). Moreover, the environmental 

Fig. 1 Locations of the 24 PM10 monitoring sites (red triangles) and 10 validation stations 
(blue dots). 

agency of Piemonte region (Arpa Piemonte) provides a set of covariates which 
are defined on a 4 × 4 km regular grid and with a hourly temporal resolution 
(Finardi et al 2008). As fully described in Cameletti et al (2011), by means 
of a preliminary analysis we have selected the following covariates, computing 
some daily synthesis and taking for each location the value of the grid pixel 
where the station lies: daily mean wind speed (WS, m/s), daily maximum mix-
ing height (HMIX, m), daily precipitation (P, mm), daily mean temperature 
(TEMP, ◦K) and daily emissions (EMI, g/s). Moreover, we consider altitude 
(A, m) and spatial geographic coordinates (UTMX and UTMY, in km). 

2.2 The spatio-temporal model 

Let y(si, t) denote the realization of the spatio-temporal process Y (·, ·) that 
represents the PM10 concentration measured at station i = 1, . . . , d located at 
site si and day t = 1, . . . , T . We assume the following measurement equation 

y(si, t) = z(si, t)β + ξ(si, t) + ε(si, t) (1) 
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where z(si, t) = (z1(si, t), . . . , zp(si, t)) denotes the vector of p covariates for 
site si at time t, and β = (β1, . . . , βp)

′ 
is the coefficient vector. Moreover, 

ε (si, t) ∼ N 0, σε 
2 is the measurement error defined by a Gaussian white-

noise process, both serially and spatially uncorrelated. Note that in the geo-
statistics literature, the term z(si, t)β is the so-called large scale component 
- depending in our case study on meteorological and geographical covariates 
- while the measurement error variance σε 

2 is referred to as nugget effect (see 
Cressie 1993). Finally, ξ(si, t) is the realization of the so-called state process, 
i.e. the true unobserved level of pollution. It is assumed to be a spatio-temporal 
Gaussian field that changes in time with first order autoregressive dynamics 
with coefficient a and coloured innovations, given by 

ξ(si, t) = aξ(si, t − 1) + ω(si, t) (2) 

for t = 2, . . . , T , where |a| < 1 and ξ(si, 1) derives from the stationary distri-
bution N 

( 
0, σω

2 /(1− a2) 
) 
. Moreover, ω(si, t) has a zero-mean Gaussian distri-

bution, is assumed to be temporally independent and is characterized by the 
spatio-temporal covariance function 

0 if t 6 t′= 
Cov (ω (si, t) , ω (sj , t

′)) = 
σω
2 C(h) if t = t′ 

(3) 

for i 6 j. The purely spatial correlation function C(h) depends on the location = 
si and sj only through the Euclidean spatial distance h = ||si − sj || ∈ R; 
thus, the process is assumed to be second-order stationary and isotropic (see 
Cressie 1993). It follows immediately that Var(ω(si, t)) = σω

2 , for each si and 
t. The spatial correlation function C(h) is defined by the Matérn function and 
is given by 

1 ν
C(h) = (κh) Kν (κh) (4) 

Γ (ν)2ν−1 

with Kν denoting the modified Bessel function of second kind and order ν > 0. 
The parameter ν, which is usually kept fixed, measures the degree of smooth-
ness of the process and its integer value determines the mean square differ-
entiability of the process. Instead, κ > 0 is a scaling parameter related to 
the range ρ, i.e. a distance at which the spatial correlation becomes small. In √

8νparticular, we use the empirically derived definition ρ = κ , with ρ corre-
sponding to the distance where the spatial correlation is close to 0.1, for each 
ν (see Section 2 of Lindgren et al 2011 for more details). 

Collecting all the observations measured at time t in a vector denoted by 
yt = (y(s1, t), . . . , y(sd, t))

′
, it follows that (1) and (2) can be written as 

yt = ztβ + ξt + εt, εt ∼ N(0, σε
2Id) (5) 

ξt = aξt−1 + ωt, ωt ∼ N(0, Σ = σ2 Σ̃) (6) ω 

where Id is the identity matrix of dimension d, zt = (z(s1, t)
′ , . . . , z(sd, t)′)

′ 

and ξt = (ξ(s1, t), . . . , ξ(sd, t))
′ 
with ξ1 coming from the stationary distribu-

tion of the AR(1) process N 
( 
0, Σ/(1− a2) 

) 
. Moreover, Σ̃ is the dense cor-

relation matrix of dimension d with elements C (‖si − sj‖), where C (·) is the 
Matérn function given by (4) and is parameterized by κ and ν. 
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Let θ = {β, σε
2, a, σω

2 , κ} denote the parameter vector to be estimated. The 
joint posterior distribution is given by 

π (θ, ξ | y) ∝ π (y | ξ, θ)π(ξ | θ)π(θ) (7) 

where the notation π(·) is used for the probability density function, y = {yt} 
and ξ = {ξt} with t = 1, . . . , T . Usually independent prior distributions are 

∏dim(θ)
chosen for the parameters, so that π(θ) = i=1 π(θi). Considering that the 
observations yt are serially independent conditionally on ξ and that the state 
process follows a Markovian time dynamic, Eq.(7) can be written as 

T T 

π (θ, ξ | y) ∝ π (yt | ξt, θ) π(ξ1 | θ) π(ξt | ξt−1, θ) π(θ). (8) 
t=1 t=2 

From the Gaussian distributions defined in (5) and (6), it follows immediately 
that the joint posterior distribution (8) is given by 

T 
2π (θ, ξ | y) ∝ σε 

2 − dT 

exp − 
2σ

1 
2 

(yt − ztβ − ξt)
′ (yt − ztβ − ξt) 

ε t=1 
d 

× 
σω 
2 

a2 

− 2 

|Σ̃|−
1
2 exp − 

1

2

−

σ2 

a2 

ξ1 
′ Σ̃−1ξ1

1− ω 

(T −1) T 
2 

∑ 
× 
( 
σω 
2 
)− d(T 

2 
−1) 
∣

∣ Σ̃
∣

∣ 
−

exp − 
1

(ξt − aξt−1)
′ 
Σ̃−1 (ξt − aξt−1)

2σ2 
ω t=2 

dim(θ) 

× π(θi). 
i=1 

where ∣ Σ̃∣ is the determinant of the dense d-dimensional covariance matrix Σ̃. 

In a Bayesian framework, the common approach to make inference for this 
model (i.e. parameter estimation and spatial prediction) is MCMC sampling. 
See, for example, Cameletti et al (2011) and Sahu (2011) for a complete and 
detailed description of the adopted inferential procedures. 

3 Essential details about GMRFs and the SPDE approach 

In this section we provide the essential details useful for understanding how 
a Matérn field - a GF with Matérn covariance function - can be represented 
as a GMRF. We start introducing the basics of GMRFs and then we move to 
the SPDE approach. We try to make the discussion as simple as possible and 
we refer to Lindgren et al (2011) for the theoretical details and proofs of the 
results. 
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3.1 GMRFs 

A GMRF is a spatial process that models the spatial dependence of data 
observed on areal units, such as regular grid, lattice structure or geographic 
regions. For a complete and detailed discussion about GMRFs see Rue and 
Held (2005). The notation x = (x1, . . . , xn)

′ with x ∼ N 
( 
µ, Q−1

) 
refers to 

a n-dimensional GMRF with mean µ and symmetric and positive definite 
precision matrix Q, i.e. the inverse of the covariance matrix. Thus, the density 
of x is given by 

π(x) = (2π)−n/2|Q|1/2 exp − 
1
(x − µ)′ Q (x − µ) . 

2 

For the purpose of this article, we need to know that a GMRF x can 
be specified through the conditional distributions for each component given 
all the others. Moreover, the Markovian property is related to the definition 
of a neighbourhood structure, in that the full conditional distribution of xi 
(i = 1, . . . , n) depends only on a few of the components of x. This set of 
compontents is denoted by δi, which constitutes the set of neighbours of unit 
i, and 

π (xi | x−i) = π (xi | xδi ) , 

where the notation x−i denotes all elements in x except for xi. This is equiv-
alent to saying that given the neighbourhood δi, the terms xi and x−{i,δi} are 
independent. Following the notation of Rue and Held (2005), we have that this 
conditional independence relation can be written as 

xi ⊥ x−{i,δi } | xδi 

for i = 1, . . . , n. The key point is that this conditional independence property 
is strictly related to the precision matrix Q. For a general couple i and j with 
j 6 i, it holds that = 

xi ⊥ xj | x−{i,j} ⇐⇒ Qij = 0, 

which means that the nonzero pattern of Q is given by the neighbourhood 
structure of the process. Thus, Qij 6 0 if j ∈ {i, δi}.= 

The computational advantage of making inference with a GMRF stems 
directly from the sparsity of the precision matrix Q. In fact, linear algebra 
operations can be performed using numerical methods for sparse matrices, 
resulting in a considerable computational gain (see Rue and Held 2005 for 
detailed algorithms). For example, matrix factorization, that usually requires 
O(n3) flops for a dense matrix, reduces to O(n), O(n3/2) and O(n2) for the 
sparse matrix of temporal, spatial and spatio-temporal GMRFs, respectively. 
Moreover, the computational properties of GMRFs are enhanced by using In-
tegrated Nested Laplace Approximations (INLA, Rue et al 2009) for Bayesian 
inference. INLA is a computationally effective algorithm that produces fast 
and accurate approximations to posterior distributions. 
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An example of a GMRF, that will be used later in Section 4, is the autore-
gressive process of order 1 given by 

iid
xt = axt−1 + εt, εt ∼ N(0, σ2) 

with t = 1, . . . , n where |a| < 1 and x1 derives from the stationary distribution 
N(0, σ2/(1−a2)). This model belongs to the class of conditional autoregressive 
model (CAR) introduced by Besag (1974). In this case, xs and xt with 1 ≤ 
s < t ≤ n are conditionally indepedent given {xs+1, . . . , xt−1} if t − s > 1. In 
terms of full conditional distributions, it means that 

π(xt | x−t) = π(xt | xt−1,xt+1). 

From this conditional independence property, it follows that the precision ma-
trix Q of the autoregressive process has the following tridiagonal structure 

  
1/σ2 −a/σ2 

−a/σ2 (1 + a2)/σ2 
 

  
  
  

Q =  . . . 
  
  
  
 (1 + a2)/σ2 −a/σ2 

 

−a/σ2 1/σ2 

with zero entries outside the diagonal and first off-diagonals. The nonzero 
values derives from the specification of the full conditional distributions π(xt | 
x−t) (see Rue and Held 2005, Chap.1). 

3.2 The SPDE approach 

Let X(s) ≡ {x(s), s ∈ D ⊆ R2} denote a Matérn field, i.e. a second-order 
stationary and isotropic GF with a Matérn covariance function, given in (4) 
and depending on the scale and smootheness parameters κ and ν. Moreover, 
let suppose to observe a realization of the process X(si) at d spatial locations 
s1, . . . , sd. 

The objective of the SPDE approach is to find a GMRF, with local neigh-
bourhood and sparse precision matrix Q, that best represents the Matérn field. 
Given this representation, it is possible to make inference using the GMRF en-
joying its good computational properties. This makes it possible to avoid the 
“big n problem” that arises when working with the dense covariance matrix of 
a GF. 

Basically the SPDE approach uses a finite element representation to de-
fine the Matérn field as a linear combination of basis functions defined on 
a triangulation of the domain D. This consists in subdividing D into a set 
of non-intersecting triangles meeting in at most a common edge or corner. 
Firstly the triangle initial vertices are placed at the locations s1, . . . , sd and 
then additional vertices are added in order to get a proper triangulation useful 
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for spatial prediction purposes. To illustrate the concept of triangulation we 
provide an example referring to the Piemonte case study of Section 2.1. The 
left panel of Figure 2 displays the locations of the 24 PM10 monitoring stations 
while the right panel shows a triangulation of the region using 123 vertices. 

Fig. 2 Left panel: locations of the 24 monitoring stations in Piemonte region. Right panel: 
triangulation of Piemonte region using 123 vertices. 

Given the triangulation, the basis function representation of the Matérn 
field X(s) is given by 

n 

X(s) = ψl(s)ωl (9) 
l=1 

where n is the total number of vertices, {ψl(s)} are the basis functions and 
{ωl} are Gaussian distributed weights. The functions {ψl(s)} are chosen to be 
piecewise linear on each triangle, i.e. ψl(s) is 1 at vertex l and 0 at all other 
vertices. An example is given in Figure 3 that displays a continously indexed 
spatial random field (left panel) and the corresponding finite element represen-
tation with piecewise linear basis functions defined on a given triangulation of 
the domain (right panel). The height of each triangle (the value of the spatial 
field at each triangle vertix) is given by the weight wl and the values in the 
interior of the triangle are determined by linear interpolation. 

The key point of the SPDE approach is the finite element representation 
(9) that establishes the link between the GF X(s) and the GMRF defined by 
the Gaussian weights {ωl} to which a Markovian structure can be given, as 
proved in Lindgren et al (2011). In particular, the precision matrix Q of the 
GMRF ω = (ω1, . . . , ωn)

′ 
is defined by Eq.(10) of Lindgren et al (2011) as 
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Fig. 3 Left panel: example of a spatial random field (left) given by X(s) = cos(s1)+sin(s2), 
where s = {s1, s2}. Right panel: corresponding finite element representation of the spatial 
random field X(s) according to Eq.(9). 

a function of κ2, for α = 1, 2, . . . and ν = 0, 1, 2, . . ., where α = ν + 1. This 
defines an explicit mapping from the parameters of the GF covariance function 
(κ and ν) to the elements of the precision matrix Q of the GMRF ω, with a 
computational cost of O(n) for any triangulation. 

4 How the SPDE approach works 

In this section we describe how to implement the spatio-temporal model de-
scribed in Section 2.2 using the SPDE approach. First we describe how to 
redefine the model making use of the link between GF and GMRF. Then, we 
focus on the estimation and spatial prediction procedures. 

4.1 Rewriting the model 

For each time point t = 1, . . . , T , the Matérn field ωt introduced in Eq.(6) is 
represented through the GMRF ω̃t ∼ N(0, Q−

S 
1), where the precision matrix 

QS comes from the SPDE representation discussed in Section 3.2 and is com-
puted using Eq.(10) of Lindgren et al (2011). The matrix QS does not change 
in time - due to the serial independence hypothesis specified by (3) - and its 
dimension n is given by the number of vertices of the domain triangulation. 
Thus, Eq.(6) can be written as 

ξt = aξt−1 + ω̃t, ω̃t ∼ N(0, Q−1) (10) S 

for t = 1, . . . , T and with ξ1 ∼ N 
( 
0, Q−

S 
1/(1− a2) 

) 
. It follows that the joint 

distribution of the Tn-dimensional GMRF ξ = (ξ1
′ , . . . , ξT

′ )′ is 

ξ ∼ N 
( 
0, Q−1

) 
(11) 
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with Q = QT ⊗QS where 

  
σω 
2 −a/σω 

2 

−a/σω 
2 (1 + a2)/σω 

2 
 

  
  
  

QT =  . . .  
  
  
  
 (1 + a2)/σω 

2 −a/σω 
2 
 

−a/σω 
2 σω 

2 

is the T -dimensional precision matrix of the temporal autoregressive process 
of order 1 specified by (10). Moreover, Eq.(5) can be rewritten as 

yt = ztβ + Bξt + εt, εt ∼ N(0, σε
2Id) (12) 

where the (d × n)-dimensional matrix B selects the value of the GMRF ξt for 
each observation vector yt. In particular, B is a sparse matrix with only one 
unit element for each row and such that 

n 

y(si, t) = z(si, t)β + Bijξt + ε(si, t) 
j=1 

where Bij = 1 if the triangle vertix j is placed at location si and 0 elsewhere. 

4.2 Parameter estimation and spatial prediction 

The hierarchical model defined by (12) and (10) belongs to the class of latent 
Gaussian models and can be estimated using the INLA algorithm proposed in 
Rue et al (2009). INLA is a computational approach for Bayesian inference and 
is an alternative to MCMC for getting the approximated posterior marginals 
for the latent variables as well as for the hyperparameters. 

Following Rue et al (2009), let x = {ξ, β} denote the underlying latent 
field with a priori independent components. We assign vague Gaussian prior 
with known precision to β and the GMRF distribution (11) to ξ. Thus, the 
density π(x | θ) is Gaussian with zero mean and precision matrix Q(θ1) with 
hyperparameter vector θ1 = 

( 
σω
2 , a, κ 

) 
. Moreover, we have that the observa-

tions y = {yt} are normally distributed and conditionally independent given 
x and θ2 = σε

2 . Thus, denoting by θ = (θ1, θ2) the hyperparameter vector, 
the joint posterior distribution is given by 

T 

π (x, θ | y) = π(θ)π(x | θ) π(yt | x, θ) 
t=1 

where π(yt | x, θ) ∼ N(ztβ+Bξt, σε
2Id) is the conditional distribution of the 

PM10 observations at time t defined by (12). 
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We are interested in the posterior marginal distributions of the latent field 
and of the hyperparameters, given by: 

∫ 

π(xi | y) = π(xi | θ, y)π(θ | y)dθ (13) 

∫ 

π(θj | y) = π(θ | y)dθ−j (14) 

for i = 1, . . . , T + p and j = 1, . . . , 4. The INLA algorithm - which is designed 
for non-Gaussian responses - substitutes MCMC simulations with accurate 
deterministic approximations to these distributions, denoted by ̃π(xi | y) and 
π̃(θj | y) (for the details refer to Rue et al 2009). It is worth to note that for the 
particular model we are dealing with, characterized by Gaussian observations, 
we have that π̃(xi | y) is exact and Gaussian and the only approximation is 
the numerical integration required for computing ̃π(θj | y). 

With regard to spatial prediction, it is worth to note that the INLA algo-
rithm provides the posterior conditional distribution of ξ for all the n triangu-
lation vertices. Once ξ is given, it is then immediate to get a prediction for yt 

for the triangulated domain to be mapped. This is a considerable advantage 
in terms of computing time with respect to MCMC methods that require first 
to get the full conditional distribution of the parameters, and then to simulate 
from the posterior predictive distribution of y(s0, t) for each s0 ∈ D (see for 
example Cameletti et al 2011; Sahu 2011). 

5 Implementing the SPDE approach through the R-library INLA for 
the Piemonte case study 

In this section we describe how to use the INLA-library of R-software (R De-
velopment Core Team, 2011) in order to estimate the parameters of the model 
described in the previous section and to map PM10 concentration for a given 
day all over Piemonte region. As already discussed in Section 2.1, we consider 
the October 2005-March 2006 winter season with T = 182 days, d = 24 mon-
itoring stations and 10 validation sites. The Piemonte dataset and the full 
R-code are available on the INLA website www.r-inla.org. 

5.1 Data import and domain triangulation 

First of all we need to load the required libraries together with the Piemonte 
data (PM10 and covariate data, site coordinates - also for the validation sta-
tions - and region borders): 

library(INLA) 
library(fields) #for color palette 

##--- for the 24 stations and 182 days 
Piemonte_data = read.table("Piemonte_data_byday.csv",header=TRUE,sep=",") 
coordinates = read.table("coordinates.csv",header=TRUE,sep=",") 

http:www.r-inla.org
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##--- for the 10 validation stations and 182 days 
Piemonte_data_validation = read.table("Piemonte_data_byday_validation.csv", 

header=TRUE,sep=",") 
coordinates_validation = read.table("coordinates_validation.csv", 

header=TRUE,sep=",") 

borders = read.table("Piemonte_borders.csv",header=TRUE,sep=",") 

n_stations = length(coordinates$Station) ## 24 
n_stations_val = length(coordinates_validation$Station.ID) ## 10 
n_data = length(Piemonte_data$Station.ID) ## 4368 
n_days = as.integer(n_data/n_stations) ## 182 

Note that the Piemonte_data and Piemonte_data_validation dataframes 
are composed of 4368 and 1820 rows, respectively, and one row for each 
day, with 12 columns (Station.ID, Date, A, UTMX, UTMY, WS, TEMP, 
HMIX, PREC, EMI, PM10 ; see section 2.1 for covariate acronyms). The re-
quired format for the data is shown in Table 5.1. The coordinates, coor-
dinates_validation and borders dataframes are composed of 2 columns 
containing respectively the UTMX and UTMY coordinates of the monitoring 
stations and of the points belonging to the region border. 

Station.ID Date A UTMX UTMY WS TEMP HMIX PREC EMI PM10 
1 01/10/05 95.20 469.45 4972.85 0.90 288.81 1294.60 0.00 26.05 28 
2 01/10/05 164.10 423.48 4950.69 0.82 288.67 1139.80 0.00 18.74 22 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
23 01/10/05 131.00 454.26 5019.81 0.80 288.18 860.93 0.00 26.15 32 
24 01/10/05 201.40 466.40 5086.60 1.27 289.28 617.04 1.80 16.78 11 
1 02/10/05 95.20 469.45 4972.85 1.53 286.48 566.56 8.92 22.21 14 
2 02/10/05 164.10 423.48 4950.69 1.41 285.79 513.36 16.72 15.37 10 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
23 02/10/05 131.00 454.26 5019.81 2.65 285.52 454.80 23.35 21.82 26 
24 02/10/05 201.40 466.40 5086.60 2.97 285.53 692.51 41.14 13.96 5 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Table 1 Required format for the data: days are stacked row by row and variables are on 
the columns. 

As the ranges of the p = 8 covariates are quite different, we apply a stan-
dardization procedure subtracting the mean and dividing by the standard error 
computed consider the 24 monitoring stations. 

mean_covariates = apply(Piemonte_data[,3:10],2,mean) 
sd_covariates = apply(Piemonte_data[,3:10],2,sd) 
Piemonte_data[,3:10] = scale(Piemonte_data[,3:10], 

mean_covariates, sd_covariates) 

We apply the same standardization also for the covariates of the validation 
stations: 

Piemonte_data_validation[,3:10] = scale(Piemonte_data_validation[,3:10], 
mean_covariates, sd_covariates) 

http:(Station.ID
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Moreover, in order to stabilize the variances, which increase with the mean 
values, and to make the distribution of PM10 data approximately normal, we 
use a logarithmic transformation and add a new variable named logPM10 to 
each of the Piemonte_data and the Piemonte_data_validation dataframes: 

Piemonte_data$logPM10 = log(Piemonte_data$PM10) 
Piemonte_data_validation$logPM10 = log(Piemonte_data_validation$PM10) 

In order to simplify keeping track of the temporal aspect of the data, we also 
add time as the index of each observation day 

Piemonte_data$time = rep(1:n_days, each = n_stations) 
Piemonte_data_validation$time = rep(1:n_days, each = n_stations_val) 

Next, we consider how to triangulate the Piemonte region. We seek a trian-
gulation based on initial vertices at the d = 24 station locations, with further 
vertices added in order to satisfy triangulation quality constraints. To ensure 
that the triangles cover our target spatial domain for spatial prediction, the 
Piemonte region, we could manually construct the precise boundary using 
inla.mesh.segment, but that would result in a much too detailed bound-
ary. A better alternative is to use the builtin option to construct convex sets 
covering the true boundary: 

mesh = inla.mesh.create.helper(points=cbind(coordinates$UTMX, 
coordinates$UTMY), 

points.domain=borders, 
offset=c(10, 140), 
max.edge=c(50, 1000), 
min.angle=c(26, 21)) 

The helper function starts by creating a triangulation of the domain defined by 
the region border, using a convex set with 8 edges at a distance of 10 km. Next, 
to reduce the visible boundary effects of the SPDE, a further extension with 
16 edges is added at a distance of a further 140 km, giving a total extension 
of 150 km. The maximal edge length is specified to 50 km in the interior of 
the region, and to 1000 km in the outer extension. Since the outer extension 
is of no practical interest, the resolution needs only to be as fine as required 
by the numerics. In this case, the boundary effect can be handled well by 
only specifying the minimal allowed interior angle for the triangles, with 21 
degrees being the largest number guaranteeing termination of the triangulation 
algorithm. Values as large as 34 are possible for this particular setting, giving 
862 vertices, but this is excessive compared to the modest 122 vertices obtained 
by using minimum angle 21 degrees. Using the compromise of 26 degrees for 
the inner region and 21 degrees for the outer extension, the number of vertices 
becomes 142 (stored in mesh$n).We found no practical differences in the results 
using finer scale triangulations, only higher computational cost. 

Figure 4, obtained using the following code, shows the obtained triangu-
lation covering the Piemonte region and stretching out towards the extended 
boundary. 

plot(mesh) 
lines(borders,lwd=3) 
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points(coordinates$UTMX,coordinates$UTMY, 
pch=20,cex=2, col=2) 

points(coordinates_validation$UTMX,coordinates_validation$UTMY, 
pch=20,cex=2,col=4) 

Constrained refined Delaunay triangulation 

mesh 

Fig. 4 The Piemonte region triangulation with 142 vertices. The red dots mark the 24 
monitoring stations, and the blue dots mark the 10 validation stations. 

5.2 Definition of the SPDE model object and call of the inla(.) function 

We now create a SPDE model object for a Matérn-like spatial covariance 
function using the function inla.spde2.matern(.) specifying the obtained 
triangulation (given by the mesh object) and the parameter α = 2 and, as 
noted at the end of Section 3.2, it follows that the smoothness parameter ν of 
the Matérn covariance function is equal to 1. The following code defines the 
spde model object: 

spde = inla.spde2.matern(mesh=mesh, alpha=2) 

In order to avoid having to keep track of vertex indexing, we make use 
of a R-INLA feature that allows the observation equation to be written on 
matrix form, y = Aη + ǫ, where y are the observations, η is a linear predic-
tor, ǫ is the observation noise, and A is an observation matrix. The function 
inla.stack(.) is used to build the necessary data structures, combining sim-
ple model building blocks into large complicated models. 
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Using a helper function, we construct an observation matrix that extracts 
the values of the spatio-temporal field at the measurement locations and time 
points used for the parameter estimation: 

A.est = inla.spde.make.A(mesh, 
loc=as.matrix(coordinates[Piemonte_data$Station.ID, 

c("UTMX","UTMY")]), 
group=Piemonte_data$time, 
n.group=n_days) 

with corresponding code for A.val for the validation data, and 

A.pred = inla.spde.make.A(mesh, group=i_day, n.group=n_days) 

for the observation matrix for prediction of day number i_day. The full model 
uses a combination of a latent spatio-temporal model and covariate effects. 
The observation models allows us to simplify the specification of the latent 
model through the helper function inla.spde.make.index, which generates 
vectors of indices for the spatial and temporal components of the model. The 
call 

field.indices = inla.spde.make.index("field", n.mesh=mesh$n, n.group=n_days) 

generates a list with fields field and field.group, where the former contains 
spatial vertex indices and the latter contains temporal indices. The full data 
structure needed for the model is then constructed by the following code: 

stack.est = 
inla.stack(data=list(logPM10=Piemonte_data$logPM10), 

A=list(A.est, 1), 
effects= 

list(c(field.indices, 
list(Intercept=1)), 

list(Piemonte_data[,3:10])), 
tag="est") 

stack.val = [Omitted for brevity] 
scaled.mesh.loc = 

list(UTMX=(rep(scale(mesh$loc[,1], 
mean_covariates["UTMX"], 
sd_covariates["UTMX"]), n_days)), 

UTMY=(rep(scale(mesh$loc[,2], 
mean_covariates["UTMY"], 
sd_covariates["UTMY"]), n_days))) 

stack.pred = 
inla.stack(data=list(logPM10=NA), 

A=list(A.pred), 
effects=list(c(field.indices, 

scaled.mesh.loc, 
list(Intercept=1))), 

tag="pred") 
stack = inla.stack(stack.est, stack.val, stack.pred) 

In each inla.stack call, effects is a list of linear predictor component 
groups, such that each group has its own observation matrix, specified as 
the list of matrices A, with 1 interpreted as an identity matrix. The result 
is a linear predictor model with the sum of the observed component groups 
as its final value, as well as predictors for the validation stations and a joint 

http:loc=as.matrix(coordinates[Piemonte_data$Station.ID
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predictor for all the spatial components on the given prediction day. However, 
this is only in the mind of the user, and we still need to specify the linear pre-
dictor model as an R-INLA formula object. This includes the p = 8 covariates 
(fixed effects) together with random effect components, specified by the f(.) 
function, which is designed to define non-fixed effects such as spatial random 
effects, time trends, seasonal effects, etc.. With the following specification of 
f(.), through the group and control.group options, we specify that, at each 
time point, the spatial locations are linked by the spde model object, while 
across time, the process evolves according to an AR(1) process. 

formula <- (logPM10 ~ -1 + Intercept + 
A + UTMX + UTMY + WS + TEMP + HMIX + PREC + EMI + 
f(field, model = spde, group = field.group, 
control.group = list(model="ar1"))) 

Due to the way inla.stack is implemented, an automatic intercept effect can-
not be used, and we instead specify an explicit Intercept covariate. Finally, 
the specified model with Gaussian response can be run calling the inla(.) 
function as follows: 

result = inla(formula, 
data = inla.stack.data(stack, spde=spde), 
family = "gaussian", 
control.predictor = list(A=inla.stack.A(stack), compute=TRUE)) 

The posterior summary statistics (mean, quantiles and standard deviations) 
of the fixed effects, i.e. the β covariate coefficients, are obtained from re-
sult$summary.fixed, and are shown in Table 2. In particular, the posterior 
mean of the intercept is 3.69 on the log scale, which corresponds to an av-
erage pollution level of about 40 µg/m3, after adjustment for covariates. As 
expected, a significant and positive relationship is observed between emissions 
(EMI ) and PM10 concentration. Moreover, the significance of the coefficients 
of WS, TEMP and PREC confirms the importance of meteorological variables 
on air quality. Finally, altitude (A) has a significant effect in reducing PM10 

concentration. 
The summary statistics of the posterior distribution of the AR(1) coefficient 

a are obtained from the result$summary.hyperpar matrix with the following 
command 

result$summary.hyperpar["GroupRho for field",] 

and are reported in Table 3. We note that the inla(.) function provides us 
with the mean, quantiles and standard deviation of the Gaussian observation 

2 2precision parameter 1/σ . As we are interested in the variance σεε

transform the marginal density of the precision using the inla.tmarginal(.) 
function, as follows 

sigma2eps_marg = inla.tmarginal(function(x) 1/x, 
result$marginals.hyperpar$"Precision for the Gaussian observations") 

Then using the inla.emarginal(.) and inla.eqmarginal(.) functions we 

, we need to 

2can easily compute the mean, the standard deviation and the quantiles of σε
given in Table 3: 

, 
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Quantiles 
Covariate Mean St.Dev. 0.025 0.5 0.975 
Intercept 3.69 0.45 2.79 3.69 4.57 
A -0.20 0.05 -0.29 -0.20 -0.10 
UTMX -0.16 0.16 -0.48 -0.16 0.16 
UTMY -0.18 0.15 -0.48 -0.18 0.11 
WS -0.06 0.01 -0.08 -0.06 -0.04 
TEMP -0.12 0.04 -0.19 -0.12 -0.05 
HMIX -0.02 0.01 -0.05 -0.02 0.002 
PREC -0.05 0.01 -0.07 -0.05 -0.04 
EMI 0.04 0.01 0.01 0.04 0.07 

Table 2 Posterior estimates (mean, standard deviation and quantiles) of the covariate 
coefficient vector β. 

sigma2eps_m1 = inla.emarginal(function(x) x, sigma2eps_marg) 
sigma2eps_m2 = inla.emarginal(function(x) x^2, sigma2eps_marg) 
sigma2eps_stdev = sqrt(sigma2eps_m2 - sigma2eps_m1^2) 
sigma2eps_quantiles = inla.qmarginal(c(0.025, 0.5, 0.975), sigma2eps_marg) 

The properties of the parameter estimates for the spatial SPDE model can 
be obtained by running the code 

result.field = inla.spde.result(result, "field", spde, do.transform=TRUE) 

which extracts all the relevant bits of information from result, and also trans-
forms the results from internal parameter scales, giving posterior distributions 
for nominal variance and nominal range in addition to the internal θ1 = log(τ) 
and θ2 = log(κ). From 

inla.emarginal(function(x) x, result.field$marginals.range.nominal[[1]]) 
√
8νwe get a value of 275 km for the empirically derived correlation range ρ = κ . 

As this is the distance at which the correlation is close to 0.1, we can conclude 
that the data are characterized by a strong spatial correlation which decreases 
slowly with distance. As reported in Section 2 of Lindgren et al (2011), the 
variance σω 

2 is given by 

σ2 1 
ω = 

4πκ2τ2 

where τ is the scaling parameter with estimate stored in the element Theta1 
for field of result$summary.hyperpar. The posterior mean of σω 

2 as ob-
tained from 

inla.emarginal(function(x) x, result.field$marginals.variance.nominal[[1]]) 

was 1.2762. All the posterior estimates (mean, quantiles and standard devi-
ation) for the hyperparameters σε

2 , σω
2 , ρ and a are collected in Table 3. We 

observe that more variation is explained by the spatial term rather than by 
the measurement error. Moreover, the high value of the AR(1) temporal cor-
relation coefficient confirms the short-term persistence of particulate matter. 
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Quantiles 
Parameter Mean St.Dev 0.025 0.5 0.975 
σ2 0.0326 0.0014 0.0300 0.0325 0.0353 ε 

σω 
2 1.2762 0.240 0.9300 1.2302 1.8603 
ρ 275 16.8 244 275 310 
a 0.9601 0.0081 0.9453 0.9598 0.9759 

Table 3 Posterior estimates (mean, standard deviation and quantiles) of σ2 , σ2 , ρ and a.
ε ω 

5.3 Spatial prediction 

For spatial prediction purposes we consider a 4 × 4 km grid of 56 × 72 grid 
points ranging from 309 km to 529 km in the Eastern direction and from 4875 
km to 5159 km in the Northern direction. Our objective is to get a map, for 
a given day, of the PM10 concentration (on the logarithmic scale) together 
with a probability of exceedance map using the threshold of 50 µg/m3 (this 
is the value fixed by the European directive 2008/50/EC for the daily mean 
concentration and cannot be exceeded more than 35 days in a year) . If we want 
to take into account the prediction of the smooth PM10 concentration field 
without the nugget term, we simply add the large scale component z(s0, t)β 
to the value of the latent field ξ(s0, t), with s0 ∈ D and 1 ≤ t ≤ 182. Since the 
observation stations cover only a limited altitude range, we present the results 
only for elevations below 1 km, to avoid inappropriate linear extrapolation of 
the effect of elevation. 

To perform spatial prediction we first load the covariate array 

load("covariate_array_std.Rdata") 
dim(covariate_array_std) 

whose dimension in our data setting is 56 × 72 × 8, where 8 is the number 
p of covariates (stored in the order A, UTMX, UTMY, WS, TEMP, HMIX, 

PREC, EMI ). Then, using the inla.mesh.projector(.) function, we define 
a lattice projection starting from the inla.mesh object created before (named 
mesh) and the definition of the Piemonte grid: 

proj_grid = 
inla.mesh.projector(mesh, 

xlim=range(Piemonte_grid[,1]), 
ylim=range(Piemonte_grid[,2]), 
dims=c(56,72)) 

Successively, we extract the posterior mean and the standard deviation of the 
latent field 

field_pred_mean = 
result$summary.linear.predictor[inla.stack.index(stack,"pred")$data, "mean"] 

field_pred_sd = 
result$summary.linear.predictor[inla.stack.index(stack,"pred")$data, "sd"] 

obtaining the results for the specific day specified for prediction in the original 
inla call, here i = 122, corresponding to January 30, 2006, and again with the 
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inla.mesh.project(.) function we project the latent field from the mesh to 
the grid proj_grid: 

grid_latent_mean = inla.mesh.project(proj_grid, field_pred_mean) 
grid_latent_sd = inla.mesh.project(proj_grid, field_pred_sd) 

Finally, we compute the smooth PM10 concentration predictions for all the 
56 × 72 = 4032 grid points adding to the z(s0, t)β term the gridded latent 
field given by grid_latent_mean. The predictions are stored in the grid_mean 
matrix: 

beta = result$summary.fixed[,"mean"] 
grid_mean = grid_latent_mean 
grid_var = grid_latent_sd^2 
for (b in c(2,5:9)) { 

grid_mean = grid_mean + covariate_array_std[,,b-1]*beta[b] 
grid_var = grid_var + covariate_array_std[,,b-1]^2*beta_sd[b]^2 

} 
grid_sd = grid_var^0.5 

Note that two of the covariates are skipped in these approximate calculations, 
since they were properly included in the Bayesian integration as performed by 
inla. The following code produces the prediction and exceedance probalility 
maps reported in Figure 5.3 using the levelplot(.) function of the lattice 
library together with the color palette tim.colors(.) contained in the fields 
library: 

levelplot(row.values=proj_grid$x, column.values=proj_grid$y, 
x=grid_mean, 
col.regions=tim.colors(64), 
ylim=c(4875,5159),xlim=c(309,529), 
aspect="iso", 
contour=TRUE, cuts=11, labels=FALSE, pretty=TRUE, 
xlab="Easting",ylab="Northing") 

trellis.focus("panel", 1, 1, highlight=FALSE) 
lpoints(borders,col=1,cex=.25) 
lpoints(coordinates$UTMX, coordinates$UTMY,col=1,lwd=2,pch=21) 
trellis.unfocus() 

u_level = log(50) #threshold 
grid_prob_plugin = pnorm((grid_mean-u_level)/grid_sd) 
levelplot(row.values=proj_grid$x, column.values=proj_grid$y, 

x=grid_prob_plugin, 
col.regions=tim.colors(64), 
ylim=c(4875,5159),xlim=c(309,529), 
aspect="iso", 
at=(0:10)/10, 
contour=TRUE, cuts=11, labels=FALSE, pretty=TRUE, 
xlab="Easting",ylab="Northing") 

trellis.focus("panel", 1, 1, highlight=FALSE) 
lpoints(borders,col=1,cex=.25) 
lpoints(coordinates$UTMX, coordinates$UTMY,col=1,lwd=2,pch=21) 
trellis.unfocus() 

For higher accuracy for the exceedance probabilities one could use the full pos-
terior distributions as provided by inla(.), but in our experience the Gaussian 
plugin estimator used here is sufficient and much faster. 
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As expected, higher levels of PM10 pollution and exceedance probabilities 
are detected in the metropolitan areas located near the main cities of the 
region (Torino, Vercelli and Novara) and moving eastwards toward Milan. 

Fig. 5 Map of the PM10 posterior mean on the logarithmic scale (left) and exceedance 
probability for 50 µg/m3 (right) for January 30th, 2006. Only locations with an altitude 
below 1 km are shown. 

5.4 Validation 

In order to assess the validity of the estimated model, we perform a simple 
residual analysis. Using inla.stack.index to identify the data indices corre-
sponding to the 10 validation sites, we first calculate the residuals (res) and 
standardised residuals (res.std). The standardisation takes into account the 
variance of the Gaussian data likelihood: 

validation = list() 
index = inla.stack.index(stack,"val")$data 
tmp.mean = result$summary.linear.predictor[index,"mean"] 
tmp.sd = result$summary.linear.predictor[index,"sd"] 
validation$res = Piemonte_data_validation$logPM10 - tmp.mean 
validation$res.std = validation$res / 

sqrt(tmp.sd^2 + 1/result$summary.hyperpar[1,"mean"]) 

From this, we calculate the actual coverage probability of a prediction interval 
with nominal coverage probability 95%: 

validation$p = pnorm(validation$res.std) 
validation$cover = mean((validation$p>0.025) & (validation$p<0.975), na.rm=TRUE) 

This yelds an actual coverage probability of 89.7%, indicating that we’ve un-
derestimated the uncertainty of predictions. This is likely due to the model 



23 Spatio-temporal modeling of PM concentration through the SPDE approach 

overfitting the data, as indicated by the corresponding value 98.2% for the 
data from the 24 estimation sites. 

Further residual metrics can also be calculated, such as root mean squared 
error (RMSE) and correlation coefficient between observations and predictions: 

validation$rmse = sqrt(mean(validation$res^2, na.rm=TRUE)) 
validation$cor = cor(Piemonte_data_validation$logPM10, tmp.mean, 

use="pairwise.complete.obs", method="pearson") 

The resulting RMSE is 0.5328, and the correlation coefficient 0.7015. For com-
parison, Model C in Cameletti et al (2011) - which is applied to the same data 
with MCMC methods - achieved a RMSE of 0.3476 and a correlation of 0.8637. 
The only difference between the models is that the model from Cameletti et al 
(2011) uses smoothness parameter ν = 1/2 in the covariance, corresponding 
to an exponential spatial covariance function. Moreover, if we compare the 
parameter estimates for both the models, similar results are obtained for the 
covariate coefficients, whereas the estimated range ρ and the AR(1) coefficient 
a are quite different: 275 km and 0.96 for the SPDE approach and 1046 km 
and 0.654 for Cameletti et al (2011), respectively. Considering the character-
istics of PM10 pollution in Piemonte region and in the Po Valley, it seems 
that the estimates of ρ and a obtained with the SPDE approach are more 
reasonable. Some differences can be detected also for the variances: while in 
Cameletti et al (2011) the estimates for σ2 2and σεω are equal to 0.950 and 0.013, 
with the SPDE approach we get 1.276 and 0.033, respectively. In any case, to 
properly compare the SPDE/GMRF/INLA approach to the classical MCMC 
based computations, one could use the spectral approximation method from 
the authors’ response to the discussion of Lindgren et al (2011) to construct a 
GMRF approximation to an exponential covariance, corresponding to α = 3/2 
in the SPDE model. 

6 Discussion 

In this work we describe how to employ the SPDE approach for a spatio-
temporal hierarchical model that involves a GF and a state process charac-
terized by first order autoregressive dynamics and spatially correlated innova-
tions. In particular, we show, through a motivating problem regarding PM10 

data in Piemonte, how to use the R-library INLA to get the parameter poste-
rior estimates together with prediction and uncertainty maps. The results we 
obtain are comparable to the ones reported for Model C in Cameletti et al 
(2011), where the same data are modeled through an almost identical spatio-
temporal model, with the only difference that ν = 1/2 which corresponds to 
an exponential spatial covariance function. In Cameletti et al (2011) all the 
inferential procedures are carried out using MCMC methods, requiring on av-
erage 0.4 seconds for each iteration using an Intel Xeon 8 CPU cluster (2.66 
Ghz, 8 GB RAM) and Matlab R2009b with the Parallel Computing Toolbox. 
In the hyphotetical case of 50000 MCMC iterations, this means that almost 6 
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hours are needed for completing the estimation step and making spatial pre-
dictions over the set of 10 validation stations considered there. Instead, using 
the SPDE approach and the R-library INLA on an Intel Xeon 12 CPU machine 
(3.33GHz, 96 GB RAM), the inla program used only 240 seconds to calculate 
the posterior distributions of the hyperparameters and of the latent field over 
the triangulated domain. Unlike the different machine settings and employed 
software, the computational strength of the SPDE approach implemented by 
the INLA algorithm stands out clearly. Besides, it is worth to note that when 
working with the INLA algorithm problems of convergence and mixing - typical 
of the sampling-based MCMC methods - are not an issue at all. Furthermore, 
even if in this work we focus on a particular hierarchical model, the SPDE ap-
proach can be immediately extended to a wide class of spatio-temporal models. 
For example, it is possible to consider models with more complex hierarchical 
structures or with non-separable covariance function as well as non-stationary 
cases characterized by parameters that change in time. For all these reasons, 
we believe that the SPDE approach, combined with the INLA algorithm, is 
an outstanding computational framework for performing Bayesian inference 
on complex spatio-temporal GFs, also when dealing with massive datasets. 

Another issue we focus on in this work is the R-library INLA. In particu-
lar, we describe step-by-step the R-code required for modeling PM10 data in 
Piemonte making use of the SPDE approach. As it is quite easy to get pre-
diction and uncertainty maps in a reasonable computing time, we think that 
the user-friendly INLA-library is particularly suitable for environmental agen-
cies that seek effective tools for modeling and mapping high-dimensional air 
quality data. 
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