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Spatio–Temporal Modeling of the Optical Properties
of VCSELs in the Presence of Polarization Effects

Josep Mulet and Salvador Balle

Abstract—In this paper, we develop an optical dynamical
model for vertical-cavity surface-emitting lasers (VCSELs) which
describes, in an unified way, polarization and spatial effects. The
model is based on equations for the lateral dependence of the
slowly-varying amplitudes of the optical field in both circular
polarizations, and equations for the carrier density in both spin
orientations. This provides a natural generalization of the Spin
Flip Model for the description of polarization properties of
VCSELs extensively used in the literature. In its present form,
the model assumes given functional dependence of the guiding
mechanisms (built-in refractive index and thermal lensing) as well
as the spatial dependence of the current density.

We investigate the transverse mode behavior of gain-guided,
bottom and top-emitter VCSELs by implementing the model with
an analytical approximation to the susceptibility of quantum-well
semiconductors. We demonstrate that the stronger the thermal
lens, the stronger the tendency toward multimode operation,
which indicates that high lateral uniformity of the tempera-
ture is required in order to maintain single mode operation in
gain-guided VCSELs. We perform analytical calculations of the
threshold curves in both types of VCSELs. Also, close-to-threshold
numerical simulations show that, depending on the current
shape, thermal lensing strength and relative detuning, different
transverse modes can be selected.

Index Terms—Laser modes, modeling, polarization, semicon-
ductor lasers, surface-emitting lasers.

I. INTRODUCTION

V
ERTICAL-CAVITY surface-emitting lasers (VCSELs)

are promising devices for many optical applications and

are particularly of interest because of their single-longitudinal

mode emission, easy integration in 2-D arrays, and narrow

circular output beams. However, relatively large apertures are

required in order to obtain substantial optical power, which lead

to multitransverse mode behavior of the VCSEL [1]. In addi-

tion, the VCSEL’s cavity lacks a mechanism effective to pin the

polarization of the optical field. Therefore, light-polarization

instabilities are often observed when the current is increased

[2], as well as excitation of higher order transverse modes.

Since many applications require stability in both the emission

profile and polarization, it is important to design the VCSEL

appropriately. This fact motivates the study, characterization

and control of polarization and transverse mode dynamics.
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Most studies of polarization dynamics have been concerned

with devices where the spatial degrees of freedom can be

disregarded. A first explanation for the observed polarization

dynamics and instabilities was put forward by Choquette and

coworkers [3], [4]. Their main argument is that, due to residual

cavity anisotropies, linearly polarized modes experience dif-

ferent net modal gains, so that at threshold the mode with larger

gain (usually that closest to the gain peak) is selected. However,

as the current is increased the temperature of device also

increases, leading to a redshift of the gain curve relative to the

linearly polarized modes that may cause a polarization switch

from the high-frequency mode to the low-frequency mode.

This model has been further extended to account for the effects

of thermal lensing, gain-dispersion, and temperature-dependent

free-carrier absorption [5], [6]. A different kind of explanation

for polarization switching in single-mode devices is given

by the so-called Spin-Flip Model (SFM) [7], which is based

on a generalization of the gas laser theory to the magnetic

sublevels of the conduction and heavy-hole bands in a quantum

well (QW). The SFM explains the polarization switching in

VCSELs as the result of an instability of the phase locking

among the circularly polarized components of the optical

field that arises from the coupling between amplitude and

phase due to the linewidth enhancement factor. The SFM has

been extensively applied to analyze the polarization selection

and instabilities: the interplay of linear and nonlinear cavity

anisotropies in polarization switching, the influence of mag-

netic fields [2], mode hopping, and the polarization resolved

intensity noise [8]. Recently, the SFM has been justified from

a microscopic point of view [9] and it has also been extended

for including the frequency-dependence of the carrier-induced

gain and refractive index, showing that the thermal mechanism

discussed before and that coming from phase instabilities can

coexist depending on the VCSEL characteristics [10], [11].

On the other hand, several methods have been devised recently

to analyze the cavity modes of VCSELs in a scalar, semi-vecto-

rial, or fully-vectorial description [12]–[16]. These methods are

able to determine the modal frequencies, profiles, and threshold

gains from the distribution of the index of refraction associated

with a given device structure. However, they cannot be directly

applied to the study of spatio–temporal dynamics of the system

because these methods are passive and static, so that they disre-

gard the coupling of the optical field with the carrier density and

the associated index change through spatial hole burning, which

has been found to be relevant in VCSELs despite the presence of

other guiding mechanisms [17]. Moreover, the index of refrac-

tionof the materials defining the cavity is temperature dependent;

hence, the refractive index distribution changes as the current is
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increased due to device self-heating through Joule heat dissipa-

tion. Heat is mainly generated close to the cavity axis, so a radial

profile of temperature develops with higher temperatures close

to the cavity axis. As a consequence, besides a global increase

of the average index that is responsible for the observed redshift

of the cavity modes, the refractive index is higher at the center

of the device than in the outer regions, a phenomenon known as

thermal lensing (TL). The effects of TL are usually weak, since

the thermal rate of change in the index of refraction is of the order

of . Nevertheless, TL can strongly

influence the transverse mode properties in weakly index-guided

lasers—such as oxidized VCSELs with the oxide layer placed

close to a field node—or purely gain-guided diode lasers which

do not possess any built-in index waveguide and where lateral

confinement of the optical field occurs only via a combination of

gain-guiding and index anti-guiding mechanisms [17], [18].

Inorder tomodel thedynamicsofVCSELswithspatialdegrees

of freedom, a modal expansion of the electric field is often used

[19], [20], thereby including spatial holeburning effects. How-

ever, a drawback of such an approach is that the number and type

of modes considered in the description has to be fixed and deter-

mined a priori, and usually only a few low-order modes are in-

cluded. Inrelatively largeVCSELsthatsupportseveral transverse

modes, some of which may have quite similar frequencies, it is

preferable to directly investigate the spatio–temporal dynamics

of the optical field, either considering [21], [22], or not consid-

ering [23], [24] the polarization of the optical field. The direct in-

clusion of transverse effects in the dynamics of multimode VC-

SELs requires to consider the frequency dependence of both the

gain and refractive index of the material that constitutes the ac-

tive region. In addition, they should also correctly incorporate the

nonlinear dependence on the carrier density because of the inho-

mogeneouscarrierdistributionarisingfromthe localized injected

current. The most natural way to incorporate both the gain and re-

fractive index is through the optical susceptibility of the active re-

gion, which could be obtained in either a microscopic [25]–[29]

or mesoscopic framework [30]–[32]. The former gives a very ac-

curate description but requires a huge computational effort; the

latter, despite approximations, can provide an accurate descrip-

tion of the active medium and can be included directly into the

laser dynamics [11], [29], [33].

This paper is organized as follows. In Section II, we present a

detailed description of the optical VCSEL model implemented

in this paper, which generalizes the SFM in order to include:

1) the spatial dependence of both the field and carrier densities

and 2) a susceptibility tensor that describes the frequency-de-

pendence of the gain and refractive index distributions induced

by the carriers. In Section III, we present an analytical approach

to obtain the threshold of transverse modes. In Section IV, we

discuss the results of numerical simulations. Finally, Section V

is devoted to summarizing and concluding our paper.

II. MODEL

In weakly-index guided or purely gain-guided devices, the

optical field inside the VCSEL cavity can be considered as al-

most totally polarized in the transverse plane to the cavity axis.

Fig. 1. Scheme of the allowed transitions in the spin subbands of a strained
QW, (HH) heavy hole with J = �3=2, and (CB) conduction bands with J =

�1=2. Electrons with opposite spin are mixed at rate  . Emitted photons with
opposite circular polarization (E ) are coupled through the linear birefringence
 .

In a system with perfect cylindrical symmetry, any linearly po-

larized state of the optical field is allowed. In crystals with cubic

symmetry, this rotational invariance is not perfectly preserved.

Moreover, the VCSEL cavity has weak optical anisotropies (due

to either residual strain incorporated during device processing

or to other sources as the elasto-optic [34] or electro-optic ef-

fects [35]) that select two preferred orthogonal orientations for

the optical field, and , which usually correspond to the under-

lying crystallographic axes. We assume that the preferred orien-

tations are the same in all epitaxial layers defining the VCSEL

cavity; hence, the optical susceptibility of the passive cavity is

diagonal in the basis of linearly polarized states. However, the

polarization state of the optical field emitted by the VCSEL

also depends on its interaction with the active region’s mate-

rial, governed by the selection rules of quantum mechanics. In

crystals with cubic symmetry, and when the optical field prop-

agates along the quantization axes of the crystal ( ), the selec-

tion rules for the transitions impose, among others, the conser-

vation of the third component of the angular momentum. The

optical susceptibility of the active region is, therefore, diagonal

in the basis of circularly polarized states of the optical field;

hence, we switch to it due to the resulting simplified description

of the dynamical interaction with the active material. It is then

also natural to distinguish between spin-up and spin-down elec-

trons and holes, since they couple to optical transitions with op-

posite circular polarization. In addition, spin-up and spin-down

carriers are coupled among them through spin-flip mechanisms

that may reverse the particle’s spin [36], and which we shall

describe through an effective spin relaxation rate. These pro-

cesses are graphically sketched in Fig. 1 for the case of only one

conduction band for the electrons and one heavy-hole band. In

Section II-A, we discuss the optical part of the model, while in

Section II-B, we treat the evolution of the carrier densities.

A. Optical Model

In this subsection, we detail the procedure outlined above

in order to obtain our dynamical model for the VCSEL taking

into account both the polarization and transverse degrees of

freedom. We start from Maxwell’s equations in the frequency

domain, and after determining the optical carrier frequency of

the VCSEL emission, we return to the time domain in order to

find the dynamical equations for the slowly varying amplitudes

(SVA) of the circularly polarized optical-field components.
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From Maxwell’s equations in the frequency domain, the dis-

tribution of each linearly polarized component of the optical

field (with ) is given by

(1)

where and are the frequency-depen-

dent susceptibility distribution of the passive material filling the

cavity for a field polarized along the -direction, is

the -component of the material dipole density due to the ac-

tive material, thus providing both gain and a change in refrac-

tion index, is the rectangle function, which is 1 if

and zero otherwise, that specifies the po-

sition of the active region, which we consider to be made of a

single QW whose thickness is . In the case of multiple QWs,

we assume that they are all in the same electrical state, so that

the total thickness of the active region is scaled by the number

of wells.

By considering that due to the short cavity length , the

VCSEL supports a single longitudinal mode in the vicinity of

the gain maximum, the optical-field components can be split

into their longitudinal and transverse parts

(2)

where . The longitudinal modes of the VCSEL

cavity are determined by the round-trip condition in the

plane-wave approximation. For a linearly polarized wave, it

reads

(3)

where stands for the complex propagation constant of the

longitudinal mode linearly polarized along the -direction, with

its real and imaginary parts determining the wavelength and

threshold gain for this mode, and is the physical cavity length

corresponding to the separation between the two Bragg mir-

rors. and denote the frequency-dependent amplitude re-

flectivities of the top and bottom Bragg reflectors. Moreover,

Bragg mirrors are usually birefringent, displaying polarization-

dependent reflectivities . This effect provides dif-

ferent propagation constants and, in general, different longitu-

dinal profiles for the two linearly polarized modes.

Upon substitution of (2) into (1) and by projecting onto the

longitudinal mode , the transverse-field distributions in the

cavity section are given by

(4)

where we have defined

(5)

(6)

(7)

where

normalized longitudinal-field profile;

longitudinal average of the passive material’s suscep-

tibility;

projection of the active material’s dipole density onto

the corresponding -component of the longitudinal

mode.

As already commented, in our system the selection rules for

the optical transitions impose the conservation of the axial com-

ponent of the angular momentum, hence the interaction with the

active material is diagonal in the basis of circularly polarized op-

tical states. Therefore we express the optical fields in the basis

of left- and right-circularly polarized components

(8)

where the optical interaction with the QW-based active region

is naturally expressed. Then, (4) reads

(9)

where we have defined

(10)

(11)

(12)

(13)

(14)
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Given the QW’s susceptibility components in the circular

basis, , the linear components of the ma-

terial dipole density can be expressed as

(15)

(16)

and, upon substituting the above expressions into (7) and (14),

we obtain

(17)

where

(18)

(19)

By splitting the total carrier density inside the QW as

, where stands for the electron density with

spin up and down, respectively, the susceptibility components in

the circularly polarized basis are ,

and they depend on position only through the position depen-

dence of . Since the QW thickness is much smaller

than the diffusion length, it can be assumed that, inside

the QW, the carrier density is almost constant along , i.e.,

. Moreover,

for weak cavity anisotropies, the longitudinal propagation

constants and are quite similar, so we can consider

that the longitudinal mode profiles are almost the same, with

. In this case, (17) simply reduces to

(20)

where

(21)

is the longitudinal optical confinement factor that represents the

fraction of the intracavity power that is confined to the QW ac-

tive region. As already noted, in the case of a multiple QW ac-

tive region, we consider that all the QWs are identical and in the

same state. Hence, we simply scale the single-QW confinement

factor by the number of wells. Therefore, (9) becomes

(22)

By defining

(23)

where

effective background refractive index experi-

enced by the field in the isotropic, homoge-

neous cavity;

—determines the effective absorption

in the passive material;

(small) excess index distribution responsible for

the lateral confinement of the optical field.

The excess refractive index distribution contains all

the waveguiding mechanisms present in the device except the

carrier-induced refractive index, which is included through the

real part of . Hence, in the cavity without anisotropies, we

have that the longitudinal mode considered has an optical fre-

quency , determined—from (3), (22), and (23)—by the con-

dition

(24)

where stands for the real part of the propagation

constant of the longitudinal mode considered. The frequency

dependence of stems from the frequency-dependent reflec-

tivity of the Bragg mirrors, which mainly arises from the

reflection phases while within the stopband of the reflectors.

Since the indices of the materials forming the passive cavity

and the Bragg reflectors are temperature dependent, (24)

incorporates the thermal shift of the cavity mode.

Once the longitudinal mode frequency has been de-

termined, we can tackle the dynamical evolution of the

transverse-field profile in the SVA approximation. For the

active VCSEL, the optical field is quasi-monochromatic,

and we take as the carrier optical frequency so that

, with , is different from

zero only in the close vicinity of . Thus, in the time domain,
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the circularly polarized components of the optical field can be

written as

(25)

where are the SVAs of the circularly polarized com-

ponents of the optical field, which verify that .

For frequencies , we approximate

(26)

where is the effective index at the cavity frequency

and is the corresponding

group refractive index. By neglecting the frequency dependence

of and in (22) and transforming it to the time domain

, we have that

(27)

The right-hand side of (27) does not allow for an exact integra-

tion. However, by expanding to the first order in , inte-

grating term by term and formally resuming the series, we have

that the temporal evolution of the transverse-field distribution

is determined by

(28)

In the above equation, we have defined

as the total cavity loss rate, and

(29)

(30)

which represent the effective dichroism and birefringence in

the cavity. Anisotropies have two different contributions: ,

which represents the anisotropies that arise from the passive ma-

terial filling the cavity, and , which arises from the Bragg

mirrors. For simplicity, we consider that and are constant,

independent of both position and frequency.

The waveguide operator in (28) reads

(31)

since we have assumed weak guidance, i.e., .

It is worth remarking that does not incorporate the carrier-in-

duced refractive index, which is included separately through the

real part of the susceptibility. However, all other guiding mech-

anisms and, in particular, thermal effects due to carrier injection

are, indeed, included in because both the cavity frequency

and the excess refractive index distribution are

sensitive to the injected current due to device self-heating. The

eigenfunctions of are thus the cavity modes corresponding to

the effective waveguide, and if this guide is strong enough, the

interaction with the carriers will not distort them too strongly.

It is worth remarking that with our definition of , the cavity

modes and modal frequencies are polarization independent. The

linear cavity anisotropies are described through and .

Finally, in (28), two points are worth remarking. In the first

place, the optical frequency is selected by the cavity through

(24). In the second place, a correction to the optical frequency

appears through the “instantaneous frequency” in

. Such a contribution takes into

account the changes in the susceptibility due to the frequency

pulling or pushing due to nonlinearities and it also describes

the variations in susceptibility experienced through frequency

chirping during transients. But, more important, it also deter-

mines that the carrier-induced gain and refractive index expe-

rienced by different transverse modes are different due to their

different modal frequencies.

B. Material Model

As already discussed, due to the quantum-mechanical selec-

tion rules that apply to optical transitions in the QW the interac-

tion, with the active material is diagonal in the basis of circularly

polarized states. It is then natural to split the total carrier den-

sity into spin-up and spin-down carrier densities. Each of them

interacts with only one of the two circularly polarized compo-

nents of the optical field, but scattering processes that reverse

the spins of the carriers couple the two densities. We describe

this coupling by means of an effective spin-flip rate that phe-

nomenologically describes the equalization of the densities of

spin-up and spin-down carriers [2], [36]. The evolution of each

of the spin-resolved densities can be found from the density ma-

trix formalism [38] applied to semiconductor systems, which

leads to [9], [24]

(32)
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where

absolute value of the electron charge;

in-plane ambipolar diffusion coefficient;

— total spontaneous re-

combination of carriers (we neglect Auger

recombination);

all spin-flip processes that tend to equalize

the two carrier densities with opposite spin.

Finally, denotes the distribution of the current flowing

through the active region, which is assumed to be equally dis-

tributed among the two spin orientations. Thus, the total injected

current is .

Our VCSEL model is given by (28) and (32), which together

determine the distribution of the SVA fields and carrier densi-

ties. However, it still has to be closed by providing a specifi-

cation for the optical susceptibility components, , that de-

scribe the interaction of the optical field and the QW mate-

rial: their imaginary parts describe the energy exchange (absorp-

tion or stimulated emission) between the circular components

of the field and the medium, while their real parts describe the

dispersive effect (refractive index change) accompanying such

a process [39]. Therefore, once the susceptibility components

have been specified, our model naturally includes the effects of

spatial-hole burning that leads to a reduction in the modal gain

due to a depletion of the carrier density distribution, but also

through a change both in the position of the modal frequencies

on the gain spectrum and in the modal profiles. For index-guided

devices, this last effect can be usually neglected and it is enough

to determine the imaginary parts of as a function of the fre-

quency and the carrier densities.

Models for calculating the gain and refraction index spectra

from the electronic structure of the semiconductor material

have been developed, some neglecting many-body effects [37],

[40]–[46] and some taking them into account [25]–[29], [47],

[48]. These microscopic theories describe individual transitions

by the occupation of the initial and final electronic states, and

the material polarization by superposing the contributions from

each transition. A dynamical description of the lasing process

then requires dealing with plenty of two-level-like systems,

coupled among them by carrier scattering processes and by the

optical field. In this way, all physical mechanisms in the mate-

rial are accounted for, but the complexity of such a description

is so high that it requires intensive numerical computation even

without considering spatio–temporal dynamics.

In order to reduce the computational cost and to gain physical

insight, it is convenient to use simpler descriptions for the op-

tical susceptibility of semiconductor media. One possibility is to

use a semi-analytical approximation for the optical gain (see, for

instance, [49] and references therein) and then determine the re-

fractive index by Kramers–Kronig relations. Another possibility

is to use an analytical approximation to the full optical suscepti-

bility [30]–[32], which although less accurate, still captures the

essential features of the gain and index spectra. For this reason,

we consider an analytical approximation to the optical suscep-

tibility of the QW, equivalent to that given in [30], but for the

circular components of the optical field. We proceed along the

lines given in [30], and we consider that only one conduction

and one (heavy-hole) valence band, both parabolic and degen-

erated for the two spin orientations, contribute to the gain [see

Fig. 1]. This situation is appropriate for describing thin, strained

QW where the light-hole band has substantially higher energy

than the heavy-hole band, so it is not optically active until quite

high carrier densities. By assuming charge neutrality and that

the spin relaxation rate for the holes is very large [36], the hole

density can be eliminated from the VCSEL dynamics. In this

limit, we have that , where

and denote the densities of electrons and holes per spin ori-

entation, respectively. Finally, assuming intraband quasi-equi-

librium, the analytical expression for the optical susceptibility

reads

(33)

where the first term on the right-hand side represents the contri-

bution of the electrons, the second that of the holes, and the third

represents the susceptibility of the system when no carriers are

excited. In the above equation, we have defined

where

reduced mass of the electron-hole pair;

(total) transparency carrier density;

oscillator strength of the transition, assumed to be

constant over the whole band;

width of the transition, assumed to be constant over

the whole band.

The frequency dependence is incorporated through , in which

measures the normalized detuning of the lon-

gitudinal mode resonance with respect to the nominal bandgap,

and phenomenologically describes bandgap

renormalization due to Coulomb interaction between electrons

and holes, being the bandgap renormalization parameter.

As discussed in detail in [30], the optical susceptibility given

by (33) provides a good qualitative description of the character-

istics of both gain and refractive index spectra, including band-

filling effects (i.e., the blueshift of the gain peak relative to

the bandedge as the carrier density is increased) and the non-

linear dependence of the gain and index spectra on the car-

rier density. By using this approximation for in (28) and

(32), the spatio–temporal description of the system incorporates

the frequency dependence of both the gain and refractive index

in a simple, although efficient and qualitatively accurate way.

Anyway, it should be stressed once again that other approxima-

tions for the susceptibility components could be used. In par-

ticular, when one wishes to analyze in detail the behavior of a

particular device, computational complexity arises because of

the need for a realistic and accurate modeling of the gain and

index spectra for the device under analysis.
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C. Dimensionless Model

As a final step, for the sake of clarity and numerical purposes,

it is convenient to use a dimensionless version of the VCSEL

model. To this end, we work with the carrier densities normal-

ized to the transparency carrier density, , and we

scale the fields as

(34)

We also consider that the shape of the transverse current

density distribution is fixed by the structure of the device, so

that , where is the current

shape and its time dependence; hence, the total injected

current reads

(35)

Then, the final form for the model is

(36)

(37)

where , and the susceptibility is that given

in (33). In addition, we have phenomenologically added

stochastic Langevin terms with zero mean ( )

and uncorrelated in both space, time, and polarization

( ,

with ) to the equation for each electric field in

order to model spontaneous emission processes [8].

For the sake of simplicity, we assume that the lateral current

distribution at the active layer is given in terms of explicit func-

tional forms of . We approximate this function by a su-

pergaussian distribution in the case of bottom-emitting devices,

while a ring-shaped current distribution is taken for top-emitting

devices. In the same way, the radial dependence of the excess re-

fractive index that arises from the TL effect is assumed to

be parabolic. Although the electrical and thermal models have

not been yet implemented, they may be included in our optical

model in order to self-consistently determine the distribution in

current density, temperature and optical field. A summary of the

meaning and numerical values of the device and material param-

eters can be found in Table I.

III. THRESHOLD ANALYSIS

A basic step in the characterization and modeling of VC-

SELs is to determine their threshold properties. In particular,

TABLE I
DEVICE AND MATERIAL PARAMETERS

the difference in threshold currents for the different transverse

modes provides a rough estimate of the modes that can be ex-

cited for a given current, although above threshold the excitation

of higher order transverse modes is favored because of spatial

hole burning. In addition, the modal profiles and frequencies

can be modified, especially for very weak guiding. One of the

primary effects of TL is to modify the threshold characteristics

of the VCSEL by changing both the threshold current and the

mode selected at threshold.

The threshold current and the transverse mode selection for a

given VCSEL can be determined in a simple way by analyzing

the linear stability of the “off” state, i.e., . We apply

to the “off” state a small perturbation in such a

way that stimulated emission can be neglected in determining

the carrier densities. Hence, from (37), we have that the car-

rier densities in each spin orientation are equal—

—since electrons with opposite spin orientations are, on

average, equally injected, and given by

(38)

The solutions of (38) in turn determine the inhomogeneous dis-

tribution of the optical susceptibility, that in this case is the

same for the two polarization components. The dynamics of

is given by

(39)

It is natural to expand the perturbation in modes of the wave-

guide operator

(40)
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where stands for the perturbation’s amplitude and

is the perturbation’s eigenvalue in each of these modes. Phase-

locking among the two circularly polarized components at

provides linearly polarized light along the and axes,

respectively. The cavity modes and the modal frequencies

are determined by the eigenvalue problem

(41)

These linearly polarized modes are indexed with

and . The mode profile has zeros

in the radial direction, whereas zeros are in the angular

direction. is referred as the fundamental mode, the

first-order transverse mode, and the remaining as higher order

transverse modes. An important property of in calculations

is that represents a complete set of orthogonal eigenfunctions. It

is worth recalling that these cavity modes and modal frequencies

are polarization independent, and that the cavity anisotropies

that may favor one linearly polarized state over the orthogonal

one have been included through and [see (47) below].

As we have already commented, the refractive index distribu-

tion is approximated by a truncated parabolic profile

if

if
(42)

with being the TL diameter. The modes of such

a waveguide can be analytically expressed as a series expansion

when and read [50]

if

if

(43)

where is a second kind Bessel function of order and the

coefficients in (43) are given by the recursive relations

arbitrary

if

(44)

is the waveguide parameter. The

guided modes are those verifying , and their

propagation constants are ob-

tained by imposing the boundary conditions at , which

yield a transcendental equation for

(45)

From (31) and (36), the modal frequencies, referred to ,can be

written

(46)

Inasmuch as , it describes the redshift of the modes due

to the thermal lensing with respect to the flat index distribution.

The greater the TL strength, the larger this redshift, which also

increases as the mode order decreases.

Upon substituting (40) into (39) and projecting onto a mode

, the perturbation’s eigenvalue is given by the solution

of the implicit equation

(47)

where the sign corresponds to linearly polarized

light. The perturbation’s growth rate is , while it oscil-

lates at a frequency shifted by with respect to .

The integral term on the right-hand side of (47) describes the

modal gain (real part) and the nonlinear frequency shift (imag-

inary part) of the transverse mode under consideration, taking

into account any possible frequency pulling or pushing of the

modal frequencies due to the carrier induced refractive index

change.

Therefore, the threshold current for every linearly polarized

transverse mode is found from the con-

dition . Threshold currents for the two linearly po-

larized solutions are slightly different in the presence of

linear anisotropies; hence, we define the threshold for a given

transverse mode as

(48)

and the absolute laser threshold is thus determined by

(49)

It is worth remarking that, given the carrier density distribu-

tion associated with the current injection in (38), the threshold

current of transverse modes is determined jointly by the modal

frequencies that establish the material gain, and the overlap of

the modal profile with the carrier distribution. These effects are,

in turn, dependent on both the relative detuning and the thermal

lensing strength. In the next two subsections, we discuss the
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Fig. 2. Threshold curves for the fundamental (solid lines) and first-order
transverse modes (dash lines) as function of the normalized detuning. The
thermal lensing strength is �n = 10 (�); �n = 10 ( ); �n =
5 � 10 ( ).

threshold behavior of bottom and top emitter VCSELs corre-

sponding to different shapes of the injected current.

A. Bottom-Emitting VCSEL

The current distribution across the active region of

bottom-emitting VCSELs is quite homogeneous due to

their circular p contact and the typical high doping levels

of the n-substrate [18], although current crowding at the

aperture edges is observed when the VCSEL diameter is large.

As we have already commented, we consider that for this

device structure the current distribution at the active layer is

super-Gaussian, , with being the

diameter of the active region. The total injected current is then

, and the exponential tails

of the supergaussian function take into account the current

spreading effect [51]. We consider a device with an active

region diameter m, and a larger diameter of the

thermal lens, m, in order to mimic heat diffusion

across the cavity axis.

In Fig. 2, we represent the threshold curves obtained

from (48) for the fundamental (solid lines) and first-order

(dashed-dotted lines) transverse modes as function of the

normalized detuning . We consider different values of the

TL refractive index strength , ,

and . For a fixed , the threshold curves

for the different modes as a function of the detuning display a

minimum when the modal frequency aligns with the gain peak.

The position of such a minimum depends mainly on the thermal

waveguide, but also on the coupling with the carrier density

through bandfilling and bandgap shrinkage as included in .

The curves are asymmetric around the minimum threshold with

a smoother increase toward the blue side of the gain spectrum

as a result of a higher differential gain. For small , which

corresponds to an on-axis temperature excess of about 1 K,

we observe that besides the global increase of the threshold

current, the threshold for the first-order transverse mode is very

large (out of scale in Fig. 2). For moderate , the threshold

of the fundamental mode is sensibly smaller than the first-order

transverse mode, so the laser displays fundamental transverse

mode operation for moderate currents above threshold. We

observe that the threshold discrimination of the first-order

transverse mode is more noticeable when the cavity resonance

is located on the blue side of the gain curve, although in this

case the threshold current increases. For large , we observe

that the threshold differences between the two modes are very

small over the whole range of detunings, thus indicating a

strong tendency toward multimode emission. An interesting

aspect is that, when the VCSEL operates on the red side of

the gain spectrum, the first-order transverse mode has a lower

threshold than the fundamental one.

This general scenario can be interpreted from (47) as the in-

terplay of two separate aspects. On one hand, the TL wave-

guide establishes the modal profiles, and frequencies .

The latter alone would define the modal gain if the active re-

gion were of infinite extent and injected homogeneously. Then,

the threshold curves for the different modes would follow the

material gain spectrum and one would, therefore, expect that

the threshold mode would be the one whose frequency is the

closest to the gain peak. However, due to the finite extent of

the carrier density distribution, a geometrical correction sets in

that accounts for the overlap of the carrier density and the mode

profile. This effect is usually described by means of a lateral

confinement factor that corresponds to the fraction of the modal

power contained in the nucleus of the waveguide. In our case,

however, the carrier distribution is inhomogeneous; thus, we de-

fine a lateral confinement factor through

(50)

where is a normalized weight function, ranging from

zero to one, that describes the shape of the active region. For

simplicity, we take with

the steady-state carrier distribution given by (38). When the

carrier density in the active region is approximated by a disc

, our definition of the lateral confinement

coincides with the fraction of modal power within the active

region. With our choice for , the lateral confinement factor

describes the degree of overlap of the modal profiles with the

carrier distribution. Note that does not depend either on the

modal frequencies or on the cavity detuning. Hence, we are able

to separate the geometrical contributions to the laser threshold

from those arising from the frequency dependence of the gain

curve.

The lateral confinement as obtained from (50) for the guided

modes considered above is depicted in Fig. 3. As expected, we

observe a fast decrease of the confinement factors as the TL

strength decreases, suddenly dropping to zero when the mode is

no longer confined by the TL waveguide. It is clear from Fig. 3

that for strong TL, the confinement factors for the fundamental

and the first-order transverse modes become very similar and

close to one. In such a case, the material gain differences arising

from different modal frequencies may be large enough to over-

compensate for the difference in confinement factors. Hence,

the device can start to lase in the first-order transverse mode in

spite of being homogeneously pumped. In order to improve the
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Fig. 3. Lateral confinement factor of the modes supported by the TL
waveguide as function of the TL strength. The carrier distribution corresponds
to the bottom-emitter VCSEL.

range of single-mode operation, it is desirable to work below

the cut-off for the first-order transverse mode, which—for a

fixed geometry—can be achieved by reducing the amount of

TL through an increase of the device’s lateral heat conductivity.

For our particular configuration, the TL strength has to be mod-

erate, and our analysis suggests that the on-axis excess temper-

ature should be kept below 5 K, since in this case, the confine-

ment factor for the first-order transverse mode is already only

7% below that of the fundamental mode. However, it must be

noted that the first-order transverse mode could start lasing well

above threshold due to spatial-hole burning in the carrier den-

sity.

B. Top-Emitting VCSEL

Top-emitting VCSELs have a top contact of annular shape

that leads to preferential injection in the outer edges of the active

region both due to the ring contact and to current crowding at the

aperture edges in the case of oxidized VCSELs. This strongly

affects the overlap of the modal profiles with the carrier density,

and thus the mode selection at threshold. In order to illustrate

this effect, we take the radial dependence of the injected current

as: , with in such a way that the

total injected current in the device is .

The variation in carrier density from the center to the carrier

crowding radius is of the order of % for the

actual diffusion coefficient. For simplicity and an easier com-

parison with the bottom-emitting VCSEL, we assume that the

thermal lensing profile is unaffected by the ring in the current

distribution, although such an approximation is unrealistic in the

case of small radial thermal conductivity and when a marked

ring-shaped current distribution is considered.

The threshold curves of the transverse modes, for a moderate

value of TL ( ) are shown in Fig. 4. The fun-

damental transverse mode is unfavored, with respect the other

modes, due to its poor overlap with the carrier density resulting

from the ring-shaped current injection. For these specific op-

erating conditions, the lowest threshold corresponds, over the

Fig. 4. Threshold curves for the successive transverse modes of the top-emitter
VCSEL. The position of the symbols denote the detuning of operation and its
corresponding threshold current. The thermal lensing strength is �n = 5 �

10 .

Fig. 5. Lateral confinement factor of the modes supported by the TL
waveguide as function of the TL strength. The carrier distribution corresponds
to the top-emitter VCSEL.

whole range of detunings, to the four lobed mode. Again,

it can be observed that the range of single-mode operation of

the device can be improved by detuning the cavity resonance to

the blue side of the gain peak. It must be noted, however, that in

this case, the mode is further away from the gain peak than

modes of lower order, hence clearly showing the dominance of

the geometrical effects over the material gain.

The lateral confinement factor defined in (50) is plotted in

Fig. 5 versus the TL strength. As the TL strength is increased, we

observe that different transverse modes are favored depending

on the TL conditions. From this purely geometrical point of

view, the fundamental mode tends to dominate due to

a better overlap with respect to the other modes for

. For , the first-order

transverse mode is favored, while for ,

the four-lobed displays the maximum confinement factor.
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Fig. 6. Switch-on dynamics of the bottom emitter VCSEL. Evolution of
the total intensity near-fields: (a) � = 1:05� ; (b) � = 1:10� ; and (c)
� = 1:25� . (d) Temporal evolution of the total intensity at � = 1:10� .
(e) Optical spectra of both linear polarizations under CW operation at
� = 1:10� .

IV. NUMERICAL RESULTS

In order to give more specific evidences of the interplay of

TL and the shape of the gain distribution, we perform numer-

ical simulations of (33), (36), and (37). In a first instance, we

discuss the switch-on dynamics of bottom- and top-emitting

VCSELs when they operate close to threshold. In a second in-

stance, we analyze the response to a short current pulse going

from below to well above threshold. In particular, we analyze

the spectral properties of these devices when the thermal lensing

strength changes. Some guidelines about the numerical integra-

tion scheme can be found in the Appendix.

A. Laser Switch-On

In this section, we assume that the nominal detuning is

, chosen to achieve operation near the gain peak, and we

take a moderate value for the TL strength: .

In these conditions, the threshold analysis presented in the pre-

vious section shows that the mode with the lowest threshold is

the fundamental one, with -polarization. In Fig. 6, we show the

dynamics of the bottom-emitting VCSEL when it is biased close

to threshold. The evolution of the total intensity near fields is

shown in panels Fig. 6(a)–(c) for three different currents ranging

from up to . Near-field images are

plotted with an inverted gray-scale scheme using maximum con-

trast. Therefore, comparison of the relative intensity between

images is not possible. For the lower injection current, we obtain

stable fundamental mode operation in a well-established polar-

ization. When the current is slightly increased, the near field is

still Gaussian, but its position changes from image to image.

Increasing further the injection current, we find that this last

stage ignites the appearance of the first-order transverse mode

as can be clearly seen in Fig. 6(c). As is commonly observed,

the first-order transverse mode switches on in the orthogonal

polarization of the lasing one. We note that this result is not a

direct consequence of the threshold analysis presented in Sec-

tion III, but a nonlinear competition between transverse and po-

larization degrees of freedom. The total intensity evolves ac-

cordingly to Fig. 6(d) when the current is . The

VCSEL emits preferentially in the lower frequency polariza-

tion component ( -LP), being selected by the actual value of

the dichroism. The orthogonal component is considerably sup-

pressed in CW, although it appears during the transient fol-

lowing the switch-on. The optical spectrum of the dominant

polarization, under CW operation, displays a dominant peak at

the position of the fundamental transverse mode frequency. The

orthogonal polarization component clearly exhibits the domi-

nance of the first-order transverse mode. It is worth remarking

that the current at which such a mode appears is smaller than

that predicted by the threshold analysis due to the role of the

spatial hole burning, i.e., the steady-state carrier distribution for

this current is no longer super-Gaussian, but displays a hole at

the center due to the increased stimulated recombination in this

region.

In view of the above results, one might think to preferen-

tially excite one of the transverse modes by proper selection of

the current profile. To explore this possibility, we perform nu-

merical simulations of the top-emitting VCSEL biased close to

the threshold current. The current is switched on from slightly

below threshold to above threshold . In Fig. 7(a),

we represent the evolution of the total intensity accompanied

by the near-field images at different stages. In the “off” state,

the spontaneous emission near field displays a hole at the center

as a result of the ring-shaped carrier distribution. As soon as the

laser switches on, we observe that a transverse mode with four

lobes is selected. Nevertheless, the orientation of the mode is

not fixed and starts to rotate, alternating between odd and even

modes. The polarization-resolved optical spectra, com-

puted under CW operation [see Fig. 7(b)] reveals that the device

exhibits nearly single-mode operation with a predominant peak

that corresponds to the four-lobed mode. However, a daisy

mode with six lobes is weakly excited ( 40 dB of side-mode

suppression ratio). The four-lobed structure of the mode

burns a hole in the carrier distribution along the angular direc-

tion that induces the rotation of the mode, and this yields the

weak excitation of the daisy mode. We also note reminiscent

peaks, with much lower power, at the frequency positions of the

fundamental and first-order transverse modes.

B. Response to a Current Pulse

In this second example, the cavity detuning is kept at

and the VCSEL is subject to an electrical excitation that

consists in a current pulse of 1 ns in duration and 50 ps of

rise and fall times. The current is switched on at from

to well above threshold . Under these

conditions, the thermal profile in the VCSEL is kept constant

during the current pulse since the typical time scales for the

thermal response are of the order of s. In addition,
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Fig. 7. Higher-order transverse mode selection for the top-emitter VCSEL.
(a) Close-to-threshold temporal evolution of the total intensity at � = 1:10� .
(b) Corresponding optical spectra in both polarizations under CW operation.
Near-field images are obtained using the maximum contrast of an inverted
gray-scale scheme.

the effective value of the TL strength is determined by the op-

erating bias current.

We consider in the first place the transient response of

the bottom-emitter VCSEL for three different TL strengths:

, , and . In

Fig. 8, we represent snapshots of the power distribution in the

two linear components. When analyzing the spatio–temporal

response to the current pulse, we observe that laser switches-on

in the fundamental transverse mode followed by the successive

excitation of higher-order transverse modes. The weaker the

TL, the smaller the number of excited modes with much longer

turn-on times. In Fig. 9, we show the polarization-resolved

optical spectra corresponding to the previous dynamics. Both

linear polarizations LP and -LP are depicted by solid and

dashed lines, respectively. We find that the frequency separation

between successive transverse modes, which is approximately

constant for a parabolic waveguide, depends drastically on

the TL properties. We obtain a frequency separation between

the fundamental and first-order transverse mode of 120, 80,

and 54 GHz (Fig. 9(a)–(c), respectively). For the first two

cases, these frequency differences agree quite well with those

predicted by (46), 118 GHz and 83 GHz,

respectively. However, this is not so in Fig. 9(c), where (46)

predicts a frequency difference of 23 GHz. This is because the

waveguide distortion caused by the carrier-induced refractive

index strongly modifies the modal profiles and frequencies.

In this case, the analysis performed in Section III is no longer

valid, and alternative methods that take into account these

effects are required for its calculation [52]. In addition, we

Fig. 8. Response to a current pulse of the bottom-emitter VCSEL,
� = 0:85� and � = 4� . Snapshots of the near-field power
distribution in x̂ and ŷ polarization components. Thermal lensing strength: (a)
�n = 10 ; (b) �n = 5 � 10 ; and (c) �n = 5 � 10 .

Fig. 9. Polarization resolved optical spectra of the bottom-emitter VCSEL,
x̂-LP (solid lines) and the ŷ-LP (dashed lines). The thermal lensing strengths
correspond to those used in Fig. 8. Near-field images depict the time averaged
power distribution in both linear polarization components.
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Fig. 10. Response to a current pulse of the top-emitter VCSEL,� = 0:85�

and � = 4� . (a) Snapshots of the near-field power distribution in x̂

and ŷ polarization components. (b) Optical spectra and near-field images
corresponding to the time-averaged intensity distribution in each linear
polarization. The thermal lensing strength is �n = 5 � 10 .

can see that both polarizations are active during the transient

regime displaying similar dynamics. Their spectra show a

birefringence splitting of 10 GHz that corresponds to .

The near-field images in this figure depict the time-averaged

power distribution in each linear polarization. As consequence

of the number of modes excited by the current pulse, we go

from complex near fields resulting from the superposition of

several transverse modes Fig. 9(a) to simpler ones Fig. 9(c).

The spatio–temporal response of the top-emitting VCSEL to

the same current pulse, for and , is de-

picted in Fig. 10(a). In contrast with the bottom-emitter VCSEL,

the laser onset is initiated in a higher order transverse mode. The

corresponding optical spectra are shown in Fig. 10(b). First, we

note that the high current pulse induces the excitation of sev-

eral transverse modes, certainly more than in Fig. 7(b). We ob-

serve that the dominant peak in the optical spectrum now corre-

sponds to the daisy mode, instead of the mode, although

this is the mode that is favored in CW operation as discussed

before. The dominance of the daisy mode is confirmed by the

time-averaged near-field power distributions, which display the

preference for the emission in the daisy mode in both linear po-

larizations. Nevertheless, many other modes carry substantial

power during this transient, during which the side-mode sup-

pression ratio of the emission is strongly degraded. The reason

is that, after the application of the current pulse and until the

switch-on occurs, the carrier density increases well above its

threshold value. This effect induces a blueshift of the gain peak

that provides transient extra gain to all the modes, preferentially

to higher order ones, which can then start to lase during a short

period. Associated with this relatively large variation of carrier

density, the carrier-induced refractive index also exhibits large

variations that reflect themselves in the much broader peaks of

the optical spectrum as compared with the case of CW opera-

tion. This effect is usually described by means of the linewidth

enhancement factor, but in our model, the inclusion of the full

susceptibility into the VCSEL dynamics already accounts for it.

V. SUMMARY AND DISCUSSION

We have developed an optical model for the large-signal dy-

namics of multimode VCSELs that incorporates both spatial and

polarization degrees of freedom simultaneously. We have as-

sumed that the lateral current distribution at the active layer is a

known, explicit functional form that depends only on the struc-

ture of the device. We have approximated these functions by a

supergaussian in the case of bottom-emitting devices, while a

ring-shaped current distribution has been taken for top-emitting

devices. Similarly, the radial dependence of the excess refrac-

tive index has been assumed to be parabolic, allowing

the effects of thermal lensing in the device to be analyzed. Al-

though the electrical and thermal models have not been yet im-

plemented, they might be included in our optical model in order

to self-consistently determine the distribution in current density,

temperature and optical field. The threshold characteristics of

top- and bottom-emitting VCSELs have been analyzed by using

an analytical approximation to the optical susceptibility of the

QW media that allows a frequency-dependent gain and refrac-

tive index spectra to be incorporated into the VCSEL dynamics.

The threshold behavior, threshold current, and mode se-

lection of the transverse modes have been systematically

discussed in a semi-analytical way for both devices, for dif-

ferent thermal lensing strengths and detunings. The interplay

of the lateral confinement factor and material gain spectrum in

the selection mechanisms have been explored in detail. Low

to moderate values of the thermal lensing are required in order

to maintain single-mode operation since, for strong thermal

lensing, the confinement of all the modes increases while their

frequency spacing is not so affected, hence leading to poor

mode discrimination at threshold. VCSELs with homogeneous

current injection select the fundamental transverse mode at

threshold unless the cavity resonance is strongly detuned to

the red side of the gain peak. However, VCSELs with ring

shaped current profiles allow for selecting different transverse

modes depending on the strength of the thermal lens. In this

case, the overlap of the mode profile with the ring-shaped

carrier density dominates for the mode selection at threshold.

These semi-analytical predictions have been corroborated by

close-to-threshold numerical simulations of the spatially-ex-

tended VCSEL. The evolution of the near fields has been

followed, demonstrating that the laser onset of a top emitting

VCSEL may be initiated from a higher-order transverse mode.

Moreover, from our results we infer the validity and usefulness

of a modal expansion in terms of modal profiles and frequen-

cies, demonstrating that in the limit of very weak guidance the

carrier-induced gain and refractive index strongly modify the

mode characteristics. Finally, we have analyzed the dynamical

response of the VCSEL to a current pulse of short duration. This

approach has simplified considerably the analysis because the

temperature distribution is approximately stationary during the
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pulse. By analyzing the response of VCSELs to a current pulse,

we have demonstrated a clear tendency toward multimode

emission even in the case of very weak TL, which may affect

the performance of the device in data-transmission applications

because of an enhanced pulse dispersion, but that lowers the

degree of spatial coherence of the beam profile and, therefore,

the modal noise in multimode-fiber optical links. In order to

enhance single-mode operation, cavity detunings on the blue

side of the gain peak would be recommended, although in this

case there would be an increase in threshold current. Moreover,

the thermal shift of the cavity mode as the current is increased

would reduce the operating range through thermal rolloff.

APPENDIX

The equations (36) are integrated by implementing a spectral

method that treats the linear terms exactly, while the nonlinear

terms are integrated to within an accuracy . Formally, (36)

can be expressed

(51)

being a position and time-independent linear operator and

containing the remaining terms of (36). One starts

the numerical integration from initial conditions for ,

taken as spontaneous emission distributions, and

that corresponds to the “off” state [see (38)]. The next step is

to self-consistently obtain the operation “frequency” ,

with . From (36), we have

(52)

At each spatial point, for known values of and

, (52) has to be solved using Newton–Raphson itera-

tion to obtain . From this procedure, we have perfect

knowledge of the nonlinear term of the right-hand

side of (52). Following the approach used in [53], the field

variables are updated one time step in the Fourier space

(53)

where ).

and represent the discrete Fourier components (FFT) of

, and respectively. represents

a white noise contribution at a transverse wavevector obtained

by Fourier transforming in space

(54)

Once the field variables have been updated, the carrier equa-

tions, being the slow variables in the problem, are integrated

using an Euler method. The diffusion terms in (37), involving

terms like , are calculated in the Fourier space.
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