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Abstract. We present an in-depth study of spatio-temporal patterns in a sim- 

plified version of a mechanical model for pattern formation in mesenchymal 

morphogenesis. We briefly motivate the derivation of the model and show 

how to choose realistic boundary conditions to make the system well-posed. 

We firstly consider one-dimensional patterns and carry out a nonlinear 

perturbation analysis for the case where the uniform steady state is linearly 

unstable to a single mode. In two-dimensions, we show that if the displace- 

ment field in the model is represented as a sum of orthogonal parts, then the 

model can be decomposed into two sub-models, only one of which is capable 

of generating pattern. We thus focus on this particular sub-model. We present 

a nonlinear analysis of spatio-temporal patterns exhibited by the sub-model 

on a square domain and discuss mode interaction. Our analysis shows that 

when a two-dimensional mode number admits two or more degenerate mode 

pairs, the solution of the full nonlinear system of partial differential equations 

is a mixed mode solution in which all the degenerate mode pairs are repres- 

ented in a frequency locked oscillation. 

Key words: Spatio-temporal - Degenerate modes - Periodic patterns - Hopf 

bifurcation 

1 Introduction 

In biology, the study of the development of an embryo from fertilization to 

birth is known as embryology. Embryonic development is a stable process 

which follows a ground plan laid down early in gestation. How this develop- 

mental plan is laid down and interpreted has stimulated a great deal of 

experimental and theoretical research. The development of biological struc- 

ture and form is known as morphogenesis. We hereafter refer to the collective 



490 G.A. Ngwa, P. K. Maini 

mechanisms that lead to the formation of the precursors necessary for specify- 

ing various biological structures as pattern formation. 

Two main types of models have been proposed as possible pattern forma- 

tion mechanisms in a variety of morphogenetic situations: chemical pre- 
pattern models and mechanochemical models. From these, two main types of 

patterns have been identified and studied: stationary or spatial patterns and 

spatio-temporal patterns (see Murray [15] for a comprehensive review). Sta- 

tionary spatial patterns that arise from the mechanochemical models have 

been analysed and studied in great detail (see, for example, Bentil [1], 

Perelson et al. [19]) while detailed mathematical and numerical analyses of 

mechanochemical models that exhibit spatio-temporal patterns is still lacking. 

The key embryonic cells involved in primary pattern formation are the 

mesenchymal (fibroblasts) and epithelial (or epidermal) cells. Mesenchymal 

cells are capable of independent movement within the fibrous material, the 

extracellular matrix (ECM hereafter), in which they are embedded. Epidermal 

cells cannot move freely and are only capable of stretching, thickening or 

folding. The properties of these two kinds of cells (elasticity and mobility) 

allow a developing embryo the freedom to stretch and arrange its cells in 

aggregates. These cell aggregations are an example of spatial patterning, 

a very common and vital phenomenon in development biology. 

In 1983, Oster et al. [14] proposed a mechanical model for morphogenesis 

which was based on the above physical processes. Their analysis showed that 

these properties can conspire to produce spatial patterns in cell density. This 

model was extended to include chemical effects on the physical properties of 

cells and ECM (Oster et al. [18]). The full mechanochemical model is very 

complicated but several different simplified versions of the model studied thus 

far have been shown to exhibit wide-ranging pattern formation properties. 

See, for example, Perelson et al. [19], Maini and Murray [111 Bentil [1]. 

Here we study spatio-temporal patterns in a simplified version of the 

mechanical model detailed in Murray [15]. Although our analysis is carried 

out on a simplified version of the model, it can be extended to more complic- 

ated versions of the mechanical and mechanochemical models. In Section 2 we 

briefly outline the model equations and investigate the appropriate boundary 

conditions for the model. We carry out a linear analysis in Section 3 for the 

model in one-dimension and show that the uniform steady state can be driven 

linearly unstable via a Hopf bifurcation. We then perform a nonlinear bifurca- 

tion analysis for the case where the uniform steady state goes unstable to 

a single mode solution. We investigate the stability of the resulting amplitude 

equations. 

The two-dimensional model is considered in Section 4. Linear analysis and 

numerical simulation show that the uniform steady state can be driven 

unstable and evolve to a spatio-temporal solution. In Section 5 we note that 

the model in two-dimensions can be decomposed into two sub-models, one of 

which cannot give pattern, the other of which can. This has been overlooked 

in previous studies of this system. Hence we can consider only the pattern 

forming sub-model. We further simplify the model and consider the nonlinear 
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interaction of degenerate modes. In Section 6 we carry out a nonlinear 

perturbation analysis for the case of mode interaction and analyse the result- 

ing amplitude equations. We compare our analytical solutions with those 

from numerical simulation. In particular we show that the system evolves to 

a solution composed of all degenerate modes in a frequency locked oscillation. 

2 The mechanical model 

The basic mechanical model is a continuum model based on two key experi- 

mental observations: (i) cells move on a tissue substratum which is made up of 

a fibrous extracellular matrix (ECM) [7] (ii) cells can generate very large 

traction forces which deform the ECM [6]. In this paper, we consider 

a simplified version of the mechanical model in which convection and diffu- 

sion are assumed to be the dominant transport processes for cells (we refer the 

reader to the original paper of Oster et al. [14] for full details). The model 

focuses on pattern formation in the dermis only. 

The model consists of two conservation equations for cell and matrix 

densities, respectively, and a force balance equation for the ECM. We denote 

by c(r, t) and p(r, t) the cell and ECM densities, respectively, at position r and 

time t and by u(r, t) the displacement vector of the deformed matrix, that is, 

a material point in the matrix initially at a position r is deformed to position 

r + u in time t. The simplified model takes the form: 

(i) cell conservation equation: Assuming that convection and diffusion are 

the dominant transport processes, we have 

O'-t= - V "  c-~- + V . ( D V c ) + r c ( N - c )  

L y ) d i f f u s i o n  m i t o s i s  

c o n v e c t i o n  

where D is the diffusion coefficient, and rN is the linear mitotic rate. 

(ii) matrix conservation equation: We assume that matrix secretion is 

negligible on the time scale of interest and that matrix moves only due to 

convection. Hence 

~P - V .  p = 

k ) 
Y 

convect ion 

(iii) mechanical force balance: The celI-ECM milieu is assumed to be 

a linear isotropic visco-elastic continuum with stress tensor a and strain 

tensor 8. The coupling between the cells and ECM is in the traction forces 

generated by cells as they move in the ECM. Using the standard equilibrium 

equations from the theory of elasticity and including viscous effects, the 

simplest practical coupling requires that the restraining forces arising from the 

attachment of the cells to the underlying basal membrane (assumed propor- 

tional to the ECM density and its subsequent displacement from the 
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unstrained position) should balance with the stress generated by the cells and 

ECM (assuming that we are at low Reynolds number). This leads to the 

equation 

I ~  ae ~OI + exs + e2OI + p x ( c ) l l  - sou = 0 
V .  1-~ + #2 0tj , ~ , ~ 

visc~ous elastic traction external 
forces 

where ! is the unit tensor and 

= ½(Vu + ruT),  0 = V . u ,  

E Ev zc 
= - - ,  e2= l + ~ c  2" el l + v  ( l + v ) ( 1 - 2 v )  and ~ ( c ) = - -  

Here, E and v are, respectively, the Young's modulus and Poisson ratio, #1 

and #2 are positive constants representing the shear and bulk viscosities while 

s, z and ¢ are positive constants. The nondimensionalised model takes the form 

Ce - -  D V 2 c  + V ' C U  t - -  rc(1 -- c) = 0 

V .  (~et + flOtI + exe + e20I + p,(c)l) = spu (1) 

Pt + V.  pu~ = 0 

where the variables and parameters are now nondimensional. 

2.1 Boundary conditions 

We briefly discuss here the nature of the boundary conditions that may be 

imposed on the system (1). For simplicity, we shall assume that the cells and 

ECM have the same behaviour on the boundary of the domain and hence 

satisfy the same type of boundary conditions; namely homogeneous Neumann 

boundary conditions. Although we will consider spatio-temporal solutions of 

the model equations, to determine the boundary conditions we consider the 

time independent counterpart of (1), viz 

DV2c + r c ( 1 -  c) = ~ } 

V .  (el* + e201 + px(c)I) - spu ' (2) 

because if the spatial component of the solution satisfies the boundary 

conditions, then the spatio-temporal solution will also satisfy the boundary 

conditions. The only realistic uniform steady state of this system is given by 

p = c = 1, u = 0o Here, (2) does not have an equation for p so that if p is not 

constant, the nature of the displacement field defined by this system (and 

hence the boundary displacements) depends not only on the behaviour of c in 

the region of consideration, but also strongly on p. 

Proposition 2.1. Let f2 be a rectangular region in ~l 2 with Lipschitz boundary 

F and outward unit normal n. Let c, p, ul and u2 ~ LE(Q). I f  c, p and u satisfy 



Spatio-temporal patterns in a mechanical model 493 

(2) in the region I~ with V c . n = V p . n = 0 on F, then the boundary displace- 

ments that must be imposed on the vector u are of the form 

( ~u~ ~u~'~ 
, .n=O,  axl, ).n onr=O (31 

where ui, i = 1, 2 is the displacement in the ith coordinate direction. 

This means that the normal component of displacement, together with the 

normal derivative of its tangential component must vanish on the boundary. 

Proof. We give the proof for an arbitrary n-dimensional domain f2 and the 

case n = 2 follows. Consider the linearisation of (2) about the uniform steady 

state. Let X be the vector X = (c, u, p) and .oq ° be the linear operator acting on 

the linear system, ie., 

~ X  = .W(c, u, p) = V.  (el~ + ezOI + (~xP + ZzC)I) - su = 0 o (4) 

0 

Here, we only require that ~ has the following properties: (i) the inverse of 

exists and is unique, (ii) the adjoint operator ~ *  exists and (iii) the 

Fredholm alternative theorem holds for the system £zX =f .  For any linear 

differential operator ~ acting on the vector function X satisfying certain 

boundary conditions, repeated integration by parts gives the relation between 

LZ and LZ* in the form 

( (x* ,  ~ex> - ( x ,  z * x * > )  = g(x ,  X*)  (5) 

where R(X, X*) represents the boundary contributions from X and X*. To 

simplify the analysis, we will choose the domain of definition of ~ *  such that 

R(X, X*) from (5) vanishes for all X in the domain of definition of £Z. In 

general, this requirement is enough, for it determines not only the boundary 

conditions for X but also indicates the possible boundary conditions for X*. 

We construct L~ o* from the linear system and repeated integration by parts 

shows that 

R = Jo { - D [ V "  c*Vc - V. cVc*] + (el + e2) [V. (u*. Vu) - V. (u. Vu*)] 

+ ( 2 + e2) [V. (u  x curlu*) - V.(u* x curlu)] 

+ V.  [zlpu* + z2cu*-]}dQ. (6) 

Using the divergence theorem, for the case where O c ~n, n => 3, or Greens 

formula in the plane, for the case where £2 c ~2, we find that R will vanish if 

and only if 

u . n = u * . n = O , ( u * x c u r l u ) . n = ( u x c u r l u * ) . n = O  o n r  (7) 
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Therefore, in two space dimensions, for a rectangular domain, the result (3) 

follows. It follows that prescribing boundary displacements also determines 

the type of boundary conditions that can be imposed on the cell and ECM 

densities in the full nonlinear time dependent equations. 

3 One-dimensional analysis 

In this section, we consider the one-dimensional version of the mechanical 

model derived in Section 2 and investigate its pattern formation potential. In 

one-dimension, the system (1), with boundary and initial conditions, is 

8c D ~2c (~ (13 ~U) 
O-t- -3~xZ + -~x -~ - r c ( 1 -  c) = O 

~3u 32u 

~ + ~,Tx ~ + (p~(c)) = spu 

~p a(~u) 
a ~ + ~  p N  =0 

in f2 (8) 

Oc 8p 
. . . .  u = O  o n x = O ,  1 V t > O  (9) 
ax ~x 

p = l , c = l + f ( x ) , u = O  i n f ] f o r t = 0 ,  (10) 

where # = ~ + fl, E = el + e2, f~ = {x; x ~ [0, 1]} and f (x )  is a random per- 

turbation such that [f(x)l ~ 1. 

3.1 Linear analysis 

We linearize the system about the realistic uniform steady state, to obtain the 

system 

Oc OZc ~Zu 
- -  D_-- - -~  + + r c  = 0 

3Su OZu 3 
~ + ~ ~ + ~ ('r~p + "r2¢) - su = 0 (11) 

Op 82u 

~-T + 0--~ =0 

together with boundary conditions (9). Here 

z(1 -- ¢) (12) z and z2 = - -  
~ = 1 + ~ (1 + & " 
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If 2 is an eigenvalue that measures the temporal growth rate of a disturbance 

with wave number k, then to satisfy the boundary data, 

(c, p, u) = (ac cos(kx), ap cos(kx), a, sin(kx))exp(2t) (13) 

where k is discrete (=nn), and ac, ap and au are arbitrary constants. Substitu- 

ting the solution form (13) into (11) leads to a linear algebraic system of 

equations whose solvability condition gives the dispersion relation; a poly- 

nomial in 2(k2): 

2[a(k2)2 2 + b(k2)2 + d(k2)] = 0 (14) 

where 

a(k 2) = btk 2 

b(k 2) = D#k 4 + (rbt + E - zl - z2)k 2 + s (15) 

d(k 2) = [Dk 2 + r] [ ( E -  zl)k 2 + s] . 

In equation (14) we note that ifz = 0 then the functions b(k 2) and d(k 2) are 

both positive giving Re(2(k2)) < 0 Vk 2. This implies, from (13), that all disturb- 

ances will decay exponentially with time and the system will return to its 

spatially uniform steady state. We therefore take z > 0 as the bifurcation 

parameter. 

Some algebra shows that for E - zl > 0, the system loses stability at the 

critical wave number k 2 and the critical bifurcation parameter z¢ where 

z~ = ~ _+ 1 "4- ~)2 and k~ = o (16) 

A further investigation shows that the inequalities 

(T1 + z2 -- E - r/z) 2 (r/z + E)(1 + 4) 2 
s -  <0 ,  < z < E ( I + ~ )  (17) 

4D/~ 2 

must be satisfied and it is clear that at (k~, ze), b(k~)= 0 and 2 is purely 

imaginary whenever d(k~, zc)> 0. Thus, when z is increased from z~, the 

corresponding 2 is complex with positive real part and we have a Hopf  

bifurcation. For the statement and proof of the Hopf bifurcation theorem, see, 

for example, Hassard et al. [8]. As it is easily verified that all the conditions 

necessary for a Hopf bifurcation are satisfied, it is clear that the uniform 

steady state will become linearly unstable only to spatio-temporal patterns. 

With the boundary conditions (9), the wave number kc is discrete and takes 

the form 

By choosing ~, D, E, s, r and ~ appropriately, (16) gives z~ and we can isolate 

a particular mode n from (18). See, for example, Perelson et al [19]. 
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3.2 Nonlinear analysis o f  spatio-temporal patterns 

At the bifurcation point, the solution of the linear equations may be written in 

the form 

(c, p, u) = {aexp(iogt + ikx) + bexp ( - io~ t  + ikx)} + cc (19) 

where a and b are generalized proportionality functions of time only, and cc 

denotes complex conjugate. Here we investigate the long time behaviour of 

the solution (19) with wave number kc, when T is perturbed from zc, of the 

system (8) with boundary data (9) near the bifurcation point (kc, z¢). 

Substituting (cf Lara and Murray 1-171) 

"/7 = "C c -~- /~2V, /~ ~ 1, v = _+ 1 (20) 

into (8), the linear growth rate 2(k 2) changes as follows: 

2(k2,z) ~ 2(k2,z, + e2v) = 2(k2,z~) + e2v + O(e4). 

Thus exp(2(k2, z)t + ikx) -* exp(2(k2,z~ + e2v)t + ikx) ,~ a(~2t)exp(2(k 2, z~)t + 

ikx) where a(e2t) ok 2 = exp(~l(k~,~c)e t). From the definition of 2, we readily show 

that 

{ 2c0 + i(Dk 2 + r)(1 + ~) 2(k 2, zc) = - ico  

82 tkL,o) 2kt(1 "~- ~)2(D ' 

Oz 209 - i(Dk 2 + r)(1 + ~) 2(k2,zc) = log. 

2#(1 + ~)2o9 ' 

(21) 

The above shows that the amplitude a(e2t) has an initial growth rate (positive) 

and phase given by the real and imaginary parts of the expression in (21) and 

also indicates that the solution to the perturbed problem of the form (19) will 

have a and b as generalized functions of e2t. Therefore, we introduce a new 

variable T = e2t and consider two time regimes t and T which may now be 

regarded as independent variables. Hence, 

d z 0 (22) 
St "ot + ~ - ~ "  

We further assume that c, p and u are functions of x, T, t and e and thus can be 

represented as a regular expansion in e such that when e = O, the system is at 

the uniform steady state, that is 

qt = qto + ~ e"qt. (23) 
n = l  

where 0 = (c, p, u), ~Oo = (1, 1, 0) and qt. = (e., p., u.). Substituting (23) into 

the perturbed system and equating coefficients of like powers of 8 to zero, 

reduces it to a hierarchy of linear equations for qt. of the form L(qt.) = R. where 
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R.,  n > 2 are functions of ~,._ l, ~0,-2 . . . . .  Ol. In particular, 

L = 

~2 

~ - D ~ x 2  + r  0 

0 
c~t 

~2 

t~tax 
~2 

~xt~t 

~3 82 

(24) 

R 1 = O, R 2 = 

( 

Ox t t  ) 

s p l u l  - ~ x ( z 2 p i c l  + zsc 2) 

, (25) 

g 3 = 

where 

/ 

- - ~  P ' + c~ x J - ~x  P 2 - ~  + P l & j 

~3U 1 

s ( p l t t 2  + p 2 U l )  - -  # ~ x 2 0 T  ~X ( ' c2 (p i c2  + p2Ci )  -1- 

2z3clc2 + zaplc 2 + z4c 3) - v (  ~ dPI z__2 dcl 

\ zc + z, J 

(26) 

Tc zc(1 - 4) Zc~(~ - 3) zc~(64 - 42 - 1) 
"~1 = -  %2 = - -  "C 3 = a n d  .~4 

1 + 4' (1 + 4) 2 ,  (1 + 4) 3 (1 + ~)4 

Note that at O(~) we simply have the linearized system L(~I) = 0. Substituting 

(19) into this linear system, and noting that the vectors a and b are of the form 

a = (a~, ap, a.) and b -- (be, bp, b.), shows that the proportionality constants 

may be written in the form a = hap and b = wibp where vl and wl are the 

eigenvectors that span the null space of the linearized system with components 

(vii, ViE, Via) T and (Wu, w12, wl3) T given by 

v~=  i w + ~ - - ~ 2 + r ' l '  and w~'= Dk 2 - ~ r - i 0 9 ,  

Assuming, for notational simplicity, that ap -- a(T)  and bp = b(T), the solu- 

tion at O(e) is 

d/1 = {vla(T)exp(io~t) + Wl b(T)exp(- iogt)}  exp(ikcx) + cc 

where the generalized functions a(T) and b(T) remain to be determined. 
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At O(e 2) we have the system L(02)=R2.  Substituting the O(e) 

sotution into R2 yields a non-homogeneous system with homogeneous 

boundary conditions. Closer observation shows that terms of the form 

exp(_+ iogt +_ ik~x), which are in fact solutions ofL(02) = 0, that will introduce 

unbounded perturbations in the solution do not appear in Rz. Hence the 

solution at O(e 2) takes the form 0z = O h + 0~ where O h and 0~ are such that 

L(0~ ) = 0  and L(0~)=R2 o (28) 

We thus have O~ = (r2a2(T)exp(kot) + w2b2(T)exp(-icot))exp(ik¢x) + cc 
where the functions a2 and b2 can be determined by a higher order calculation 

in the analysis. Using the method of undetermined coefficients, we obtain 

a solution for 0~ in the form 

O~ = Sl  az exp(2(icot + ik~x)) + $2~ z exp(-2(icot + ikcx)) 

+ Sab 2 exp(2(--icot + ikcx)) + $4[~ 2 exp(2(icot - ik~x)) 

+ Ssab exp(2ik~x) + S6gtD exp(-2ik~x) + $7 ab exp(2icot) 

+ Ssgtb exp(-2ia)t) + S9(T) (29) 

such that L(0~) = R2. Let B(ico, k~) be the complex matrix 

t ico + Dk 2 + r 0 ikcico i 
B(ie), kc) = 0 ico ikcioJ 

"c2ikc ~tikc - #k2ico - Ek~ - s 

corresponding to the linear operator L, with inverse denoted B - x. Then, using 

the second of (28), we can calculate the vectors S; , j  = 1 . . . . .  9 that appear in 

(29). This therefore determines the solution at O(e2). 

At O(e3), L(O3) = R3. At this stage, terms of the form exp(+ic0t _+ ik~x), 

which are secular terms, appear in R3. These will introduce unbounded terms 

in the solution and must be suppressed. Isolating these terms, we write R3 as 

R3 = - ~  + Xlva + X2aa 2 + Xaabb exp(icot + ikcx) 

+ Iio - ~  + Ylvb + Y2bb 2 + ¥3ba8 exp(-i~ot + ik~x) 

+ terms involving only exp(+2ico _+ 2ik~x) + cc. (30) 

where, X~ and Y~, i = 0, 1, 2, 3 are the coefficients of the terms in R3 of the form 

shown in (26). 
By the Fredholm Alternative, a solution of the non-homogeneous problem 

L(0a) = Ra with homogeneous boundary conditions exists if and only ifR3 is 

orthogonal to the bounded solutions of the adjoint homogeneous problem, 
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L*(qtF) = 0, where L* is the adjoint of L and 0F is the associated adjoint 

variable. Hence, we define the inner product 

(L(03),0,)= lim 1 f f f ~  (31) 

Now if Oa and OF are periodic in space with period 2rc/k¢, we perform the 

double integration over one period in space and demand that in the limit as 

T ~ m, (31) should vanish. This is the solvability condition. Now the solution 

of the adjoint homogeneous problem at (k~, Tc) takes the form 

~k* = v 3. a 3. exp(iogt + ik~x) + w Fb*e x p ( - i ox  + ik~x) -4-. cc (32) 

where the superscript • indicates adjoint variables. The solvability condition 

yields two complex-valued equations for the amplitudes a and b of the form 

( x° a )] ~ .  ~ + X~av + X2aa 2 + X3abD = 0 ] 

(r ) a,~. ~ o ~ + g~bv + Y~Db 2 + g3aba 0 

(33) 

where the bar denotes complex conjugate. 

Here, we can show that, for the linear partial differential equation in 

question, the linear solution (19) will satisfy the boundary conditions if b = 6. 

Therefore one of the equations in (33) is redundant and we only need to 

consider 

Oa 
a--T + oqva + azSa 2 = 0 (34) 

where 

.x l  + x3) 
~1= ~ .X  ° and e 2 =  ~F.X ° 

Since a is complex, we set a(T)  = R(T)exp(iO(T)), where R is the magnitude 

of a and 0 the phase. Substituting this into (34) yields two equations for R(T)  
and O(T) of the form 

dR 
d T  + ~ v R  + ~ R  3 = O, R dO - -  dT  + ~zixvR + ~x~R3 = 0 (35) 

• . i where ~, and aJ,, k -= 1, 2 are real, and ~k = e[ + ~k. Notice that the equation 

for 0 decouples and can therefore be computed once R is obtained. The 

time independent solution, R °, of the first of (35) satisfies R ° =  0 or 

(R°) 2 = -e~v/e~o For the case where a non-zero time independent solution 

for R exists, 0 ( T ) = - ( e ~  + c ~ ( R ° ) 2 ) T + ~  where ~: is a constant of 

integration° 
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3.3 Stability of the amplitude equation 

We investigate the linear stability of the time independent solution of the 

amplitude equation by substituting R = R ° + ~(r),  where I/~(r)l ~ 1 into 

the first of (35) to obtain the linear equation 

d~ 
d--f + (~Iv + 3~i(R°)2) /~(r)  = 0 .  (36) 

This shows that R ° = 0 is stable if a~v > 0 and unstable otherwise, while the 

solution defined by (R°) 2 =  -(~'lv/~'2)> 0 will be stable if ct~v < 0, and 

unstable otherwise. Hence the two time independent solutions cannot be 

stable simultaneously. Here, we expect e~v, the linear growth factor in the 

amplitude equation, to agree with the linear prediction. Some algebra shows 

that 
(2¢o - i(Dk2 + r)(l + ~)) 

~lv = - 2#(1 + ~)2o9 v,  

which agrees with the linear prediction (21) from the linear stability analysis. 

This corresponds to the case 2(k~ 2, zc) = ion. The case for 2(k~, zc) = - ie) is the 

complex conjugate of this expression° 

The trivial solution R e =  0 bifurcates to the non-trivial solution at 

e~v = 0. Therefore, when the non-trivial time independent solution exists, it 

will be stable for ely < 0, and unstable for e[v > 0. Now, the first of (35) has 

the general solution 

R2 = - x l ~ v  (37) 
tcl~ - exp(2~vT) 

where ~:i is a constant of integration. The general solution (37) indicates that 

for ~ v  < 0, the bifurcation is supercritical if a[ > 0 and subcritical otherwise. 

In the event of a supercritical bifurcation, the second of (35) gives O(T) and we 

deduce that, in the limit as T ~ oo, the amplitude function oscillates in time 

with a finite amplitude and phase given by 

- ( e l ez  - e~ei)vT 
R2(T~) = --e~v ~ ' a'2 ' o(roo) = ~ + a constant.  (38) 

Hence, the leading order behaviour of the solution on the t-scale is 

p(x, t)l = + epl(x, t) + O(e 2) (39) 

u(x, t) ] ~u~ (x, t) + 0(~ 2) 
where 

C I ( X  , t)  = IvxalR(e2t)cos(cot + 0(e2t) + TH)cos(k,x) 

#1 (x, t) = R (ezt) cos (O)t + O(e2t)) cos (k~x) 

ul (x, t) R~;t)cos(  n)  = cot + 0(~2t) + ~ sin(k~x) 

and 711 = arg(vll), k~ = n~, n = 1, 2 . . . .  , e = x/@- - z~). 
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These solutions oscillate in time with frequency 2n/~0 + 0(82). Since we 

are only interested in the leading order behaviour of the asymptotic solution 

of the original partial differential equations, the above approximation is 

sufficient. 

4 The two-dimensional model 

Although the spatial pattern formation potential of the mechanical model in 

one-dimension has been widely investigated, see, for example, Perelson et al. 

[19], Murray et al. [14], Bentil [1] and the book by Grindrod [5], the analysis 

of two-dimensional spatial and spatio-temporal patterns generated by the 

mechanical model is still lacking. 

Here, we extend the one-dimensional linear analysis to cover the two- 

dimensional case and present some numerical simulations which illustrate the 

spatio-temporal pattern formation potential of the two-dimensional model. 

We choose the obvious extension of the one-dimensional boundary condi- 

tions for the cell and ECM densities and use Proposition 2.1 to determine the 

boundary conditions for the components of the two-dimensional displace- 

ment. 

4.1 Linear analysis and numerical simulation 

The two-dimensional model in component form has four equations: two 

defining the cell and ECM densities and two defining the displacements in the 

x- and y- directions. For algebraic simplicity we set u = (U, W), 

OW OU 1 
c u r l u =  ~x ~y e + f l = / ~ '  2 e + f l = 7 '  

1 
el + e2 = E, ~ el + e2 =/30 (40) 

and write the two-dimensional system as 

8C DV2c_FV.c(SU) & - ~ -  - r c ( 1  - c)  = 0 (41 )  

V [#--~+EU +-~y curl 7-~+eoU + (p~(c))-spU=O (42) 

V z/' a W + E w ~ - ~ c u r l ( ~ C [ U + ~ o U ~ l +  ~_---(pz(c))-spW 0 
[ ~ --~- i ~x L \ ~t / j ioy = 

(43) 

at+v.p =o, (44) 
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together with the boundary and initial conditions 

a u  
Vc.n=Vp.n=(U,W).n= ~-x' .n=0;  onF, V t > O  (45) 

c(x, y, O) = 1 + f (x, y), p(x, y, O) = 1 )k 
Vx, y~12 t = 0  (46) 

U(x, y, O) = W(x ,  y, O) 0 f 

where ] f (x, y)l ~ 1. 
As usual, we linearize the field equations (41)-(44) about the spatially 

uniform steady state p = c = 1, U = W = 0, and easily establish that on the 

unit square with the boundary conditions (45), the spatial eigenfunctions for 

the time dependent linear equations are respectively, 

(c, p) oc (cos (kx) cos (ly), cos (kx) cos (ly)) = (4)c(x, y), dpp(x, y)) 
(47) 

(U, W) oc (sin (kx) cos (ly), cos (kx) sin (ly)) = (c~, (x, y), c~w (x, y)) J 

where k and i are integer multiples of rr that cannot be zero simultaneously° 

Although k and l are discrete quantities, for notational simplicity, we consider 

them as continuous variables and seek solutions to the linearized system of the 

form; 

(c, p, U, W) oc ~P(x, y)exp(2t) (48) 

where • is the eigenfunction vector with components ~bc, q~p, ~b, and ~bw given 

in (47). Here, ),(K 2) measures the temporal growth of the disturbance with 

wavenumber K = [k[, where k = (k, l). Substituting (48) into the linear system, 

the solvability condition gives a polynomial equation for ~,(K 2) which, after 

some algebra, simplifies to 

2P1 (K 2, 2){a(K2)22 + b(K2)2 + d(K2)} = 0 (49) 

where K 2 = k 2 + 12, a(K 2) = #K 2 and, 

b(K 2) = D#K 4 + (E + rl~ -- zl  - -  "~2)K 2 -k- s 

d(K 2) = (DK 2 + r) ((E - "cl)K 2 + s) 

eK  2 e lK  2 
P1 (K 2, 4) = --T- + - - 5 -  + s. 

The dispersion relation (49) is simply that of the one-dimensional case (14) 

multiplied by the extra factor P1 ( K2, 2) which gives a negative root for 2 and 

hence is negligible from a pattern formation viewpoint. Therefore the linear 

analysis of Section 3.1 carries over to the two-dimensional case; that is, the 

system will exhibit a Hopf  bifurcation at the point in the parameter space 

where 
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and kc = ,,/k 2 + 12 is the critical mode number for a wave vector k = (k,/). We 

note here that for solutions on the unit square satisfying the boundary 

conditions (45), a wave vector k is admissible if and only if 

k~ = Ikl 2 = x /~D = (n2 + m2)7c2 (51) 

1 

where m and n are positive integers that are not zero simultaneously. 

Here, we consider the numerical simulation of the full system in the 

two-dimensional case using a finite difference numerical scheme and the 

information from this linear analysis. For the cell and ECM equations, 

standard five-point formulae may be used, while for the two coupled equa- 

tions defining the displacement field, at least a nine-point difference formula is 

needed to capture the essential feature of the system. The discrete equations 

are then solved by any appropriate method. Here, we employ an iterative 

approach using the SOR scheme (see Ngwa [16] for full details). To illustrate 

a typical spatio-temporally oscillating solution we show the spatial profile of 

the cell density c at selected times. The solution profile for p is similar to that 

of c and its spatial variation is made up of the appropriate eigenfunction given 

in (47). Since the vector u represents the displacement or deformation of the 

ECM in such a way that a material point initially at position r in the ECM is 

displaced to position r + u, we also depict the typical displacement field. 

Example. The parameter set 

#=0 .01 ,  E=10 .0 ,  D=0 .01 ,  s=99.747, ~=0.125, r = 0 .2 5  (52) 

gives zc = 6.743 and the wave number k~ = 32z 2 which corresponds to the 

wave vector (k, l) = (47z, 4r 0. Accordingly, the uniform steady state is linearly 

unstable to the eigenfunction c = cos(4nx)cos(4rcy) which dominates the 

nonlinear solution. Here, for z = 6.744, 2 = 0.004 + i12.136. See Figs. 1 and 2. 

In the above example the initial data are chosen as random perturbations 

about the uniform steady state cell density c = 1 using the NAG routing 

G05CAF. The ECM density p and displacements U and W were left unper- 

turbed at their steady state values. 

5 Alternative view of the two-dimensional model 

The linear analysis of Section 4.1 shows that the dispersion relation in the 

two-dimensional case can be factorized into the form (49) where the roots with 

positive real part must satisfy the one-dimensional dispersion relation. Here 

we present an equivalent formulation of the model equations using the fact 

that every vector field Vcan be decomposed into two parts: a divergence free 

rotational part and an irrotational part, and show that if we decompose the 

displacement field in our model in this way, then the rotational part decays to 

zero for large times and hence does not contribute to the pattern forming 

potential of the model. Hence, if we discard the rotational part of the vector 
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° 

(~) (~i) (~i~) 

°,.00J l lg °,.0o ° 

0.8 ~ 0.8 o.s ~ 0.8 

.1, "a'ac.~,t • ,y .a~,  I ~..a~c~j, v .a,~a 

(~v) (v) (vi) 

Fig. 1. Numerical simulation of the model equations for the parameter set (52) showing the 
spatial variation of the cell density c at different times. This parameter set gives 
(k, l) = (4n, 4n). Accordingly, the uniform steady state is linearly unstable to the eigenfunc- 
tion cos (4nx)cos(4r~y) which dominates the solution in the nonlinear regime. This particu- 

lar solution oscillates in time with period p ,~ 0.518. Number of grid points is 40 x 40. 
Solution shown at times (i) t = 300.103, (ii) t = 300.207, (iii) t = 300.311, (iv) t = 300.414, 

(v) t = 300.623, (vi) t = 300.673 approximately covering the behaviour of the solution over 
one oscillation. At this point, the solution has zero growth rate in time but oscillates 

continuously in time 

X X 

(~) (b) 

Fig. 2a, b. Displacement field (U, W) associated with solution profiles (i) and (ii) for the 

simulation shown by Fig. 1 
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field, the resultant model with only irrotational displacements, is a sub-model 

of the system that contains the terms which are essential for generating 

spatio-temporal patterns. 

The decomposition we apply here is a Helmholtz decomposition; see, for 

example, [131. Details on the ideas concerning the decomposition of vector 

fields defined in an n-dimensional vector space of square integrable functions 

can be found in the books by Dautray and Lions [2], Girault and Raviart 

[3], [4], 

5.1 Rotational correction o f  the displacement 

Recall the mechanical model: 

ct - DV2c + V .  cut - rc(1 - c) = 0 

V.  ( ~  + flO~I + e l r  + e201 + p~(c, T)I) = spu (53) 

P, + V.  put = 0 

where ~ = ½(Vu + Vur), 0 = V. u, ,(c, z) = ~ .  Let I2 c ~2 be a unit square 

with Lipschitz boundary F. Here, we simply assume the existence of functions 

~b and p such that 

u = V~b + p (54) 

with u.  n = 0 on F and V .p = 0 in O. The representation (54) is the unique 

decomposition of u into an irrotational part, V~b, and a divergence free, 

rotational part, p. 

Considering the strain tensor ~ in the form 8 = ½(Vu + Vu r) and substitu- 

ting u in the form (54) and rearranging gives 

V(/~V2~b, + EV2~b + Or(C, T)) - spV~ + ½V2(~p, + elp) - spp = 0 .  (55) 

Now, (55) represents a unique decomposition of the trivial vector field, 0, into 

irrotational and divergence free (rotational) parts. Thus each is identically 

zero. We thus have the new formulation 

c~t DV2c + V "  c ~ ( V ¢ + p )  - r c ( 1 - c ) = O "  

.( 2oep_ff ) 
0-~ + V "  p (V~b+p) = 0  inf2 (56) 

/ 

+ - s p p  = o  

Vop = 0. 

0c ,3p 04 
~n ~n = p ' n = O '  -~n = u ' n  o n F .  
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We show here that for u in the form (54), the underlying form of the resulting 

solutions is the same as in Section 4. 

Consider the equation for p and linearize about the steady state p = 0, 

p = 1 to get the linear problem 

~ V p t +  V 2 p - s p = O , V . p = O  in 

p.n=O on 
(57) 

In order to characterize the function p, we define the set 

0k(Q) = {0; V20 = - k 2 0  in f2, 0 = 0 on F } .  

Then, we put 

P = ( ~ ,  ~-~), ~ c u r I p = - V 2 0 , 0 ~ 0 k ( O )  • 

Using (59), we write (57) in terms of 0 ~ 0k(O) as 

(58) 

(59) 

--~ 2 V40' - 2 V4o + sV20 = 0 in f2, 0 = 0 on F + (60) 

Hence, the function 

O oc sin(mrcx)sin(nrcy) ~ ~/k(~'~), k 2 = (m 2 d- n2)7~ 2 (61) 

where m and n are non-zero integers. From (59), using (61), we verify that 

V.p -- 0 in f2 a n d p .  n = 0 on F and that the linearization about the uniform 

steady state c -- p -- 1, q~ -- ~k -- 0 gives the spatial eigenfunction of the lin- 

earized version of (56) as 

(c, p) oc (cos (krcx) cos (lrcy), cos (krcx) cos (lrcy)) 

(~b, 0) oc (cos (krcx) cos (Ircy), sin (krcx) sin(/ny)) J (62) 

where k and l are integers. The relation u = V~b + p then gives the spatial 

eigenfunctions for u in the form u oc (sin(kx)cos(ly), cos(kx)sin(/y)). Since the 

eigenfunctions agree with (47), the solution of the linearized system here may 

differ from that of the original model (53) only by an arbitrary constant. 

The linear growth rate of the decomposed equations is identical to that of 

the original partial differential equation. This can be verified as follows: put 

= A(t )~  in (60) to obtain the equation 

k+ dA elk+ A _ skzA = O o (63) 
2 dt 2 

Hence A(t) oc exp(2t) where 2 satisfies ctk22 + e~k 2 + 2s = 0 and is precisely 

the factor P~ (k 2, 2) given in (49). Therefore A(t) will decay to zero, as t ~ oo. 

Hence we shall set p = 0 in the new formulation (56). 
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5.2 The biharmonic equation formulation 

Taking the divergence of the second of (56) yields the equation 

#V4t~t + EV4~b + V2(p'~(c, z)) - sV.(pVt~) = 0, (64) 

Clearly, (64) requires two boundary conditions on ¢ since it is of fourth order. 

To determine this extra condition, we consider the matrix conservation 

equation, linearize about the steady state p = 1, ¢ = 0 and integrate in time to 

have the linear solution p = 1 - V2¢. Hence, 

~p 0V:¢ 
~ - ~ = 0 o n F  =~ ~n = 0  o n F  (65) 

is the extra boundary condition needed. 

We can linearize about the uniform steady state p = c = 1, ¢ = 0 and 

easily verify that the eigenfunctions of the linear system are of the 

form (c, p, ¢ ) =  A cos(kx)cos(ly) where k and / integer multiples of ~z. We 

can also show that a solution of the linear system of the form 

(c,p, ¢) =Aexp(2t)cos(kx)cos(ly) leads to a dispersion relation for the 

growth rate 2 which agrees with the factorized two-dimensional dispersion 

relation (49). Thus the results from that section carry over. 

5.3 Constant matrix formulation 

Here we consider a version of the model where we set the matrix density p to 

be constant, normalized at unity (Murray, 1989 1-15]). This simplifies the 

model greatly and it now takes the form 

ct - DV2c + V. (cV¢~) - rc(1 - c) = 0 
(66) 

V(pV2¢t + EV2¢ + z(c, z)) = sV¢.  

Integrating the ¢ equation over 12 yields 

where g(t) is 

further demand that solutions of c and ¢ be restricted to the class of solutions 

satisfying V20 + k2O = 0, in f2 with VO" n = 0 on F, then g(t) clearly satisfies 

g(t) = ~ ,(c, z)dxdy (68) 

where A~ is the area of 12. Linearizing (67) about the steady state c = 1, q5 = 0, 

we readily establish that in the time independent steady state solution, 

Ct - -  D V 2 C  + V" (cVC,) = rc(1 - c) t 
# V 2 ¢ t + E V 2 ¢ + ~ ( c , z )  s ¢ + g ( t ) ,  inf2 (67) 

V c . n = V ¢ . n = 0  o n F  

a generalised time dependent constant of integration. If we 
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9(t)= T(1, z), a constant, and the eigenfunctions of this system are 

(c, ~b) oc cos (knx) cos (lny). Hence, the growth rate 2 satisfies the quadratic 

+ (DK 2 + r)(EK 2 + s) = 0 .  (69) 

Here, for ~ < 1, if z __< 0 then the uniform steady state is stable to small 

perturbations. As z increases from zero, the coefficient of 2 can become 

negative and the real part of 2 can become positive leading to linear instabil- 

ity. In this case, the uniform steady state first loses linear stability at a critical 

wave number k~ and a critical coupling parameter % given by 

( E + # r + 2  ~ x / / ~ ) ( l + ~ ) 2  
k ~ =  s and zc= 1 - ~  ' < 1 (70) o 

Again 2(k~, zc) = + i~o and we have a Hopf bifurcation. We note that on the 

unit square, given the boundary conditions Vc.n = Vq~.n = 0 on F, kc is 

discrete and is such that k~ z = (n2~ 2 + m2~ z) where m and n are the mode 

numbers, hereafter referred to as a mode pair. Since our domain ~ is a square, 

and the wave number depends only on Ikl, different combinations of m and 

n will give rise to the same transverse wave number kc and a multimodal 

interaction may be observed. When this occurs, we say that the mode pair 

(m, n) is deoenerate; that is, there are several pairs of integers (m, n) correspond- 

ing to the same k~ for which (51) will hold. For the given parameters/~, D and 

s for which k~ = s x / ~ ,  let the number Q = k2c/r~ 2 be an integer. Then, we 

seek integers m and n for which (51) is satisfied. Clearly for certain values of Q, 

there will be more than one admissible mode pair. For example, Q = 5, then 

5 = 12 + 22 = 22 + 12 and we have two mode pairs (1, 2) and (2, 1). If Q = 50, 

we have 50 = 52 + 52 = 12 + 72 = 72 + 12 giving three pairs (5, 5), (7, 1) and 

(1, 7). Each of these satisfy (51) and, by (69), will each have the same initial 

growth rate 2. In general, suppose that for a given Q there are N admissible 

mode pairs, then the resulting solution to the linear problem will be linear 

combination of all N-pairs. Next, we investigate the modal interactions that 

arise when the wave number with positive growth rate has two or more mode 

pairs. 

6 Analysis of spatio-temporal patterns in 2-D 

From the previous section, the most general solution of the linearized system 

at the bifurcation point (k~, "co) may be represented as a linear combination of 

all the possible N-pairs, (k j, l j), j = 1, 2, ..., N for all j such that k~ = k~ + l~. 

Hence, at bifurcation, 

= ~ (Aj exp (io~t) cos (kjx) cos (ljy) + cc) (71) 
J 



Spatio-temporal patterns in a mechanical model 509 

where, as usual, cc represents complex conjugate, Here, we investigate the long 

time behaviour of this solution when nonlinear effects are taken into account. 

6.1 Two-dimensional degenerate mode interaction 

Suppose we perturb the bifurcation parameter z by writing ~ = ~¢ + eEv, 

v = _ 1. Then, the system (67) is modified appropriately and the temporal 

growth rate 2 becomes 

2(k~, ~c + ~2v) = + ico + 
(1 - ¢) 

2#(1 + 0 2 
ezv + 0(~4). (72) 

Hence, the initial growth rate of the perturbed system is 

exp(l - OeZvt/2(1 + ¢)2#), a real and positive term. As before, we introduce 

a long time scale T = ~zt and consider the two time regimes, t and T as in 

Section 3.2, equation (22). Next we expand each of the variables in a power 

series about the steady state by writing 

49= ~ dO,,. c=1+ Z dc. g(t)=go+ ~ dgi (73) 
i=1 i=I i=l 

where ~bi, ci and 0i are functions of x, y, t and T. F r o m  (68), we have 

1 + zm(~dcj)  }dxdy (74) g(t,Z)=__~afa{m~=l( 1 ezv~ o~ .-1 
-~c /1 \ j =  1 

where 

z(m- 1)(1 ' Zc) 
Zm-- (m-- l ) [  ' m = l , 2 , . . o ,  (75) 

and s ("- 1)(1, vc) is the (m - 1)th derivative of ~(c, z) with respect to c evaluated 

at c = 1, z = ~.  Substituting these expansions into the system (67) and 

equating powers of e gives the hierarchical set of equations 

L ¢i = Ri (76) 

where L is a linear operator of the form 

DV 2 + r 

L = (77) 

(1, ~c) 

V 2 __&0 ~) 

#V 2 ~ + EV E - s I 
/ 

that acts on the column vector (q, c~i) r. 
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At O(e),R1 = 0 leading to the system 

At O(e 2) 

and we have the system 

L(~2)  =R2 in ~, V c 2 . n = V ~ 2 . n = O  on F 1 

f 
(79) 

g2(t, T) = -~-~ ~ F2(x, y, t, T)dxdy 

where F2(x, y, t, T) = ~2c2 + ~3c~ + vzl/z~. At O(e 3) 

( c~cl ~ 2 ~ 1  ~9~b2 c~4h)l 
c~T v ~-~-- 2rclc2-  V . ( c I V - ~ - +  c2V---~- 

R 3 = , 

g3(t' T) - #V2 ~'101 ~-'2 Cl - 2"c3clc2 - c ] 

giving the system 

L (~33)=Ra~ ('in £2, Vc3.n=Vqb3.n=Oy, t, on F[  

t (80) 
g~(t, T) = Ja F3(x, T)dxdy 

J 

where F3(x, y, t, T) = ~2c3 + 2z3clc2 + vz2c~/z, + z4c~. In general, for each 
power of e, we have a non-homogeneous partial differential equation system 
with homogeneous boundary conditions. 

6.2 The amplitude equations 

We proceed to solve each equation in turn: since the eigenvalue 2(k z, ~) is 
multiple in the sense described above, a separated solution of the form (71) 
satisfies the boundary conditions and thus is the general solution of the linear 
system at the bifurcation point. At O(~), gl (t, T) = 0 and the equation set is 
identical to the linear system as expected. Apart from the implementation of 
the integral constraint, the solution procedure here follows step by step in 
a similar fashion to the one-dimensional case. That is, at 0(~2), secular terms 
do not arise in the solution. At O(~3), secular terms arise and are suppressed 
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using the solvability conditions imposed by the Fredholm alternative the- 

orem. This then gives rise to the amplitude equation which we state in the 

general form 

1 e q q dAq 1 N ~ N 

j = l  m = l  n = l  

+ "-'2c=J"'"'qA~j~,,~,% "~ + GJ3 .. . . .  q.~jAmA,) = 0 (81) 

for each q, where the quantities G~ .... .  q = Gi(+kj,  +_kin, +_k,, +_kq), i = 1, 2, 

3, j, m, n; q = 1, 2, . . . ,  N are functions of the wave numbers and the critical 

traction parameter -C~o These terms arise from consideration of combinations 

o f ( +  k j, + k~, +_ k,,  +_ kq) for which kj +km + kn + kq = 0 which are precisely 

the secular terms in the system at O(ea). Equation (81) defines the first order 

amplitude functions Aq, q = 1, .. . ,  N. It shows how the growth rate of a solu- 

tion characterized by the mode pair (kq, lq) interacts with all the other mode 

pairs with the same wave number. 

When N = 1, (81) collapses to the single equation that can be rearranged 

to give 

dAq 
dZ  + aqAq + flqA2q.~q = 0 .  (82) 

This is similar to equation (34) which governs the amplitude in the one- 

dimensional case discussed in Section 3. Hence, the results from that section 

carry over. 

6.3 Bimodal solutions 

In contrast to the case N = 1, the corresponding analysis for N > 2 is 

considerably complicated owing to the presence of conjugate terms in (81) 

which precludes the kind of amplitude/phase decoupling which occurs in the 

case N = 1. When N = 2, the mode pairs (k, l) are such that kx = 12, kz = 11 

and the general system (81) reduces to a pair of complex equations for the 

complex amplitudes At, i = 1, 2 of the form 

dAx 
d--T" + ~oAt + ~IA~A1 + ~2AxA2A2 + aaA~/il = 0 

dA2 (83) 
d--T + ~oA2 +/~IALL +/~2A1A2,~l + #3A~L = 0 

where ~i and fli, i = 0, 1, 2, 3 are functions of the wave numbers k j, j = 1, 2 

obtained from the evaluation of G j .. . . .  q, i = 1, 2, 3 at (kj, kin, k,,  kq). 
The interaction between the two mode pairs manifests itself in the presence 

of terms of the form A I A 2 A 2  in the complex amplitude equation (83). As 

usual, we substitute 

r ' r r • i Az = R~e ~°', aj = aj + ia), flj = fl j  + l f l j ,  j ~-- O, 1, 2, 3, l = 1, 2 (84) 
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into (83) and equate real and imaginary parts to get the four coupled 

equations 

dR1 ~ 3 a~2,1(O)R1R22 0 ] dT  + ~'ovRl + aiR1 + = 

? 
dR2 , a J 
d T + YovR2 + &R2 + fl'~,2(O)Rzg~ = 0 

(85) 

4ol } 
R1 -d~ + ai°vR1 + ailR3x + aiz'l(O)RxR~ = 0 

dO2 
n 2 - ~  + fliovR2 + flilR3, + fl~,2(O)R2 R2 = 0 

(86) 

where 
r a2,1(O) = ~E + ~ cos(20) - G cos(20) ,  

fl~,2(O) = fl~ + fl~ cos(20) + fl~sin(20),  

~ , l ( O )  = ct~ + a~ s i n ( 2 0 ) -  a~ cos(20) ,  

fl~,2(O) = fl~2 +/3~ cos(20) - fl~ s in(20) ,  

and O is the phase difference 02 - 01 which, for non-zero R1 and R2 satisfies 

the equation 

d O  

dT 
• i 2 i 2 " 

- -  -4:- fl~V -- 0~0 v + fll R 2 - ~ R 2 + fl2.2(O)Rt - ~t'2,1(O)R 2 = 0 .  (87) 

6,4 Linear stability analysis for bimodal solutions 

Let the steady state (time independent) solutions of (85) be represented by R °, 

with associated phases 0 °, i =  1, 2. The trivial solution R ° = 0 is always 

unstable (stable) when a~v and fl~v are both less (greater) than zero, for the 

stability of this steady state is governed by the linearized version of (85), 

namely 

d/~l dR2 
d--T + a~v/~l = 0, - ~  + fl'ovR2 = 0 (88) 

where R~ ,~ 1, i = 1, 2 is a perturbation from the trivial steady state. Thus, the 

stability of the uniform steady state of the original partial differential equation 

system is also determined by ~ v  and fl~v. Accordingly, we expect ~ v  = fl~v 

and this is easily verified by calculating the coefficient of the linear term in the 

amplitude equation and comparing with (72) which will also show that 
~OV i = floVo In addition to the trivial solution R ° = O, two other steady state 

solutions for the real amplitudes R~ with an associated phase O~ are 
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identified (cf Magolis [123): 

I (Ia) R ° = 0 ,  (R°) 2 -  - e L Y  

(Ib) R ° = 0 ,  (R°) 2 =  - f l ~ v  
fll 

} ---71 > o, h-Y + ~'o~ + ~i(R°)  ~ = 0 

d0 o 
- - > 0 ,  ~ + f l ~ v + f l i ( R ° )  2 = 0  

II (R°) 2 = fl]~¢i -- fl~,2a~,~ > 0, (R°) 2 = 

together with the associated phases (case II) 

d0 ° . . 
dT  + u~v + col(R°) 2 + c¢2,~(Oo)(R°) 2 = 0 

d0° i o 2 
d---T + fl~v + fl](R°) 2 + fl2, i(Oo)(R1) = 0 

(89) 

> o (9o) 
r r r r 

where Oo, the steady state phase difference, is defined for non-zero R ° and 

R ° by the equation 

i 0 2  i 0 2  fl'ov ='or + fl'~(IC°Y =~(R°) ~ + fl~,~(Oo)(R~) o .  - - - e2,1(Oo)(R2) = (91) 

The inequalities in (89) and (90), which are necessary conditions for the given 

solutions to exist, determine whether bifurcations are supercritical or subcriti- 

cal. The steady state phase difference O0 is determined from (91) as follows: set 

x = cos(2Oo), y = sin(2Oo) so that x 2 + y2 = 1 and substitute the non-zero 

real amplitudes R ° and R ° into (91) to get 

Co + cax + czy + % x y  + C4 X2 + cSy 2 = 0, X 2 + y2 = 1 (92) 

where 

r r i r r i r i " 
c3 2 ( ~ f l ~ + ~ 3 f l ~ ) ,  c ,  ~3fl3 c5 = = ~ 3 f l ~  - f l ~  

The conic section given in (92) intersects the circle x 2 + y2 = 1 in at most four 

points and each of these four points represents the solution for the steady state 

phase difference Oo. For  a given 00,  admissible solutions are those for which 

R °, j = 1, 2, are positive. 

We now analyse the single mode solution branches (89) for linear stability. 

Consider first the branch I(a): a small perturbation/~l away from the steady 

state R ° satisfies the first order equation 

d/~l 2~v/~1 = 0, d0° 
dT  ~ + 2~(R°)  2 = 0o 

From the preceding section, we conclude that if - a ~ v  > 0 (<0)  along this 

branch then the bifurcation is supercritical (subcritical). However for a 
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supercritical ( - 0 ~ v  > 0) solut ion to be stable, it must be stable also with 

respect to the per turbat ion/~2 from the steady state R ° = 0, which for/~2 ~ 1 

is determined by the solut ion of 

d~2 
+ {flroV + (fir2. + l f l 3  [ C°s(z))(R°)2}/~2 = 0 (93) 

d T  

where X = 202 - Arg(fla) - 200 is determined as follows: consider the corres- 

ponding phase equat ion for 02 given by (86). Since R ° = 0, a corresponding 0 ° 

is not  determined and thus there is no a priori reason to place any smallness 

condi t ion on the phase angle 02 associated with the complex per turbat ion 

/~2exp(i02).  Therefore,  we consider the small perturbat ions 0~,/~1 and 

/~2 away from the quantities 0 °, R ° and R ° in the phase equation for 02 and 

take only first order  terms i n / ~ ,  0~ and/~2 to have the nonlinear equat ion 

d02 
/~2 -~ -  + fl~v/~2 + [fig + fl~ cos(202 - 20 °) 

-- fl~ sin(202 - 20°)] (R°)2/~ 2 = 0 .  

Fo r  small but  non-zero /~2, if we set X = 2 0 2 -  200 - A r g ( ~ a )  then Z is 

determined by the nonl inear  equat ion 

dx 
d-T - 21fla I (R°)  2 sin(x) = -2 ( f l~  - ~ ) ( R ° )  2 . (94) 

Now X has equil ibrium points at 

sin(z) = - -  (95) 
I/~31 

which exist when I/~-~1__<1/~31. For  notat ional  simplicity, we set 

a = 2lflal (R°) 2 and b = 2(fl~ - e l ) (R°)  2 and establish that (94) has a general 

solut ion defined for any constant  x by 

I a  ( b c )  a 2 
~. -~ (i) ~ + c tan  - T ; ]bl > a; c 2 = 1 - ~ e > 0 

tan Z = (ii) ~_a--~-- ~ +1; b= ++_a (96) 

(iii) -~ + c tanh  T - ~ ; Ibl < a; - c  2 = 1 - b~, c > 0 .  

The  solut ion (96) shows that  when Ibl < a, Z will tend to one of the equilib- 

r ium points given by (95) as T ~ oo. In this case, X(oo) is a constant  and hence 

cos(z(oo)) is determined.  Therefore  from (93) we have 

- \ff°v~t'le, -e'°vff2) T ['3'~°V frc°s(z(x)) o (97) log(/~2) = 

Since CdoV=fl~oV, we have that  if -fl~oV/e~ > 0  and, in addition, 

fl~ - 0t~ < I fla I, in which case Z will tend to one of its equilibrium points, then 
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/~2 will grow (decay) depending on whether 

~] - fll ~ [f131 1 - f-fl~--- > 0 (<0) .  (98) 
\ t/hi 

On the other hand, if ]fl~ - a~l > I/hi, the situation is quite different. In the 

notation of the general solution (96), this is the case (i). Here, • is periodic and 

hence the perturbation/~2 will be periodic. Careful consideration of the case (i) 

in (96), shows that 

csin(2x + ~co - beT) 
cos (z(T)) = 

a 

1 + ~ cos(2t¢ + Xo - bcT) 

fT  1 { a } => cos(;~(T))dT = - l o g  1 + cos(2x + ~o - beT) + x 1 
a 

where tan(xo) = bc/a, ~1 is a constant of integration and a, b and c are defined 

as in (96). Using the last expression in (97), together with a = 2 [fla[ (R°) 2 and 

• ~v = fl~v, gives the solution for/~2 

{a ? ( "  ) / ~ 2 = x i  l + ~ c o s ( 2 x + K o - b c r )  exp - - ~ - i  t e l - f l ~ ) T  . (99) 

Hence, if -fl~v/e~ > 0, then /~2 will grow (decay) if e~ - fl~ > 0 (<  0). 

Therefore, whether X is oscillatory or not, the stability of the perturbed 

equation (93) depends crucially on the sign of a~ - fl~. From (99), referring to 

(98), we deduce that the oscillations in )~ do not alter the stability conditions 

significantly. 

In summary the stability of the solution branch I(a) depends crucially on 

the sign of a~ - fl~. For fl~v = ~ v  < 0, if e~ is positive, then the single mode 

solution branch I(a) is always unstable when a] - fl~ > 0 and stable other- 

wise. If e~ is negative, the reverse of the inequality holds. The stability analysis 

of the solution branch I(b) is analogous. 

The linear stability analysis of the type II solutions is straightforward 

because 0F and 02 ° are known. Therefore, defining the small perturbations 

/~i R i R °and05  Oj o • = - ^ = - O j ,  j = 1, 2, so that the phase difference also has 

a perturbation 0 = 0 - 0o,  the growth or decay of the solutions is deter- 

mined by the eigenvalues of the matrix of the linearized system which may be 

written in the form 
dr 
d---T + Br = 0 (100) 

where r = ( / ~ 1 , / ~ 2 , 0 )  T and B the Jacobian matrix evaluated at 

R °, i = 1, 2, O °. We look for solutions of (100) of the form r = to exp(aT) and 

the solvability condition is [aI + B[ = 0. In this case, the analysis is straight- 

forward and will be omitted. We show, by means of an example (see Table 1), 

the existence of stable solutions of type II and present numerical simulations 

of the amplitude equations for some parameter values (see Figs. 3 and 4). 
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Table 1. Table summarizing the linear stability for the amplitude equation for the case 

N = 2 for example (102). Here the linear analysis indicates two stable solutions of type II 

occurring when the steady state phase difference 20  0 ~ +__~/2 (see Fig. 5) and the other at 

20  o ~ + rt/6.3. In this case all the single solution branches are unstable. Hence, small perturba- 

tions when the system indicates two-mode interaction will result in solutions of type II 

cos(20 °) sin(20°)(R°)2xl0 -4 (R°)2xl0 -4 a(1, 2, 3) l(a, b) II 

0.083 0.997 1.2 0.86 0.43, - 0.21, - 0.87 unstable unstable 

0.083 - 0.997 2.9 2.2 - 0.5, - 0.6, - 2.7 unstable stable 

0.879 0.478 0.98 0.83 0.02, - 0.02, - 0.64 unstable unstable 
0.879 - 0.478 2.6 2.3 - 0.01, - 0.8, - 2.5 unstable stable 

0.0250 

0.0225 

0.0200 

0.0175 

0.0156 

0.0125 

0.0100 

o.oo75 

0.0050 

0.0025' 

0.030 

0.025 

0.020 

O. 015' 

O.01d 

0.005" 

so' lo6 1so' 2od 256 306 s6 106 ls6 206 256 306 

(b) 

Fig. 3a, b. Numerical solution of the amplitude equations (81) for the parameter set (102) 

illustrating the case N - 2. a (i) and (ii) are, respectively, R1 and Rz as functions time. b (i), 
(ii) are the amplitude functions Re(Rz exp(i01)) and Re(R2 exp(i02)) plotted against time. 
Here, RI and R2 are of finite size and the observed solution is in a frequency locked 
oscillation in which the eigenfunetions corresponding to the two mode pairs (1, 2) and (2, 1) 

interact continuousIy 
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Fig. 4. Numerical calculation of the amplitude function for the case N = 2 from the 
numerical simulations of the full decomposed model plotted against time for the parameter 
set (102). The plots here agree closely with those of Fig. 3 

We can calculate the l imiting value of the phase  difference as follows: 

suppose  tha t  the ampl i tudes  R~, j = 1, 2 ~ Ry as T ~ ~ .  Then the limiting 

phase  difference O will satisfy the equat ion 

where 

dO 
+ Bo + Ao s in (20  + ~) = 0 (101) 

d--~ 

tan(~)  = - fl~(R°)2 - a~(R°)2 
fl~(RO) 2 + ~ (RO)  2, B0 = (fl] - ~)2(R~)Z + (fit - ~])(R°) 2 

Ao = {(fl~(R°) 2 - ~ ( n ° ) 2 )  2 + (fl~(R°) 2 + ~(R°)2)2} 1/2, 

This has a general  solut ion of the form (96) and clearly shows the behaviour  of  

O, the phase  difference, for all times. When  O is bounded  for all times and 

non-osci l la tory,  the result ing solutions represent  a frequency locked oscilla- 

t ion in which the phase  difference is constant.  

Example .  The  p a r a m e t e r  set 

/2 = 1.0, E = 5.0, D = 0.0125, s = 30.44, ~ = 0.025, r = 0.125 (102) 

gives zc = 6.852 and  the mode  n u m b e r  k~ = 5~ 2 which corresponds to the 

m o d e  pairs  (i ,  2) and  (2, 1). Hence  the solutions characterized by these two 

m o d e  pairs  will interact.  F o r  e 2 = 0.0024, z = 6.8544. Evaluat ing the coeffic- 

ients in the ampl i tude  equat ions  we have 

a'oV = fl'oV = - 0.4640v, ~ v  = fl'oV = 0, al  = 36106.479 - 13259.248i, 

a2 -- 3505.793 - 7615.846i, a3 = 2481.750 + 2939.747i, 

fl~ = 16933.138 - 7912.699i, f12 = 4072.114 + 2042.421i, 

f13 = 1 9 1 5 . 4 2 9 - 6 7 1 8 . 5 2 0 i ,  
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9E-4 

8E-4' 

~E-4 

6E-4" 

5E-4" 

4E-4" 

2~-4" 

1E-4 

1.4" 

1.2' 

1.0" 

0.8" 

0.6" 

O. 4" 

0,2 

50' 100 15o' 200' 2s0' 300' 
,...< 

50' 106 ls0' 200" 250̀  

(i) 
300' 

Fig. 5. Behaviour for large time of (i), R1 - R2 and (ii), the phase difference O for the 
parameter set (102). As T --* ~,  both R1 - R2 and (9 tend to non-zero constants as shown 

Hence, we can check some of the inequalities given in the above analysis. The 

results are summarized in Table 1. The corresponding (9 is shown in Fig. 5. 

The above analysis indicates that bimodal solutions of type II arise as 

a result of a primary bifurcation from the trivial solution (0, 0). When non- 

zero time independent amplitudes R ° and R ° exist, the primary bifurcation to 

these solutions is supercritical and occurs at the point where ~ v  = 0. The 

analysis also indicates that the type II bimodal solution branch and the types 

I(a, b) single mode solution branches cannot co-exist simultaneously. When- 

ever the solution falls on any of the branches l(a) or l(b), a secondary 

bifurcation occurs and the solution will return on the solution branch II. The 

result is a time periodic solution with the perturbed frequency on the t-scale 

given by 

2re 2re 
+ 01(~2t ) ,  - -  + 02(~2t) (103) 

o,) o )  

which are initially the same (see, for example, 1-20], EIO]). 

To end this section, we remark that when the eigenvalues of the linearized 

Jacobian matrix are complex, multiple periodic (quasi-periodic) solutions will 

arise as higher order bifurcations from the pure mode solutions I(a, b) and 

the mixed mode solutions II. We note, however, that here, for the case 

N = 2, k l  = 12, kz = 11 and the coefficients ~,  ]~, i = O, 1, 2, 3 are such that 

only time periodic solutions of type II arise. 

7 Discussion 

In this paper, we have analysed spatio-temporal patterns for a mechanical 

model both in one- and two-dimensions. In our analyses, our ultimate goal 
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has been to calculate the amplitude function that governs the spatio-temporal 

behaviour of the solutions for large time. 

In the one-dimensional analysis, we have considered only cases where the 

uniform steady state is unstable to a solution with one mode number. The 

problem of bifurcations to solutions involving more that one mode number in 

the linear regime is a more complicated one and is still under investigation. In 

the one-dimensional case, we gave a detailed nonlinear analysis of the full 

nonlinear system and determined the leading order approximation to the 

amplitude function. 

For the two-dimensional case, we presented an alternative reformulation 

of the two-dimensional model and justified it by showing that its underlying 

solutions agree with those of the original model. We explored the notion of 

mode degeneracy in the linear analysis of the system: that is, we considered the 

case where two or more mode pairs, associated with the same transverse wave 

number on a square domain, have the same growth rate in the linear regime. 

We further presented a detailed nonlinear analysis of spatio-temporal degen- 

erate mode interaction. Our analysis has shown that, for the non-degenerate 

case, the behaviour of the system is a natural extension of the one-dimensional 

single mode solution. For the case where there are two degenerate mode pairs, 

a preliminary investigation showed that there are four possible time indepen- 

dent solutions for the amplitudes associated with each mode pair: the trivial 

solution, two single mode solutions (types I(a,) and I(b)) and a bimodal 

solution (type II). A further analysis showed that the only stable solution is the 

bimodal solution whereby the amplitude functions associated with each of the 

degenerate mode pairs are in a frequency locked oscillation. In this case, the 

solution of the full nonlinear system near the bifurcation point will be made up 

of some proportions of the eigenfunctions associated with those degenerate 

modes. This was verified by a numerical example. Although we only presented 

results for a single parameter set, we have considered several parameter sets 

and have verified in each case that the numerical solutions to the full model 

agree with the analytic solutions derived. 

From our analysis on the simplified model, and for the parameter values 

we have used in the examples considered, we have not been able to locate any 

other stable solutions, aside from the bimodal solution of type II. We have no 

reason, however, to believe that in an analysis of spatio-temporal patterns in 

the full mechanochemical model, the situation will remain the same. 

We remark that, to date, we do not know whether spatio-temporal 

patterns have any direct applications in the context in which the 

mechanochemical model was developed, namely embryonic development. 

However, the protrusive and regressive behaviour of cellular filopodia has 

been modelled as a spatio-tcmporal phenomenon (Lewis and Murray [9]). 

Moreover, spatio-temporal patterns abound in many biological and chemical 

systems. In this paper, we have shown how the mechanical model can be 

reduced by the Helmholtz decomposition to a much simpler sub-model and 

we have presented a framework for analysing spatio-temporal patterns and 

mode interactions within that system. 
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