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ABSTRACT

With the increasing popularity of video applications, the re-

liable measurement of perceived video quality has increased

in importance. We study methods for pooling video quality

scores over space and time. The method accounts for local-

ized severe impairments of the signal which exhibit signifi-

cant influence on the subjective impression of the overall sig-

nal quality. It also accounts for the effect of camera motion

(egomotion) on perceived quality. The method arrived at is

tested on the LIVE Video Quality Database and is shown to

perform quite well.

1. INTRODUCTION

Video quality assessment (VQA) deals with predicting the

perceptual quality of video sequence. An important hypoth-

esis in the field of VQA is that local spatial and temporal re-

gions of very poor quality substantially affect the overall sub-

jective perception of quality [1][2]. This suggests the need

for pooling methods that extract these influential poor quality

scores and emphasize them when finding the overall quality

score. We propose a pooling method, which we term Influ-

ential Quality Pooling or IQpooling, based on the hypothesis

that such severe impairments have a substantial impact on hu-

man quality judgement. In IQpooling, for spatial pooling, in-

fluential poor quality scores are classified by a slope criterion

applied on the sorted quality scores, whose curve tends to sat-

urate towards good quality scores. Another important factor

that affects perceived video quality is the overall motion of a

video frame or egomotion. We adaptively apply a slope crite-

rion using computed egomotion to perform temporal pooling

and the most significant poor quality scores are captured using

a k-means clustering procedure [3]. The performance evalu-

ation of IQpooling on the LIVE Video Quality database [4]

shows considerable performance improvement compared to

previous VQA algorithms that use simpler spatial or temporal

pooling.
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2. WEAKNESS OF SAMPLE MEAN AS A POOLING

METHOD

An important component that affects the performance of a

VQA algorithm is the manner in which local quality scores

are combined or pooled to predict an overall quality score for

an entire image or video. One simple way of pooling the lo-

cal quality scores is to use the mean value of the local scores

to predict the overall quality. Mean based pooling has been

widely used due to its simplicity. Various quality metrics

have utilized mean based pooling including mean square er-

ror (MSE) and the SSIM index [5][6]. However, mean based

pooling may not be consistent with how a human observer

evaluates the video quality. Figure 1 illustrates the problem

with using mean as the pooling method. A number of distor-

tions caused by compression and lossy transmission of video

occurs in specific regions of the video [4]. The severe dis-

tortion that occurs in part of the frame provides an observer

with a very important cue for quality judgment. However, this

cue is largely lost when pooling is performed using the mean,

leading to poor prediction of the overall quality. This is illus-

trated in Fig. 1 and Fig. 2. Although Fig. 2(b) suffers from

severe local distortions that are likely to adversely affect sub-

jective quality as compared to Fig. 2(a), the mean SSIM score

of Fig. 2(a) is higher than the mean SSIM score of Fig. 2(b).

Percentile pooling using the lowest p% of quality scores

to predict the final score has been proposed as an improve-

ment over using just the mean [2]. Percentile pooling weights

the lowest p% of quality scores higher and has been shown to

improve the performance of quality assessment algorithms.

However, there is room for improvement in the percentile

pooling. The percentile pooling proposed in [2] uses a fixed

p% of scores, whereas the amount of impairment in a video

frame can vary considerably which affects human judgement

of quality. For example, let us suppose that two videos suf-

fer from similar levels of distortions, but the distorted area is

much larger in one video as compared to the other. When a

fixed p% is used, the fixed percentile pooling can fail to distin-

guish the qualities of the two video frames if p is smaller than

the smaller of the two distorted areas. However, the larger the

distorted area in a video is, the worse the perceived quality is.

2011 18th IEEE International Conference on Image Processing

978-1-4577-1302-6/11/$26.00 ©2011 IEEE 2557



Fig. 1. Illustration of mean quality pooling method.

We hypothesize that if the regions affected by severe distor-

tion are adaptively classified, the performance of quality es-

timation will be improved. It is hence essential to adaptively

compute the overall score by considering the distribution of

the quality scores.

3. DISTRIBUTION OF QUALITY SCORES

When local quality scores are obtained for a processed frame

of a natural video and sorted in ascending order, it typically

shows a saturating tendency in the direction of better qual-

ity, as shown in Fig. 3 for scores obtained using the SSIM

index. This distribution of quality scores is characteristic of

most natural videos that have undergone video compression.

This tendency is due to the characteristics of natural videos

and the characteristics of the distortion process, namely video

compression. A typical natural video frame consists of large

areas of smooth variations, with sharp edges and textures oc-

curring between. The smooth variations in the image or video

is composed of low frequency signals, and details such as

edges and textures are composed of high frequency signals.

Typical video coding schemes, such as discrete cosine trans-

form (DCT) based compression schemes, quantize high fre-

quencies in the image more severely than lower frequencies.

Hence, encoding distortions are more severe in regions of

high spatial activity such as edges, rather than in regions of

smooth variation[8]. Consequently, the sorted quality scores

tend to follow a saturation curve as depicted in Fig. 3, with

relatively little quality degradation in larger regions of smooth

variation and more severe quality impairments in smaller re-

gions of high spatial activity. The distribution of quality scores

in videos that suffer from distortions introduced due to lossy

transmission of video depends on the nature of the lossy chan-

nel. However, typical lossy networks such as wireless net-

works drop packets that affect regions of a video frame, re-

sulting in a distribution of quality scores that is similar to the

one depicted in Fig. 3.

The phenomenon described above applies to spatial dis-

tribution of quality scores in a single intra-coded frame of the

distorted video. A similar reasoning applies to predictively

coded video frames due to the characteristics of natural videos

and natural video distortions along the temporal dimension.

(a)

(b)

Fig. 2. Example of problem of mean as a pooling using LIVE

datbase [4] : (a) The 70th frame of pa7 25fps (mean SSIM

: 0.9497), (b) The 70th frame of pa11 25fps (mean SSIM :

0.9043).

Typical natural videos consist of large areas of static regions,

interspersed with moving objects in the scene. Typical video

compression algorithms utilize motion compensated DPCM

technique across frames to achieve compression where static

regions are encoded with zero motion vectors. Typical com-

pression schemes produce large prediction errors around the

borders of moving objects resulting in small regions of se-

vere distortion [8][9]. Thus, predicted frames also suffer from

small areas of severe distortion and larger areas of good qual-

ity.

One approach that can be taken is to divide the quality

scores depicted in Fig. 3 into two regions using the form of

the curve. The first region consists of the higher quality scores

in the saturated region of the curve (from areas of the video

that do not suffer from severe degradation). The second re-

gion consists of the non-saturated region of the curve (quality

scores corresponding to regions of the video suffering from

severe distortions). One contribution of our paper is that we

describe a method to determine the two regions of the curve

in an adaptive manner for each video frame, as opposed to us-

ing the fixed percentile pooling scheme proposed in [2]. Our

classification of the saturated and non saturated regions takes

into account the distribution of the quality scores. We perform
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this classification based on the slope of the curve. Based on a

slope threshold, quality scores which are higher than the slope

threshold are classified as belonging to the saturated quality

region and quality scores below the threshold are classified as

belonging to the non-saturated region of the curve. Finally,

we hypothesize that the quality scores in the non-saturated

region have far higher influence on the overall quality judg-

ment by humans since human observers tend to be critically

perceived poor quality regions [2]. Based on this hypothe-

sis, we propose a new adaptive pooling scheme, IQpooling,

to improve the performance of objective VQA algorithms.

4. THE PROPOSED SPATIAL AND TEMPORAL

POOLINGS ACCOUNTING FOR EGOMOTION

Motion is a very important factor affecting the distribution

of quality scores in a video. In particular, existence of ego-

motion has a significant effect on the distribution of quality

scores. The distribution varies according to the existence of

egomotion as illustrated in Fig.3. In a frame containing ego-

motion, the prediction error can occur over the entire frame

due to global motion of the frame. This is reflected in the

distribution of the quality scores, which contains a lot of in-

termediate scores between the saturated region and the non-

saturated region in an ego-motion frame.

We propose a spatial pooling strategy that applies a differ-

ent slope threshold t based on the existence of egomotion to

classify quality scores into two regions: Pt that contains the

set of unsaturated scores and P c
t that contains the set of satu-

rated scores. Let f (z) represent a set of sorted quality scores

obtained using a VQA algorithm on a given frame, where z

indexes over the sorted set. The slope estimate the derivative

on f (z) according to

f ′ (z) ≈
f (z +∆)− f (z)

∆
· λ, (1)

The values of both the quality score and its argument are nor-

malized to the same scale of [0, 1] by a normalization param-

eter, λ, which is the ratio of the number of samples per frame

to the largest difference between the maximum and minimum

quality scores (eg. for the SSIM index, the largest differ-

ence is 1). f ′ (z) tends to be monotonically decreasing. Let

t̂ be such that f ′
(
t̂
)
= t, f(x) ∈ Pt if f(x) < f(t̂) and

f(x) ∈ P c
t if f(x) ≥ f(t̂). A frame level quality index sf is

then computed.

sf =

∑
m∈Pt

Qm+r ·
∑

m∈P c
t
Qm

|Pt|+ r · |P c
t|

, (2)

where Qm is the mth local quality score in the f th frame and

r is a small multiplier that is used to account for the reduced

contribution of the scores in P c
t to the overall quality of the

video.

Fig. 3. Sorted quality scores of natural video showing a form

of saturation curve.

For ego-motion frames, we simply utilize a slope of t = 1
where the x-increment and y-increment are the same. In a typ-

ical non-egomotion frame, large prediction errors are likely

to be localized to regions of high spatial activity or regions

containing moving objects. Hence, the saturated and non-

saturated regions are quite distinct in this case and we utilize

a slope of t > 1. To determine the presence of egomotion in

a frame, scene movement is detected using the coefficient of

variation (CoV) of motion vectors in a frame [7]. The CoV

refers to the ratio of the standard deviation to the mean and a

frame is classified as stationary when the CoV is lower than 1

and moving otherwise.

In VQA, to obtain the overall quality score for a video,

the frame level quality scores sf which are obtained by spa-

tial pooling should be pooled along the temporal dimension.

Temporal pooling also plays an important role in estimat-

ing perceived video quality accurately. We hypothesize that

poor quality regions have an increased influence on the over-

all quality along the temporal dimension of video also. How-

ever, the distribution of the frame level quality scores sf along

the temporal dimension varies considerably with video con-

tent and distortion type. We classify frame level scores into

two regions containing lower quality scores and higher qual-

ity scores, similar to spatial pooling, by k-means clustering

[3] along the temporal dimension. The scores from the two

regions are then combined to obtain the overall quality of the

entire video sequence:

S =

∑
f∈G sf+w ·

∑
f∈Gc sf

|G|+ w · |Gc|
, (3)

where G contains quality scores from the lower quality region

and Gc contains quality scores from the higher quality region.

A weight w, computed as a function of the gap between the

scores in G and Gc, is applied to scores in the higher quality

region, where w =
∣∣∣MH−ML

M̂

∣∣∣
2

, MH and ML are means of

scores in the higher and lower quality regions respectively,
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Table 1. SROCC results with several VQA algorithms in [4].

P1:Percentile pooling on quality map of SSIM, P2:Percentile

pooling on quality map of MOVIE, I1:IQpooling on quality

map of SSIM, I2:IQpooling on quality map of MOVIE. (W :

Wireless, I : IP, H : H.264, M : MPEG2)

VQA W I H M All

PSNR 0.4334 0.3206 0.4296 0.3588 0.3684

SSIM 0.5233 0.4550 0.6514 0.5545 0.5257

MOVIE 0.8019 0.7157 0.7664 0.7733 0.7890

P1 0.7696 0.7428 0.7032 0.6632 0.7659

P2 0.7992 0.7121 0.7386 0.7654 0.7650

I1 0.8141 0.7878 0.8116 0.8320 0.8368

I2 0.8086 0.8060 0.8285 0.8504 0.8441

and M̂ is the maximum score that is used to normalize w

between 0 and 1.

5. PERFORMANCE AND CONCLUSION

We evaluated the IQpooling on the Laboratory for Image and

Video Engineering (LIVE) Video Quality (VQ) database [4].

The IQpooling is applied on local quality estimates obtained

using the SSIM index [6] and the MOVIE index [7] on the

LIVE VQ database. A sampling window of 16×16 that slides

by 4 pixels in each increment is utilized to obtain the SSIM

quality map. λ is chosen to be the ratio of the number of sam-

ples per frame and a normalization factor that depends on the

range of scores of the VQA algorithm. The normalization fac-

tor is chosen to be 1 for SSIM and 0.2 for temporal MOVIE

and 0.35 for spatial MOVIE, respectively. The value of 10−4

is utilized for the scaling factor r in (2) although any suffi-

ciently small value is sufficient as in [2]. The slope thresholds

that are utilized for the stationary and moving viewpoints are

3 and 1, respectively, in both SSIM and MOVIE.

The Spearman rank order correlation coefficient (SROCC)

and the Pearson linear correlation coefficient (LCC) are used

as performance evaluation metrics and these are shown in Ta-

bles 1 and 2. Tables 1 and 2 clearly show that the IQpooling

improves the performances of SSIM and MOVIE consider-

ably.

In conclusion, we proposed a spatial and temporal pool-

ing method, known as IQpooling, that better predicts over-

all video quality by considering the influence of spatially and

temporally localized severe impairments on human judgment

of quality. The worst quality scores are classified at the spatial

pooling stage using a slope criterion and at the temporal pool-

ing stage using k-means clustering. Furthermore, we explored

the impact of egomotion on pooling quality scores. Apply-

ing an adaptive strategy based on the existence of egomotion,

we obtained noticeable improvement in the performance of

the VQA algorithms. In the future, we would like to apply

the proposed pooling scheme on quality maps obtained using

Table 2. LCC results with several VQA algorithms in [4].

P1:Percentile pooling on quality map of SSIM, P2:Percentile

pooling on quality map of MOVIE, I1:IQpooling on quality

map of SSIM, I2:IQpooling on quality map of MOVIE. (W :

Wireless, I : IP, H : H.264, M : MPEG2)

VQA W I H M All

PSNR 0.4675 0.4108 0.4385 0.3856 0.4035

SSIM 0.5401 0.5119 0.6656 0.5491 0.5444

MOVIE 0.8386 0.7622 0.7902 0.7595 0.8116

P1 0.7954 0.7905 0.7339 0.6711 0.7829

P2 0.8174 0.7631 0.7479 0.7702 0.7946

I1 0.8420 0.8382 0.8271 0.8329 0.8516

I2 0.8521 0.7998 0.8438 0.8487 0.8603

other VQA algorithms and other databases.
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