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ABSTRACT Improving short term solar irradiance forecasting is crucial to increase the market share of the

solar energy production. This paper analyzes the impact of using spatially distributed irradiance sensors as

inputs to four machine learning algorithms: ARX, NN, RRF and RT. We used data from two different sensor

networks for our experiments, the NREL dataset that includes data from 17 sensors that cover a 1 km2 area

and the InfoRiego dataset which includes data from 50 sensors that cover an area of 94 Km2. Several studies

have been published that use these datasets individually, to the author knowledge this is the first work that

evaluates the influence of the spatially distributed data across a range from 0.5 to 17 sensors per km2.We show

that all of algorithms evaluated are able to take advantage of the data from the surroundings, from the very

short forecast horizons of 10s up to a few hours, and that the wind direction and intensity plays an important

role in the optimal distribution of the network and its density. We show that these machine learning methods

are more effective on the short horizons when data is obtained from a dense enough network to capture the

cloud movements in the prediction interval, and that in those cases complex non-linear models give better

results. On the other hand, if only a sparse network is available, the simpler linear models give better results.

The skills obtained with the models under test range from 13% to 70%, depending on the sensor network

density, time resolution and lead time.

INDEX TERMS Machine learning, forecasting, spatial resolution, solar irradiance, global horizontal

irradiance.

I. INTRODUCTION

Technology for solar energy production has improved con-

siderably over the last two decades, becoming a cost-effective

alternative to the fossil energy sources. Despite this evolution,

the solar energy industry is seeking to improve the spa-

tial and temporal resolution provided by current techniques

for short term solar irradiance forecasting. Operators of the

distribution networks wish to handle temporal resolutions

in the range of 5-10 minutes whereas intra-day auctions

in the energy markets require coarser time granularities,

from 0.5 to 1-2 hours.

The associate editor coordinating the review of this manuscript and

approving it for publication was Li He .

This need of accurate short-term forecasting has moti-

vated the scientific community in the search for models

that incorporate both spatial and temporal information. For

instance [1]–[3] used sky imagers to take measurements of

cloud positions across the target area, modeling their move-

ment and predicting their shadows in the near future. Sky

imagers have also been used to obtain a velocity map of the

clouds [4], that can later be used to predict cloud movements

over a network of radiometric sensors to forecast the solar

irradiance in the near future [5]–[7]. A similar approach uses

satellite images to obtain the cloud velocity map [8]. This

kind of images have also been used to infer the solar irradi-

ance over a specific region, applying then a classic time series

analysis technique to forecast future values [9]. Amore recent
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proposal is to combine sky-imagers with shadow cameras

to improve the cloud movement detection and predict future

irradiance values on a given area [10].

An alternative approach being actively explored consists

in using irradiance measurements from terrestrial sensors

(or even the production PV cells themselves) as inputs to

some statistical model, designed to extract patterns from

past samples and predict from them future values. A large

amount of statistical algorithms have been explored, from

simple linear models like ARX [11]–[15], VARX [16], [17],

LASSO [14], [17], [18] and ARIMA [19], to more com-

plex non-linear models like Artificial Neural Networks [14],

[20]–[22], Support Vector Regressors [18], [21], LSTM [23],

Boosted Regressor Trees [18] or kriging [17], [24], [25]. The

literature on this topic has been extensively reviewed [15],

[26]–[28]. For instance, table 1 in [15] gives a detailed com-

parison of the techniques proposed in the literature on this

topic, including information on the spatial coverage and time

resolution used on each work.

However, it is still uncertain how much advantage can

the statistical models take from spatio-temporal information.

Some works report evidences that the information obtained

from sensors in the surrounding of the target prediction

improve the accuracy for some prediction intervals. For

instance [20] explored the use of Artificial Neural Networks

(ANNs) for short-term prediction of Global Horizontal Irradi-

ance (GHI), incorporating in the feature vector measurements

from different neighbouring sensors within a radius of 55km.

Their results improved the prediction performance for inter-

vals up to 3 hours. However, for longer prediction intervals,

the use of the spatial information available did reduce their

accuracy, i.e. using information only from the location of the

prediction target resulted in more accurate predictions.

Amaro and Silva [15] studied the effect of the sensor

distribution in the prediction accuracy obtained by ARX

models. They used the NREL dataset, that provides data

from 17 sensors covering an area of 1 km2 with sam-

ples every second, and showed that for very short intervals

(1 to 5 minutes) with fast moving clouds, a high density

of sensors helps to improve prediction accuracy. More pre-

cisely, their ARX model could take advantage of the corre-

lation between measurements in the sensors positioned along

the direction of the dominant winds, when they were close

enough for the clouds to cover the distance between nodes

in periods larger than the prediction interval. The authors

worked also on a second data set, that provided data from

57 photo voltaic plants spread in an area of 104 km2. However,

this second data set could not provide enough data to draw

trustworthy conclusions on the matter.

More recently Chao Huang et.al. [18] compared the pre-

diction accuracy obtained with five statistical models, ARX,

LASSO, ANN, SVM and BRT, on a data set with irradiation

measurements taken every 30 min, for a period of two years

(2014-2015), in the Solar Technology Acceleration Center in

Colorado. They trained the fivemethods on the data set, using

Jaya [29] and grid search to obtain the hyper-parameters for

the models. They observed that the ARX algorithm, that con-

siders data from sensors different from the prediction target

as exogenous data, provides slightly better accuracy than the

AR model, in which only local data in the target sensor is

considered. The authors did not perform this analysis with

the rest of the algorithms they consider. Furthermore, they

did neither analyze forecasting intervals below 30 min nor

the contribution of each sensor individually.

This paper extends these previous works [15], [18], [20],

by analyzing the influence of spatio-temporal data on four

different statistical methods: ARX, ANNs, Random Regres-

sion Forests (RRF) and Regression Trees (RT), and two dif-

ferent data sources 1, one with a dense grid of sensors in a

small area [30], and other with a lower density but covering

a larger area [31]. We study which algorithm properties and

which data features are more relevant in each case, to obtain

a better understanding of the problem. To the authors knowl-

edge, this is the first work that quantitatively analyzes the

impact of the spatial resolution on several machine learning

algorithms with spatial resolutions from 0.5 to 17 sensors

per km2 and forecasting intervals from 10s to a few hours.

The rest of the paper is organized as follows. In Section II

we describe the databases used for our work. Section III

describes the statistical models we use, the feature selection

and the metrics used to evaluate them. Section IV assesses

the impact of the selected clear sky model on the accuracy

of the statistical methods whereas Section V analyzes the

impact on the prediction accuracy obtained by incorporating

measurements from spatially distributed sensors. Section VI

studies the influence of each feature in the prediction. Finally,

Section VII summarizes the conclusions of the paper and

sketches some future work.

II. DATA SOURCES

In this work we have used two data sources from very dif-

ferent areas, with different climates and different spatial and

temporal scales.

A. NREL OAHU SOLAR MEASUREMENT GRID

This database is provided by the National Renewable Energy

Laboratory ( [30]), it includes GHI measurements from

March 2010 to October 2011, taken at 1s intervals from 17 sil-

icon pyranometers (LICOR LI-200) placed horizontally and

distributed across an area of roughly 1km2 near the Kalaeloa

Airport of the Oahu Island in Hawaii (USA). Figure 1a

shows the irregular distribution of the sensor network. After

a preliminary analysis of their data we decided to remove

some days from the dataset for which the sensors were giving

negative values and completely remove the AP_3 senor, for

which almost all measurements where erroneous. According

to [32] the dominant winds in this region come from the

northeast, with an average speed of 5ms−1, which allows a

cloud to traverse the whole area in about 3 minutes.
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FIGURE 1. Distribution of sensors in the NREL and InfoRiego data sets.

B. InfoRiego NETWORK FROM ITACyL

This database is provided by the Instituto Tecnológico

Agrario from the regional government of Castilla y

León (CyL) in the north west of Spain. The network is com-

posed of 50 weather stations irregularly distributed in an area

of 94, 226km2, with an average distance of 25.94 km between

stations. The layout of the stations is shown in Figure 1b. The

dataset includes averaged measurements of GHI from sili-

con pyranometers (Campbell Skye SP1100), temperature and

humidity on 30min intervals. According to the agricultural

authorities in the region [33], the direction of the dominant

winds is not homogeneous on the large area covered by these

sensors.

III. METHODOLOGY

In this work we evaluate the forecasting accuracy obtained by

exploiting spatial and temporal data with different machine

learning regression methods. Each of them can be modeled

as a parameterized function Gl :

yl = Gl(f̄ , q̄, p̄), (1)

where yl is the forecasted value in one specific place with

a lead time of l, f̄ is the feature vector, p̄ is a vector formed

by the parameters of the model whose values will be obtained

during the training (fitting) process, and q̄ is the vector formed

by the hyper-parameters, whose values are not obtained by

the training process, they must be defined by the user. In the

following subsections we describe in detail each of these

elements and the process to obtain them.

A. FEATURE VECTORS

Figure 2 helps us to illustrate the feature selection process.

First of all, time is discretized with a period appropriate for

each of the data sets (10s in case of the NREL that provides

samples every second, and 30min for InfoRiego, the mini-

mum value possible in that case).

For each station, we compute the clear sky index for

instant j as:

x[j] =
GHI [j− 1, j]

GHIcs[j− 1, j]
(2)

whereGHI [j−1, j] is the mean GHI value in the time interval

[j− 1, j], and GHIcs[j− 1, j] is the mean GHI value expected

in that interval in the absence of clouds, as provided by a so

called clear sky model. The models we have considered are

described in detail in section III-B.

We refer to (2) also as the normalized irradiance. This

normalization strategy is a common practice that allows two

things: to eliminate the seasonality effects on irradiance and

to normalize its range (convenient for machine learning mod-

els to avoid biases on different features).

The feature vector used to forecast, at instant i, the mean

GHI value in the interval [i + l − 1, i + l] (where l is

known as the lead time) with m lagged samples, is formed

by concatenating the m normalized irradiance samples (2)

of each station in the interval [i − m + 1, i] (highlighted in

red in figure 2), including also the normalized azimuth and

elevation angles of the sun from each station at instant i:

f̄i+l,m,l = [x0[i], . . . , x0[i− m+ 1], az0[i], ev0[i],

x1[i], . . . , x1[i− m+ 1], az1[i], ev1[i],

. . . ] (3)

where the xj[i] represents the i-th sample of the normalized

irradiance (2) at station j (with j= 0 representing the forecast-

ing target and the remaining being the neighbouring stations)

and azj[i] and evj[i] represent the corresponding azimuth and

elevation angles of the sun from station j at instant i. We use
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FIGURE 2. Samples selected to build the feature vector to forecast, at instant i , the mean irradiance in the interval [i + l − 1, i + l ], where l is the lead
time.

m = 4 in our experiments (sections V and VI). We should

emphasize that each model is specifically trained for a given

lead time value (l).

The training process fits the machine learning algorithms

to give as output for this feature vector the normalized irradi-

ance sample corresponding to the time instant i + l (x[i + l]

in Figure 2).

B. CLEAR SKY MODEL

We have experimented with two models for the GHI in clear

sky conditions: the McClear model proposed by [34] and the

model proposed by [35]. The data for the former are generated

by interpolating data obtained with a 15 min interval from

the http://www.soda-pro.com/ site, for the region of

interest and the period of interest. The data for the latter is

generated by the following equation:

GHIcs = 1098 · cos(z) · exp

(

−0.057

cos(z)
W/m2

)

, (4)

where z is the zenith angle.

The McClear is an accepted reference model that incor-

porates the Linke turbidity factor to model the atmospheric

absorption and scattering. The Haurwitz model on the other

hand is a simple geometric one, that only takes into account

the sun position, its coefficients were adjusted from irradi-

ance measurements performed in the Blue Hill Observatory

in Boston Massachusetts, between 1933 and 1943.

McClear however requires more computational power than

Haurwitz. As we will show in section IV, the statistical mod-

els used for our work cannot exploit the accuracy differences

between both models, allowing us to choose any of the two.

C. HYPER-PARAMETERS: CROSS VALIDATION

Each database is first split in two independent subsets: Train-

ing and Test. We randomly selected full days to be included

in one of those sets, specifically 82% of the available days

where selected for Training and the remaining 18% for Test.

The feature vectors built from the samples of the days

included in the Test set are reserved to eventually evaluate

and compare the accuracy of the models in the experiments

shown in sections V and VI.

An exhaustive grid search is followed to obtain the best

value for each of the hyper-parameters in a model (q̄), using

a traditional k-fold cross validation strategy. The Train set is

split in k folds or partitions and k experiments are performed

for each point in the grid. In each experiment the model is

trained on k − 1 folds and evaluated with the remaining fold.

The final score assigned to the configuration of the corre-

sponding grid point is the mean value of the scores obtained

on the k experiments. The configuration of hyper-parameters

that corresponds to the grid point with better score is the one

selected for the model.

Once the hyper-parameters have been obtained (q̄),

we used them to train the model on the whole Training set

to obtain the final values for the parameters in p̄.

D. MACHINE LEARNING ALGORITHMS

In this work we have used four different models: ARX, ANN,

RT and RRF, all of them implemented with the scikit-learn

python library [36]. The simplest one is ARX, that assumes a

linear relation between the forecasted irradiance and the fea-

tures (as described in section III-A). In this case equation (1)

can be expressed as:

ŷ = βxT + β0, (5)

where ŷ is the forecasted value, x is the corresponding feature

vector, β is a row vector with the same number of coefficients

as x and β0 is the scalar bias value. A common approach to

find the coefficients (β and β0) is to use the ordinary least

square method (as do for instance the authors in [15], [18]),

which finds the values that minimize the mean square error:

(β, β0) argmin
β,β0

=

N
∑

i=1

(yi − β0 − βxi
T )2, (6)

where N is the number of coefficients vectors used in the

training process and yi is the measured GHI value that cor-

responds to the feature vector xi. A similar approach is

LASSO [37], [38], which uses a regularization factor to limit

the absolute value of the coefficients:

(β, β0) argmin
β,β0

=

N
∑

i=1

(yi − β0 − βxi
T )2 + λ

M
∑

j=1

|βj|, (7)
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were λ is the regularization factor and M is the dimension

of x. Using this approach with small regularization factors

leads to similar regression coefficients.

An ANN with Multilayer Perceptron (MLP) arquitecture

is composed of several layers of neurons. The output of a

neuron i on layer j + 1 depends on the outputs of the Mj

neurons of the previous layer (y
j
k ) as:

y
j+1
i = f



αi,0 +

Mj
∑

k=1

αi,ky
j
k



 , (8)

where the y0k are the inputs to the network (the features). The

α coefficients are obtained in a training process using

the back-propagation algorithm, which has a regularization

parameter that has to be specified a priori. The function f is

known as the activation function and simulates the response

of a human neuron, we used the most common sigmoid

function. Finally, the architecture of the ANN, i.e. the number

of layers and the number of neurons on each layer, can be con-

sidered as a set of additional parameters that must be explored

to obtain the best results. After some experimentation we

opted for an ANN with three hidden layers and 300 neurons

per layer, plus an output layer with only one neuron. In the

output layer we also opted for a linear activation function,

which is the common approach for regression ANNs.

RTs build piece-wise constant functions for G in equa-

tion (1). The intervals in which G is constant are selected

during the training process, that builds a binary tree in which

each node represents a split of the space and the two sub-trees

represent further sub divisions of each subspace. On the

leaves of this tree the value of the function is set constant,

usually selected to minimize some error criteria (usually

mean square error) for all the training samples seen on that

subspace.

However, RTs are known to be very unstable due to their

tendency to over fit. RRF is an ensemble method based on

RT that alleviates this problem. During the training process

a large number of RT are build from randomly selected

re-samples with replacement of the training set. The function

G evaluates a given point as the average of the functions

corresponding to these RTs.

E. METRICS

A common approach to quantify the accuracy of the forecast-

ing models is to use the Root Mean Square Error (RMSE),

which can be expressed as:

RMSE =

√

√

√

√

1

N

N
∑

i=1

( ˆY [i] − Y [i])2 (9)

where Y [i] is the real GHI value measured at instant i and ˆY [i]

is the corresponding predicted GHI value. However using

absolute values of RMSEmakes it difficult to compare results

from different locations. Therefore, a common practice is

to use a normalized version of the RMSE, usually called

nRMSE.

There is however no established consensus on the expres-

sion that should be used for the nRMSE. For instance,

the authors in [15] used the following expression:

nRMSE =
RMSE

max(Y )
(10)

where max(Y ) is the maximum GHI value observed. A vari-

ant of this is to divide by the maximum difference observed

in the GHI (replace max(Y ) by max(Y ) − min(Y )) which in

the case of GHI is generally the same if large day periods are

considered, as min(Y ) is 0 at the sunrise and nightfall.

On the other hand the authors of [18] used a different

normalization strategy, dividing the RMSE instead by the

mean value of the observed GHI:

nRMSE =
RMSE

Y
(11)

This approach leads to slightly larger nRMSE values, but

in essence has the same properties than the expression (10).

In both cases every error is divided by a large constant. A rel-

ative error (say 10%) has less influence in moments when the

absolute GHI is low (early in the morning) than when the GHI

is larger (around noon). This might influence the decisions

when choosing the hyper-parameters if the nRMSE is used to

score each configuration.

A different approach is followed in [20], where the authors

compute the nRMSE from relative differences:

nRMSE =

√

√

√

√

1

N

N
∑

i=1

(

ˆY [i] − Yi

Y [i]

)2

(12)

This is an interesting approach, using relative values does not

penalize the moments of the day where the GHI is naturally

lower respect to the moments of the day when that value is

naturally higher. These nRMSE values are however larger

than the nRMSE values obtained from (10) or (11).

We followed a more natural approach. Given that our

models like most others in the literature predict the clear sky

index (and then indirectly obtain the forecasted GHI value

by multiplying the output by the GHI expected by the clear

sky model), we score our models by computing the RMSE on

clear sky index values:

nRMSE =

√

√

√

√

1

N

N
∑

i=1

(x̂[i] − x[i])2

=

√

√

√

√

1

N

N
∑

i=1

(

Ŷ [i] − Y [i]

Ycs[i]

)2

(13)

where Ycs[i] is the GHI expected by the clear sky model for

sample i, and x̂[i] and x[i] are the corresponding forecast and

measured clear sky indexes (as used in Figure 2). Notice that

this simple approach is close to (12), it also weights the errors

taking into account the moment of the day (from a model

instead of from the direct measurements). The values of (13)

fall in between the values of (11) and (12). Given that the goal

of this work is not to obtain the best forecasting model, but
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to analyze the influence of the spatial resolution; being in the

exact same nRMSE scale as other authors is not critical.

As common practice, we additionally used a skill figure to

evaluate each model. We used a persistence model as refer-

ence to derive the skill, which simply predicts that the clear

sky index will remain constant for the lead time period:

x[i+ l] = x[i]. (14)

where again x[i] and x[i+ l] are normalized GHI values (2).

The skill figure is computed as the relative percentage of

improvement in nRMSE respect to the normalized persistent

model (14):

S = 100

(

1 −
nRMSEmodel

nRMSEpersistence

)

. (15)

IV. IMPACT OF THE CLEAR SKY MODEL

The purpose of the Clear Sky Model (CSM) is two-fold:

eliminate seasonality effects and normalize. The latter is the

most relevant role for the statistical models, specially when

several magnitudes with dissimilar ranges are considered as

features. To assess the impact of the CSM on the output

of the statistical models we conducted a simple experiment.

Table 1 shows the RMSE values obtained when training a

Neural Network to predict the GHI for the DHHL_6 node

of the NREL dataset, for different lead times, using the two

CSMs presented in III-B. For this experiment we computed

the RMSE using the raw GHI values, i.e. not normalized by

the CSM.

TABLE 1. Impact of the clear sky model in the accuracy of the neural
network, for the DHHL_6 station in the NREL network. The sampling
period was 1s.

As we can see from Table 1, the RMSE obtained when

using theMcClearmodel is always slightly better than the one

obtained with the Haurwitz one. However these differences

are negligible, affecting only the fifth significant number of

RMSE, and even less in some cases. We can conclude that

both CSMs can be used for the purpose of this paper, and

we can take advantage of the computational simplicity of the

Haurwitz model with negligible impact on the forecasting

results.

V. SPATIAL RESOLUTION AND LEAD TIME

The first hypothesis of this work is that statistical models

can take advantage of data supplied by spatially distributed

sensors, from very short lead times up to hours. To confirm

this hypothesis we conducted similar experiments on the two

databases described in section II. We trained the four statisti-

cal models mentioned in section III-D for several prediction

targets and several lead times. As a reference we also trained

the equivalent local methods, in which we only consider the

data from the prediction target sensor (no spatial informa-

tion is used). Table 2 shows, for each method and different

lead times the nRMSE relative to the one obtained for the

corresponding local method (nRMSEl), as well as the Skill

value for the method and the corresponding local equivalent

(Skilll). Due to space constraints, we show only the data for

one target station on each dataset, the VA01 station in the

case of InfoRiego and the DHHL_6 for NREL. The former

was selected to have a similar amount of nearby sensors in

all directions, so that we can evaluate the influence of the

information provided by them. For the latter, we selected

one peripheral station from the opposite side of the incoming

dominant winds, to maximize the impact of the information

provided by the surrounding stations. Moreover, we did con-

sider different lead times for the two databases. In the case of

InfoRiego, we have samples only every half an hour, making

shorter lead times unfeasible. On the other hand, the sensors

in the NREL network cover a small terrain area, providing

insufficient information for the prediction of large lead times,

given the fast winds that dominate the covered area.

First of all, Table 2 shows that all methods considered do

take advantage of the spatial information supplied for most

lead times, as their nRMSE is smaller than the corresponding

nRMSEl, although the impact of the information provided

by the surrounding stations differs significantly for the two

datasets. Moreover, we can see that the statistical methods

outperform the persistent model, with the exception of RT

that in some cases has a negative skill.We can also see that the

nRMSE/nRMSEl ratio for the InfoRiego dataset is generally

closer to 1, meaning that the information provided by the

surrounding nodes is not as useful for the statistical methods

as it is in the case of the NREL dataset. This can be partially

explained by the different among their geographic locations

and weather characteristics. The InforRiego network covers

a large area, with an average height of 750m above sea level,

where winds are generally not very strong, the clouds evolve

slowly, and many days have an almost clear sky [33]. In this

area, the persistence model works reasonably well for lead

times around 0.5h. Even so, the statistical methods reduce

the forecasting error around a 10% using only local infor-

mation (Skilll), i.e. having measurements from the past helps

to better estimate the slope of the irradiance, and probably

better results would be possible by lowering the interval

between samples (fixed at 1/2h for this dataset). Moreover,

the skill increases up to 16.9% by using spatially distributed

data (Skill), which means that some clouds can travel from

the surrounding sensors in 1/2h, and the information from

those sensors is exploited by the statistical methods providing

around a 7% of skill improvement.

As the lead time increases the persistence model becomes

less effective and the statistical methods increase the skill

up to a 70% for a lead time of 4h. Although the spatial
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TABLE 2. Improvement obtained from spatially distributed sensors, for the VA01 station of the InfoRiego network and the DHHL_6 station of the NREL
network.

information gains slightly more importance for lead times

up to 2h, for larger intervals it becomes largely irrelevant,

as shown by the nRMSE/nRMSEl values approaching 1,

with differences between Skill and Skilll around 2% (being

even negative in some cases). These results indicate that the

area covered by the stations starts to become small for lead

times above 2h, or that the relation between the local GHI

in the future and the data measured further away may be too

complex. This could be the case if clouds form, dissipate or

change their shape during the lead time. In the next section

we give some suggestions for possible improvements for such

complex cases.

As we have seen, the information of the surrounding sen-

sors, in the case of the InfoRiego data set, helps to improve

the skill marginally, from 2% to 8%. On the other extreme

we have the NREL network. It covers a much smaller area,

in the Oahu Island (Hawaii), roughly at sea level. This area

has a cloudy and windy tropical climate, where the sky is

generally covered with fast moving clouds. In this scenario,

the persistent model has a hard time for all the lead times

considered, except for the shortest (10s). We have samples

every second for each sensor in the area and, as can be

seen from the nRMSE/nRMSEl, Skill and Skilll columns,

the spatial information is in this case much more relevant,

reaching its maximum for a lead time of 30s, when the Skill is

roughly 10 times larger than the Skilll. The benefits from this

information are quickly reduced for lead times above 1min.

This result is in consonance with the dominant northern east

winds that allow a cloud to cross the covered area in about

3 minutes, which was already observed by [15]. Again here it

would be necessary to extend the area covered by the network

to take advantage of the spatial information for larger lead

times. As can be seen, for a lead time of 5 minutes the spatial

information only provides for around a 5% of improvement.

On the other hand, the trend of the Skill is very different

from the trend observed in the case of the InfoRiego dataset.

As the lead time increases both the persistent and the sta-

tistical models reduce their accuracy, i.e. the corresponding

nRMSE increases, although the deterioration is worse for the

persistent model, which translates to an increase of Skilll. The

Skill, that includes the information from the neighbouring

sensors, starts to decrease strongly for lead times above 2min,

which suggests that when the area covered becomes too

small (a cloud can cross the area in 3 min), the information

provided by the sensors becomes less relevant and the ratio

nRMSE/nRMSEl approaches 1.

Finally, we can compare the performance of all the meth-

ods considered in this study. The RT model consistently

provides the worst Skill, being even negative for some lead

times, which is probably the consequence of its tendency to

over fit. The rest of the methods obtain similar Skills although

NN tend to be better for the short lead times used for the
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NREL dataset, whereas ARX tend to have a better behaviour

with the data from InfoRiego, except for the highest lead

times considered, where the RRF provides a slightly better

accuracy.

VI. INFLUENCE OF THE FEATURES

In this section we delve into the study of the influence of

each feature, to get a better understanding of the problem.

We use the ARX and the RRF methods, which make this

analysis easier to interpret. The importance of each feature

in the ARX model is determined by the absolute value of

its coefficient in the linear regression model described by

equation (5), provided that the features are normalized (recall

that all the features considered by our models, are normalized

as explained in Section III-A). Notice that if some features

are inter-correlated they will all appear equally important,

which will not help to reduce the dimensionality. On the other

hand, boosting ensemble trees, like RRF, calculate the space

splits iteratively, trying to find the best splits for the data.

This process gives us a ranking of the features in importance,

much more selective than the one obtained from the linear

coefficients, that could be used for dimensionality reduction.

We believe that using both methods will give us more insights

on the problem we try to solve.

We start by analyzing the results on the NREL dataset, for

which the models are performing better. Figure 3a represents

the weight of each feature on the position of the sensor that

provides the corresponding value, for the ARXmodel trained

for the DHHL_6 station and different lead times. As can be

seen, for the shortest lead time (10s) themost relevant features

are the first radiation sample from the local station and the

stations immediately to the north east, the direction of the

dominant winds in the area. The importance of the samples

on the DHHL_6 station itself indicates that the irradiance will

not change significantly, and the recent past in the sensor is

enough to get a good estimate for the future.

However as we increase the lead time to 30s, the local data

from the DHHL_6 station looses importance and the features

provided by the sensors in the north east direction become the

most important ones.

Slightly worse results were obtained for lead times

of 1 min. This can be explained by the presence of a building

with no irradiance sensors in the north east direction.

Finally, for the largest lead time considered, we see that

the sensor providing the most relevant data is located at the

north west border of the sensor network. It clearly shows

that we would need data from a larger area to the north

east to maintain the prediction accuracy. These results are

in harmony with the results obtained by [15], which showed

that the stations aligned with the dominant wind directions in

the target area where the most relevant for the ARX model

they were using, and that larger prediction intervals would

require the use of stations located further away, outside the

area covered by the NREL network.

Figure 3b gives us the same representation for the the

feature importance of the RRF model as obtained from

scikit-learn for the same data as before and the same lead

times. As can be seen the trend is very similar although the

importance is heavily concentrated in fewer sensors.

A similar analysis can be conducted with the data provided

by the InfoRiego network, although in this case the spatial

data has shown to be less relevant than for the models trained

with the NREL dataset. Figure 4a represents the weight of

each feature on the position of the sensor that provides the

corresponding value, for the ARX model trained for the

VA01 station and different lead times, where T1, T2 and

T3 represent the samples x[i], x[i − 1] and x[i − 2] from

Figure 2.

Again the most important feature for the shortest lead

time is the most recent irradiance measurement at the target

station. This might be the consequence of the relatively slow

winds in that area and the amount of clear sky days avail-

able during the year. This could also explain why the local

methods are close in accuracy to the methods that include the

information from other stations. Just after the local irradiance,

the stations providing the most important data are the closest

ones to the west, more precisely, the most recent measure-

ments of irradiance at those points. Older irradiance mea-

surements are relevant from further away locations (clouds

need more time to travel to the target location), as are some

derivative terms. As we increment the lead time the samples

from further away locations gain importance in detriment of

the closer stations, and the main direction is not so clearly

marked (west-east direction seems slightly more important).

Again the statistical methods are able to track the movement

of some clouds that coming from further away locations have

now time to travel to the target station.

For short lead times, the direction of the relevant stations

correlates well with the direction of the local dominant winds,

as can be seen from the wind rose shown in Figure 5. As we

increase the lead time, more distant stations become also

important and the wind pattern in all the covered area affects

the clouds movement, not only the local wind, making the

cloud tracking problem even more complex. Having wind

measurements on all stations, or incorporating expected wind

fields from numerical meteorological models, might simplify

the tracking process and help to improve the accuracy of the

prediction.

Moreover, the azimuth feature is important for the linear

model, and gains in importance as we increase the lead time.

Notice that the azimuth is just a way to encode the solar time

(day moment). It is very similar for all stations and the fact

that it appears relevant on more than one point is the result of

not removing correlated variables. This is an indication that

some local seasonal effects are being captured by the model

by including the azimuth as feature. These might be related to

wind, in which case including wind data might turn azimuth

useless, but might also be related to other meteorological

phenomena, like mist or dust, that are not captured by the

clear sky model.

Regarding the RRF model, Figure 4b represents the fea-

ture importance as obtained from scikit-learn, when trained

VOLUME 8, 2020 51525



A. Eschenbach et al.: Spatio-Temporal Resolution of Irradiance Samples in Machine Learning Approaches

FIGURE 3. Linear and RRF feature importance on the NREL database for different lead times.
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FIGURE 4. Linear and RRF feature importance on the InfoRiego database for different lead times.
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TABLE 3. Dimensionality reduction when using only a small percentage of the most important features, as ranked by RRF, on the data from InfoRiego.
nRMSEx% stays for the nRMSE obtained when using only the x% of the most important features.

TABLE 4. Dimensionality reduction when using only a small percentage of the most important features, as ranked by RRF, on the data from NREL.
nRMSEx% stays for the nRMSE obtained when using only the x% of the most important features.

with the same data as before and the same lead times.

Again, the distance from the target sensor to the sensors

providing the most important features increases with the

lead time. As before, the larger it is the further away we

have to sense for clouds that can move to the target area,

and the statistical models seem to capture these correlations.
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FIGURE 5. Wind Rose from measurements between 2008 and 2011 from
the station of Medina de Rioseco, a few km to the south east from the
VA01 station. The 10.25% of the days were calm. Figure from the Instituto
Tecnológico Agrario de Castilla y León.

Moreover, the azimuth plays a similar role as for the ARX

model, gaining relevance as the lead time increases.

A final interesting experiment is to use the dominant fea-

tures provided by the RRFmodel to reduce the dimensionality

of our problem (a similar approach as using PCA), which

has interesting advantages from the computational point of

view. Tables 3 and 4 show the nRMSE obtained for different

lead times, training our models using only a small percentage

of the most significant features as ranked by RRF. For the

InfoRiego dataset the nRMSE is significantly reduced when

we add features up to the 5% most significant ones, when

the nRMSE remains more or less stable. This means that

we could reduce the complexity of the problem by using a

feature vector with only the 5% of the original features and

still obtain very similar results. The data from NREL shows

a similar trend, with the exception of RRF which still have a

significant increment in nRMSE when using 20% of its most

significant features. For NN and ARX, we could reduce the

features to the 10% most important ones and obtain almost

the same results.

VII. CONCLUSION

This works analyzes the accuracy improvements obtained

by using spatially distributed irradiance sensors for some

machine learning algorithms designed for short term GHI

forecasting. We conducted similar experiments on two differ-

ent datasets: NREL, that provides very dense spatio-temporal

data covering a small area at the Oahu island in Hawaii, and

InfoRiego, a less dense network covering a much larger area

in the region of Castilla y León in Spain.

We tested four different machine learning algorithms:

ARX, NN, RRF and RT. All four showed in general

some improvements after using the spatially distributed

data. RT provided always the worst accuracy whereas ARX

showed the best results on the InfoRiego dataset, which indi-

cates that the problem for larger lead times and less dense

spatio-temporal input data is better modeled with a linear

method. On the other hand, NN provided the best results for

the shorter lead times and dense spatio-temporal input data

from NREL, which highlights the non-linearity nature of that

problem.

Moreover, the inclusion of spatially distributed inputs was

more effective for the NREL dataset and lead times in which

a cloud can be moved by the local wind from the neighboring

sensors to the target sensor and all the area traversed by the

clouds contains sensors. The spatially distributed information

was less effectively exploited when sensors where missing on

the NREL dataset or when using the less dense InfoRiego net-

work and larger lead times. The feature importance analysis

conducted showed that in both cases the sensors providing the

most relevant data are located in the direction of the dominant

winds in the area. This relation was stronger for the dense

NREL network, for which we could predict with shorter lead

times.

All this together suggests that including the estimated wind

fields from numerical weather forecasting models could help

to improve the forecasting accuracy. The inclusion of the

estimated cloudmaps might also help in the case of less dense

networks that cover larger areas.

Finally, our analysis shows that the notion of feature impor-

tance from RRF can be used to effectively reduce the dimen-

sionality of the problem even for the other methods, which

show similar accuracywith only 5%-20%of the features. This

can be very important for short lead times and dense sensor

networks.
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