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Spatiotemporal Segmentation
Based on Region Merging

Fabrice Moscheni, Member, IEEE, Sushil Bhattacharjee, and Murat Kunt, Fellow, IEEE

Abstract—This paper proposes a technique for spatiotemporal segmentation to identify the objects present in the scene
represented in a video sequence. This technique processes two consecutive frames at a time. A region-merging approach is used to
identify the objects in the scene. Starting from an oversegmentation of the current frame, the objects are formed by iteratively
merging regions together. Regions are merged based on their mutual spatiotemporal similarity. The spatiotemporal similarity
measure takes both temporal and spatial information into account, the emphasis being on the former. We propose a Modified
Kolmogorov-Smirnov test for estimating the temporal similarity. This test efficiently uses temporal information in both the residual
distribution and the motion parametric representation. The region-merging process is based on a weighted, directed graph. Two
complementary graph-based clustering rules are proposed, namely, the strong rule and the weak rule. These rules take advantage
of the natural structures present in the graph. Also, the rules take into account the possible errors and uncertainties reported in the
graph. The weak rule is applied after the strong rule. Each rule is applied iteratively, and the graph is updated after each iteration.
Experimental results on different types of scenes demonstrate the ability of the proposed technique to automatically partition the
scene into its constituent objects.

Index Terms—Automatic spatiotemporal segmentation, object segmentation, region merging, modified Kolmogorov-Smirnov test,
weighted directed graph.
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1 INTRODUCTION

PATIOTEMPORAL segmentation techniques attempt to
identify the objects present in a scene based on spatial

and temporal (motion) information [1], [2]. We define spatial
information as being the brightness information and temporal
information as being the motion information. The scene is
partitioned into regions such that each region (except the
background) represents a moving object. According to the
Gestalt “law of common fate,” meaningful regions are ob-
tained if the regions are defined on the basis of temporal
coherence. Consequently, the resulting regions can be iden-
tified as moving objects composing the scene [3]. Such a
segmentation provides an alternative to the waveform rep-
resentation of the visual information. In contrast to the lat-
ter representation which directly derives from the image
capture process, the segmentation in terms of objects de-
scribes the content of the scene. Not only is it independent
of the image capture process, but it is also semantically
meaningful.

Spatiotemporal segmentation plays a fundamental role
in computer-assisted scene analysis. Spatiotemporal seg-
mentation forms the backbone of schemes for recognizing
and classifying objects or tracking them. Thus, spatiotem-
poral segmentation has important applications in fields
such as robot vision (for identifying and tracking objects)
and video coding (for realizing so-called second-generation

video-coding approaches [4]). Spatiotemporal segmentation
also finds application in creating mosaics, where the goal is
to generate time-integrated views of a scene [5]. This is use-
ful in browsing libraries of digital video sequences.

By its very nature, the problem of defining the objects
forming a scene is a paradox. There is indeed a strong in-
terdependence between the estimation of the spatial sup-
port of an object and of its motion characteristics. On one
hand, estimation of the motion characteristics of the object
depends on the region of support of the object. Therefore,
an accurate segmentation of the object is needed in order to
estimate the motion accurately. On the other hand, a mov-
ing object is characterized by coherent motion characteris-
tics over its entire region of support (assuming that only
rigid motion is permitted). Therefore, an accurate estimate
of the motion is required in order to obtain an accurate
segmentation of the object. Furthermore, accurate object
definition involves not only motion information, but also
spatial characteristics. In particular, the spatial information
provides important hints about object boundaries. How-
ever, the best strategy for combining the two types of in-
formation remains an open issue.

Faced with the challenges of spatiotemporal segmenta-
tion, some techniques rely not just on the information
available in two consecutive frames. One way of increas-
ing the amount of available information is to extend the
temporal support used for analysis [6], [7], [8]. The seg-
mentation procedure can thus utilize the information pre-
sent in more than two frames. Segmentation may be fur-
ther facilitated by requiring the scene to satisfy a given set
of constraints. These constraints may be interpreted as a
priori knowledge which is incorporated in the segmenta-
tion procedure. For instance, the number of objects present

0162-8828/98/$10.00 © 1998 IEEE

²²²²²²²²²²²²²²²²

• � The authors are with the Signal Processing Laboratory, Swiss Federal Insti-
tute of Technology, 1015 Lausanne, Switzerland.
E-mail: fabrice.moscheni@ epfl.ch, sushil.bhattacharjee@epfl.ch,
murat.kunt@epfl.ch.

Manuscript received 6 May 1997; revised 8 July 1998. Recommended for accep-
tance by D.J. Kriegman.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 107136.

S



898 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,  VOL.  20,  NO.  9,  SEPTEMBER  1998

in the scene may be predefined [9], [10]. However, such
approaches are not general. Either the segmentation process
can no longer be performed automatically or it addresses
only certain types of scenes. This loss of generality may be
unacceptable in applications such as video coding.

In this paper, we present a region-merging technique for
spatiotemporal segmentation that relies only on the infor-
mation existing in two consecutive frames of a video se-
quence. No a priori knowledge is assumed about the num-
ber or characteristics of objects in the scene. Starting from
an oversegmentation of the current frame, the proposed
technique determines the objects constituting the scene at
hand. To that end, the regions in the oversegmentation are
merged according to their mutual spatiotemporal similarity.
We propose a novel measure to assess the spatiotemporal
similarity between regions. This measure combines tempo-
ral and spatial information. The information about spatio-
temporal similarity between regions is represented in the
form of a graph. A graph-based hierarchical clustering al-
gorithm is used to detect clusters of similar regions, based
on two clustering rules proposed here.

The paper is laid out as follows. In Section 2, we present
a discussion of the techniques for spatiotemporal segmen-
tation that have been proposed in the recent past. Their
relative merits and shortcomings are discussed. Section 3
gives an overview of the proposed technique. The impor-
tant components of the proposed algorithm are discussed in
detail in the following sections. The proposed region-
merging technique takes as input an oversegmentation of
the current frame. One method for generating such sets of
initial regions is described in Section 4. The spatiotemporal
similarity measure used for merging regions is described in
Section 5. The similarity information among the regions is
represented in a graph. The graph-based clustering strategy
used to detect clusters of similar regions is presented in
Section 6. Section 7 presents experimental results produced
by the proposed method. Concluding remarks are pre-
sented in Section 8.

2 PREVIOUS WORK

Techniques for spatiotemporal segmentation can generally
be grouped into two categories. Some techniques take a
top-down approach as they sequentially extract the differ-
ent objects forming the scene. Other techniques have a
bottom-up approach. These typically start with an over-
segmentation of the image and iteratively merge regions in
order to arrive at a coherent and stable description of the
scene.

The top-down methods rely on the outlier detec-
tion/rejection paradigm. The objects are sequentially ex-
tracted by iteratively determining the successive dominant
motion characteristics [11], [12], [13], [14]. Pixels complying
with the current dominant motion are assumed to comprise
one object. The other pixels are seen as outliers. Only these
outlier pixels are considered in the next iteration for esti-
mating the subsequent dominant motion and the corre-
sponding objects. The top-down approach is faced with two
major problems. The first problem is the estimation of the
dominant motion characteristics in the presence of multiple

local motion characteristics. This dilemma is known as the
generalized aperture problem [10]. The second problem
arises from the fact that outliers influence the estimation of
the motion characteristics.

Techniques based on pyramidal decomposition of the
image have been proposed to overcome the first problem
[15]. Such a decomposition separates the different motions
existing in the scene. In the presence of a dominant motion,
the estimation procedure locks on to this motion and ig-
nores the others. The pyramidal approach has been used by
the top-down techniques proposed in [9], [11], [16], [17].
The results can be further improved by the use of robust
estimators that can identify the dominant motion without
being influenced by the other local motions existing in the
scene [18], [19], [20].

Most techniques [17], [19] rely on temporal information
to detect outliers. The segmentation of the previous frame is
warped onto the current frame, using the estimated pa-
rameters of the dominant motion. The outliers are defined
as regions corresponding to large prediction errors. How-
ever, this information may be unreliable, especially in low-
activity regions. The outlier detection procedure can be
made more robust by integrating information from the re-
siduals of large regions [21] and spatial information [20],
[22], [23].

Top-down approaches are characterized by simplicity
and low computational complexity. However, the process of
successively determining the characteristics of the remain-
ing dominant motion imposes an artificial hierarchy among
the objects in the scene. Furthermore, a complete partition-
ing of the frame is not guaranteed by top-down methods.
The successive extraction of the dominant motions may
lead to a situation where the remaining outlier pixels do not
belong to any object.

Bottom-up approaches rely on a region-merging proce-
dure to identify meaningful objects. First, a set of initial
regions is derived. Usually these regions do not represent
meaningful objects. Bottom-up approaches merge these
regions, based on some measure of spatiotemporal similar-
ity, so as to obtain meaningful moving objects. Such ap-
proaches may be decomposed into three steps: the creation
of the set of initial regions, the definition of the region
similarity measure, and how this measure is used to merge
the regions into objects.

Different approaches proposed in the past have used dif-
ferent techniques for generating the set of initial regions.
Some authors simply assume each pixel represents a region
[1], [2], [24]. Although such regions are guaranteed to be
spatiotemporally coherent, they have no inherent meaning
and do not contribute to any new information to the region-
merging process. Estimates of motion for individual pixels
are very unreliable. Also, this approach is computationally
very expensive. A simple quadtree-based segmentation
approach has also been used to generate the initial regions
[25]. Szeliski and Shum [26] use quadtree splines for motion
estimation. The spatial delimitation of such regions often
does not reflect the true spatial structures present in the
scene. This disadvantage is overcome by using arbitrary-
shaped initial regions which are spatiotemporally homoge-
neous [3], [27].
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The region-merging process is based on some spatio-
temporal similarity measure. Typically, the similarity meas-
ure relies mainly on temporal information [3], [28], [29],
[30], [31], [32]. The temporal information is represented in a
fully parametric form [28]. The number and characteristics
of the parameters depend on the model chosen. Examples
of motion models are the translational model (two pa-
rameters), the affine model (six parameters), and the per-
spective model (nine parameters) [33].

When assessing the temporal similarity between regions,
the parametric motion representation may be used in sev-
eral ways. The methods of Dufaux et al. [3] and Wang and
Adelson [29] define the region similarity measure to be the
distance between the corresponding sets of motion pa-
rameters in the motion parameter space. This clustering
approach is sensitive to errors in the parametric represen-
tation and to the distance measure used in the clustering
process. Also, a given optical flow may be described by
several different parametric representations [30]. This im-
plies that two regions with similar motion may turn out to
have very different motion parameters and, thus, may end
up in different clusters. The other way of using the motion
information is based on the statistics of the residual distri-
butions obtained after motion compensation of the regions
in question. For instance, the similarity measure proposed
by Adiv [2] is the variance of the residual distribution.
However, the use of a single statistic is too drastic a re-
duction of information and may lead to wrong merging
decisions.

The definition of the region similarity is a challenging is-
sue. All the available information should be put to work in
order to robustly define the objects present in the scene. The
similarity measure should exploit both spatial and temporal
information. However, the best strategy to combine both
sources of information remains an open issue. Several ap-
proaches have been proposed [2], [34], [35], [36]. Thompson
merges regions on the basis of a contrast criterion modified
through temporal information [37]. However, the two types
of information are not combined into a single similarity
measure. Wandell [38] states that visual sensitivity depends
jointly on space and time. This nonseparability may be a
helpful guideline for defining an efficient measure of region
similarity. Nevertheless, as the primary characteristic of an
object is its coherent motion, the emphasis should remain
on the temporal information.

The region-merging strategy should make the best use of
the information provided by the similarity measure. The
strategy should be robust against errors or ambiguities and
should also be computationally viable. Some region-
merging approaches incorporate a two-step strategy. First,
the ensemble of motions present in the scene are deter-
mined, and then the corresponding objects are identified
based on the motion information [24], [39]. Another merg-
ing strategy is to determine the ensemble of motions and
the objects in the scene simultaneously [1].

Bottom-up approaches have several advantages over
top-down approaches. First, the extraction of a given ob-
ject is not influenced by previously extracted objects. Sec-
ond, the bottom-up approach ensures a complete decom-
position of the scene. This is essential in applications such

as video coding, where the segmentation is used as an
alternative to the pixel-based image representation. How-
ever, bottom-up approaches are computationally expen-
sive. Also, the resulting segmentation depends critically
on the region similarity measure and the region-merging
strategy.

3 OVERVIEW OF THE PROPOSED TECHNIQUE FOR
SPATIOTEMPORAL SEGMENTATION

The spatiotemporal segmentation technique proposed here
adopts a region-merging approach. We justify this approach
by observing that most simple segmentation techniques
provide an oversegmentation of the scene. Therefore, a
higher-level region-merging procedure is required to iden-
tify the spatiotemporally coherent objects. Fig. 1 shows the
flowchart of the proposed method. This method takes as
input the set 5 of Nr initial regions that correspond, in
general, to an oversegmentation of the current frame.
Starting from 5, the objects constituting the scene are de-
tected automatically. The proposed spatiotemporal seg-
mentation is carried out in three steps. First, the spatio-
temporal similarities existing between pairs of regions are
computed. These spatiotemporal similarities are then used
to build a graph which assimilates all the information

Fig. 1. Overview of the proposed algorithm for spatiotemporal seg-
mentation. The set of initial regions is assumed to be known. These
regions are iteratively merged together, to identify the objects present
in the scene. This procedure has two phases: the computation of spa-
tiotemporal similarities and the graph-based decision of which regions
to merge. After the merging procedure terminates, a postprocessing
step processes regions that are too small to represent valid objects.
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available about the regions and their relationships. The
graph is used to merge regions iteratively. At every itera-
tion, the graph is updated to reflect the spatiotemporal
characteristics of the newly formed regions. The process
is iterated until no further merging occurs. In the final
step, regions that are too small to represent valid ob-
jects are merged with larger objects on the basis of tem-
poral similarity.

The proposed spatiotemporal similarity uses both spa-
tial and temporal information efficiently. When assessing
the possibility of merging two regions, the resemblances
between their motion characteristics and their spatial
characteristics are analyzed. The spatiotemporal similarity
between the regions is expressed as a hypothesis test, the
assumption to be tested being that two regions are spa-
tiotemporally similar. The proposed measure of spatio-
temporal similarity is defined as the significance level of
this test. It is obtained by examining two hypotheses, one
relying on spatial information and the other relying on
temporal information. The former hypothesis states that
two regions are spatially coherent. The significance level
of this hypothesis gives their spatial similarity. The likeli-
hood ratio test is used as the test statistic. The hypothesis
test is rendered less sensitive to noise and false alarms
through the use of robust data. The hypothesis based on
temporal information says that the two regions have
similar motion. The significance level of this hypothesis
defines their temporal similarity. The hypothesis is tested
through a nonparametric test statistic referred to as the
Modified Kolmogorov-Smirnov (MKS) test. It combines the
motion information present in the motion parameters as
well as in the residual distributions. The test also takes
into account the presence of outliers. The spatiotemporal
similarity is defined as a combination of both the temporal
and spatial similarities. However, more emphasis is put on
the temporal similarity so as to comply with the underly-
ing definition of an object.

The proposed region-merging strategy aims to exploit
fully the information provided by the spatiotemporal simi-
larity. The region-merging procedure is formulated as a
graph-based clustering problem. The proposed strategy
relies on two clustering rules, referred to as the strong rule
and the weak rule. These complementary rules are designed
to exploit the natural structures present in the graph, while
avoiding the shortcomings and likely errors such as errone-
ous motion information or badly defined regions.

4 GENERATION OF THE SET OF INITIAL REGIONS

We emphasize that the technique for spatiotemporal seg-
mentation proposed here does not depend on the way in
which the set of initial regions, 5, is generated. In this
work, the set of initial regions is generated based on spatial,
temporal, and change information. This results in spatio-
temporally homogeneous regions [40].

The algorithm consists of several steps. The first step is
to generate a static segmentation of the current frame which
is based on the color information. Next, these regions are
refined using temporal information. More precisely, their
temporal homogeneity is verified. To that end, motion pa-

rameters are estimated for each region. In order to estimate
the motion of the regions accurately, the effects of camera
motion are first removed. Local motion estimation then
takes place between the current frame and the globally mo-
tion-compensated previous frame. (The technique for mo-
tion estimation is discussed later.) The regions that have
high Displaced Frame Difference (DFD) energy after com-
pensation are further split based on color information. Note
that the temporal refinement of the regions takes into ac-
count the phenomenon of disocclusion. This permits a ro-
bust evaluation of the temporal homogeneity of a given
region. Finally, a change detection procedure is carried out
in order to detect regions that have low contrast. The
change information results from the comparison of the cur-
rent frame with its prediction, which is the motion-
compensated version of the previous frame.

The result of the method is the set 5 of initial regions.
The regions are characterized by their spatiotemporal ho-
mogeneity. They represent all the visually important details
of the image.

5 DEFINITION OF THE SPATIOTEMPORAL SIMILARITY
MEASURE

The decision to merge two or more regions is based on an
estimate of their mutual similarity. We propose a region
similarity measure that exploits both spatial and temporal
information. However, the measure relies more on temporal
information, since we define objects primarily as coherently
moving entities. For two regions, A and B, the measure of
spatiotemporal similarity, Sim(A, B), integrates both types
of information into a single value.

5.1 The Spatial Similarity
When defining the objects forming the scene, we rely on the
Gestalt “law of common fate.” Therefore, the definition of
the spatiotemporal similarity should rely mostly on the
temporal information. However, one typically expects the
regions forming an object to share some common spatial
characteristics as well. When deciding whether two regions
belong to the same object, the spatial information can form
an important complement to the temporal information.

Spatial information has commonly been used through
the property of adjacency [2], [25], [41], [42]. It states that
two regions may be merged only if they are neighbors. This
constraint intuitively makes sense, as most objects are spa-
tially connected. Also, the adjacency requirement reduces
the number of combinations of regions to be considered.
However, the available spatial information is only poorly
exploited by the adjacency constraint. In addition to the
adjacency constraint, Thompson [37] also makes use of lu-
minance information. The merger of two regions depends
on the luminance contrast along their common border.

In this section, a measure of the spatial similarity between
two regions is proposed. Let SAB denote the spatial similar-
ity between two regions, A and B. We consider SAB to be the
likelihood that the regions A and B belong to the same ob-
ject as far as the spatial information is concerned. The spa-
tial similarity ranges from 100 percent (absolute spatial
similarity) to 0 percent (absolute spatial dissimilarity). SAB
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imposes the adjacency constraint and is set to 0 percent for
regions that are not adjacent.

Consider two adjacent regions A and B. Assume the
null hypothesis, H0, that, according to the spatial informa-
tion, regions A and B belong to the same object. The alter-
native hypothesis, H1, states that regions A and B do not
belong to the same object. As the validity of H0 is directly
proportional to its significance level, the latter is taken to
be the spatial similarity SAB. Formally, the hypothesis test
is written as

H
H

0

1

:
:

regions A and B are spatially similar
regions A and B are spatially not similar

%&'
      (1)

Many types of spatial data, such as shape information,
color, and texture information, can be used to test the hy-
pothesis described by (1). In our case, we base the test on
spatial data that are representative of the luminance con-
trast. The premise is that if a strong contrast exists between
A and B, the regions are less likely to belong to the same
object. Moreover, the information should be robust in the
presence of noise. In order to fulfill these requirements, the
spatial information present on the common border between
regions A and B is used to verify the above-mentioned hy-
pothesis.

We consider the medians, lAB and lBA, of the luminance
values of the two regions along their common border. The
measurements lAB and lBA are seen as trials of two random
variables, LAB and LBA, respectively. Both random variables
are assumed to be modeled by the same Gaussian distribu-
tion, with mean, µ, and standard deviation, σ. Formally,
LAB , N(µ, σ) and LBA , N(µ, σ). The measure of spatial
similarity turns out to be the difference between the two
medians, normalized by σ. In practice, the values of µ and σ
are estimated over the ensemble of luminance medians for
all the combinations of adjacent regions in the scene. This
allows us to introduce the spatial activity existing in the
entire image into the evaluation of SAB.

For this hypothesis test, we choose the likelihood ratio test

as the test statistic, Qs. This test is simple and robust. It is de-

fined as the difference between LAB and LBA, Qs = LAB − LBA.

This implies that Qs is a Gaussian random variable with

zero mean and a standard deviation equal to 2s  (i.e.,

Q Ns ~ ,0 2s3 8 ). The hypothesis test defined by (1) is re-

written as

H Q
H Q

s

s

0

1

0
0

:
:

=
π

%&'
                                    (2)

The hypothesis testing thus reduces to checking whether
the mean of Qs is zero. The realization, qs, of the test statis-
tic, Qs, is given by qs = lAB − lBA. Defined as the significance
level of the hypothesis test, the spatial similarity SAB may
now be written as

S e dx e dtAB
q

q x t

q

q

s

s

s

s

= - = -
-

- -

-
1 0

1

2
1 0

1

2

1

2 22

2 2

. .
ps p

s

s

s ,  (3)

Fig. 2 shows SAB as a function of the normalized value of

the test statistic, 
qs
s . The spatial similarity decreases sharply

as the value of the test statistic increases in magnitude and
becomes negligible when the test statistic has values larger
than three times the standard deviation, σ. This behavior is
characteristic of a Gaussian distribution which is taken as
the underlying statistical model of the medians of the lumi-
nance values.

The spatial similarity SAB is very robust, primarily due to
the use of the median estimator. The value of SAB takes into
account the spatial activity existing in the entire scene. This
is due to the fact that the standard deviation of Qs incorpo-
rates information from the whole image. Moreover, the
spatial similarity is symmetric (SAB = SBA) and reflexive (SAA

= 100 percent).

5.2 The Temporal Similarity
Temporal information plays a fundamental role in the de-
composition of dynamic scenes. Indeed, under the assump-
tion of rigid motion, a moving object is defined primarily
by its temporal coherence. Thus, temporal information
forms a reliable basis for deciding whether two regions be-
long to the same object. The similarity between the motion
characteristics of two regions is referred to as the temporal
similarity between them.

In this section, a measure of the temporal similarity, TAB,
between two regions, A and B, is proposed. TAB ranges from
100 percent (perfect temporal similarity) to 0 percent (ab-
solute temporal dissimilarity). To keep the problem com-
putationally tractable, the temporal similarity is estimated
only for adjacent regions. It is set to 0 percent for pairs of
regions that are not adjacent.

Again, hypothesis testing is used to determine the tem-
poral similarity between two regions. Assume that regions
A and B are adjacent. The null hypothesis, H0, is that region
A moves in the same way as region B. The alternative hy-
pothesis, H1, states that region A does not undergo the same
motion as region B. TAB is defined as the significance level
of H0. Formally, the hypothesis test is written as

Fig. 2. The spatial similarity as a function of 
qs
s .



902 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,  VOL.  20,  NO.  9,  SEPTEMBER  1998

H
H

0

1

:
:

the region A is temporally similar to region B
the region A is temporally not similar to region B

%
&
'

To test the hypothesis described in (4), we propose a
modification of the well known Kolmogorov-Smirnov (K-
S) test [43], called the MKS test [40]. The associated test
statistic, QMKS, combines the motion information con-
tained in the parametric representation with the motion
information present in the residual distribution. The re-
sidual distribution represents the discrepancy between the
motion information characterized by the motion parame-
ters and the true optical flow of the region. Consequently,
the information represented by the residual distribution is
complementary to the information present in the motion
parameters. QMKS takes into account the likely presence of
outliers. It has been developed specifically for estimating
the temporal similarity between regions.

The test statistic QMKS relies more on the residual dis-
tributions than on the parametric characterization of the
motion information. A given optical flow may be charac-
terized by a set of motion parameters that does not repre-
sent the motion accurately. This is especially true for re-
gions where the motion is not very well-defined. Thus, the
motion parameters alone cannot be considered very reli-
able. On the other hand, two residual distributions, gener-
ated using different sets of motion parameters for the
same region, will both reflect almost the same motion
characteristics. Therefore, the residual distributions are
assumed to provide very reliable information.

Consider two regions, A and B, with motion parame-

ters 
r

MA  and 
r

MB , respectively. For region A, we compute

two residual distributions, h1 and h2. The distribution h1 is

obtained by compensating A for motion using the pa-

rameters 
r

MA , while h2 is obtained when A is motion com-

pensated with the motion parameters 
r

MB . Based on these

definitions, the realization, qMKS, of the test statistic QMKS

is expressed as

q F x F xMKS
x

= - £ £l lmax ,1 2 0 10 5 0 5 ,          (5)

where

F x w x h x dx

F x w x h x dx

x

x

1 1

2 2

0 5 0 5 0 5

0 5 0 5 0 5

=

=

%

&
K

'
K

-•

-•

                          (6)

are the weighted cumulative residual distributions corre-
sponding to the residual distributions h1 and h2, respec-
tively. The function w(x) is called the weighting function and
is a positive /2 function such that w(x) ∈  [0, 1], ∀ x. λ is
called the pondering factor.

The test statistic QMKS is nonparametric and uses the re-
sidual distribution as a whole to perform the hypothesis
testing. The underlying idea is to measure the maximum
discrepancy existing between the two cumulative distri-
butions F1(x) and F2(x). The test simply tries to decide
whether F1(x) and F2(x) correspond to the same (un-
known) random process. This is in sharp contrast to tech-
niques which reduce the distribution information to a sin-
gle parameter. Not only does the use of a single parameter

limit the amount of information being exploited in the
test, but it also runs the risk of poor results due to incor-
rect estimation of parameters. The nonparametric nature
of QMKS renders the test very robust and flexible, since no
predefined model need be assumed for the distributions.

Compared to the K-S test, the proposed test statistic,
QMKS, differs in two ways. The first modification is the
introduction of the weighting function, w(x). This function
is used to reduce the influence of outliers on the test. We
will discuss it in detail in Section 5.2.1. The second modi-
fication is the pondering factor λ, which supplies to the test
the motion information embodied in the motion parame-
ters. This factor directly affects the discrepancy found
between the cumulative distributions F1(x) and F2(x). It is
discussed in more detail in Section 5.2.2.

Using the test statistic, QMKS, we can formalize the hy-
pothesis test for the temporal similarity (4) as

H Q
H Q

MKS

MKS

0

1

0
0

:
:

=
>

%
&
'

                                   (7)

The temporal similarity TAB is a function of both the test
statistic value, qMKS, and the area of region A, Area(A), and
is given by [44]:

T eAB
j j

j

= -��
�
�

- -

=

•

Â2 1
1 2

1

2 2

0 5 d ,                         (8)

where

d = + +�
�

�
�Area A q

Area A MKS0 5
0 5

0 12 0 11. . .

Fig. 3 shows examples of TAB as a function of qMKS for
different values of Area(A). The typical curve features a
sharp transition which approaches the origin as the value of
Area(A) increases. For a given value of qMKS, the larger the
value of Area(A), the lower the temporal similarity. This
behavior makes intuitive sense, since if two distributions
are the same, the discrepancy between them should dimin-
ish as the number of trials (i.e., Area(A) in this case) in-
creases. Note that the temporal similarity as defined by (8)
is not symmetric, that is, TAB ≠ TBA. This property of direc-
tionality proves fundamental in the region-merging proc-
ess. The similarity is reflexive, that is, TAA = 100 percent.

5.2.1 The Weighting Function w(x)
The weighting function, w(x) (in (6)), has been introduced

to make the test statistic QMKS robust in the presence of out-
liers. Its purpose is to modulate the importance of discrep-
ancies between the distributions depending on the value, x,
of the residue. In particular, the weighting function w(x)
renders the hypothesis-testing procedure coherent with a
robust motion estimation procedure. By definition, robust
motion estimators are less sensitive to data outliers. They
do not attribute the same importance to the different resi-
dues [18]. The residues close to zero are typically consid-
ered more significant than larger residues in order to de-
crease the influence of outliers in the estimation process.
Consider the case where an M-estimator [45] is used. Given
an M-estimator ρ(x), the relative importance of the residue,

x, is determined by the value of the weight function, 
&r x

x

0 5
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[18]. The weighting function, w(x), is the normalized ver-

sion, in the range [0,1], of 
&r x

x

0 5
. For instance, consider the

case when motion estimation is performed with the Ge-

man-McClure estimator [33], ρGM(x), where

r s

s

GM

x

x
x0 5 =

+

2

2

2

21
,                                 (9)

with σ denoting the scale factor. The corresponding
weighting function, w(x), is

w x
x

0 5
4 9

=

+
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1
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2

2

s

.                               (10)

Clearly, the function w(x) favors low residues, reaching the
maximum weight of unity for the null residue (x = 0). As
the residue becomes larger, its influence gradually de-
creases until it becomes insignificant, with a weight close to
zero.

5.2.2 The Pondering Factor λ
The pondering factor λ is used to introduce the motion in-
formation existing in the motion parametric representation,
into the QMKS test statistic. Its role is to ponder the discrep-
ancy found between the two weighted cumulative distri-
butions F1(x) and F2(x).

The definition of λ relies on the distance between the n

motion parameters of the region A, 
r

MA , and those of region

B, 
r

MB . More precisely, λ is derived from the significance

level, αp ∈  [0, 1], of the hypothesis that the parameter vec-

tors 
r

MA  and 
r

MB  are the same. For a given αp,

λ = 1 − αp.                                      (11)

Let us examine the two limiting situations.

• � In case 
r

MA  is similar to 
r

MB , αp < 1, implying that λ < 0.
According to (5), qMKS decreases significantly, irre-
spective of the discrepancies present between the re-
sidual distributions. Thus, the temporal similarity TAB

is high.

• � If 
r

MA  and 
r

MB  are very dissimilar, αp < 0. Since λ < 1,
it has almost no influence on qMKS. In this case, the
determination of temporal similarity TAB relies com-
pletely on the information derived from the residual
distributions.

To derive the value of αp, we again use a hypothesis

test. Each motion parameter, 
r

M i0 5 , i = {1, L, n}, is modeled

as a Gaussian random variable with mean µi and standard

deviation σi. The corresponding test statistic, Qi, is chosen

to be the likelihood ratio test (i.e., Q M i M ii A B= -
r r

0 5 0 5 .
The test statistic Qi is a normal random variable with

Q Ni i~ ,0 2s3 8 . Consequently, the significance level, αi, is

a
ps
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i
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1
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. ,                  (12)

where qi is set to 
r r

M i M iA B0 5 0 5- . In practice, the standard
deviation, σi, is estimated over the population composed of
the parameters, 

r

M i0 5 , of all the regions in the frame.
The significance level, αp, is defined as follows:

a ap
i

i i n= =min , , ,1 L< A .                      (13)

This gives a very conservative estimate of the similarity
between 

r

MA  and 
r

MB .
As mentioned before, the pondering factor, λ, introduces

motion information present in the motion parametric repre-
sentation into the QMKS test statistic. However, the defini-
tion of λ is very conservative. Therefore, the parametric

     

                                                        (a)                                                                                                                   (b)

Fig. 3. The temporal similarity as a function of the qMKS test statistic value with, respectively, (a) Area(A) = 100 and (b) Area(A) = 1,000. The two
plots have the same scale.
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information is only utilized when it is indisputably found
to be reliable.

5.3 The Spatiotemporal Similarity
The moving objects forming the scene are characterized by
their temporal coherence and, to a lesser extent, by their
spatial homogeneity. Therefore, we require a measure of
spatiotemporal similarity between regions.

The best way of combining the two types of information
remains an open question. In this work, the spatiotemporal
similarity, Sim(A, B), of two regions A and B is specified as a
combination of the spatial similarity, SAB (see Section 5.1),
and the temporal similarity, TAB (see Section 5.2). The spa-
tiotemporal similarity Sim(A, B) is understood as the likeli-
hood of region A belonging to the same object as region B.
The likelihood depends on both temporal and spatial in-
formation. Recall, however, that an object is likely to be
composed of regions having different spatial characteristics.
Thus, Sim(A, B) must rely mainly on the temporal informa-
tion (i.e., TAB). For any region X, let YX be the ensemble of
its adjacent regions. The proposed spatiotemporal similar-
ity Sim(A, B) is written as follows:

Sim(A, B) = TAB − fL TAB(Max − SAB),                 (14)

with 0 ≤ fL ≤ 1, and

Max = max(SAE, SEF),

                                   S SAE
I

AI
A

=
Œ

max
Y

2 7 ,

                                   S SEF
I

EI
E

=
Œ

max
Y

2 7 .

Equation (14) reflects the fact that TAB is the most signifi-
cant term in the spatiotemporal similarity Sim(A, B). SAB is
used just as a corrective factor. The influence of the spatial
similarity is regulated by the user-defined factor fL, referred
to as the luminance factor. Consider the limiting cases. If the
luminance factor fL is set to zero, the spatial information SAB

is not used, and the spatiotemporal similarity Sim(A, B) is
equal to the temporal similarity TAB. Conversely, the cor-
rection induced by the spatial information SAB attains its
maximum value when the luminance factor fL is set to
unity. At most, the spatial information may completely
wipe out the temporal information, resulting in Sim(A, B)
being set to zero.

The magnitude of the maximum correction allowed
through the term SAB is a function of the term Max. This
term conveys information about the general spatial coher-
ence of region A with its neighboring regions. It is closely
linked to the spatial activity existing around region A. Fig. 4
illustrates the derivation of Max. First, we determine the
region E adjacent to A, E ∈  YA, which is spatially the most
similar to region A. Next, we determine region F adjacent to
E, F ∈  YE, which is spatially the most similar to region E.
The term Max is defined as the maximum between the spa-
tial similarities SAE and SEF. It represents the maximum cor-
rection the spatial similarity may make to TAB. In case Max
is small (i.e., close to zero), region A is by definition lying in
an area of high contrast. This implies that the spatial infor-
mation is not very useful and it should not be allowed to

influence Sim(A, B) strongly. In the case where Max is large
(i.e., close to unity), the neighborhood of the region A is
spatially quite homogeneous. Consequently, the spatial in-
formation SAB should be allowed to play a stronger role in
the definition of Sim(A, B).

By construction, Sim(A, B) estimates the similarity be-
tween region A and region B robustly. This robustness de-
rives from the definition of both TAB and SAB, as well as the
definition of Sim(A, B) itself. The spatiotemporal similarity
is asymmetric (i.e., Sim(A, B) ≠ Sim(B, A)) and reflexive
(Sim(A, A) = 100 percent).

6 THE REGION-MERGING STRATEGY

Spatiotemporal region merging can be seen as a clustering
problem: Regions that have similar spatiotemporal charac-
teristics are to be clustered together. After defining the spa-
tiotemporal similarity measure, we need a strategy to use
this information in order to form clusters of regions. In the
relevant literature, two types of strategies have been pro-
posed. Approaches of the first type start by identifying the
different motions present in the scene. Then, the regions
that correspond to each motion are merged to form an ob-
ject [3], [24], [39]. Other approaches perform the motion
estimation and region merging simultaneously. Each region
is tentatively merged with each of its neighboring regions,
in turn. A particular merger is accepted in case the region
similarity satisfies a predefined criterion [1], [2], [25]. The
strategy used in this work falls in the second category. The
merging of the regions relies on a graph representation.
Two complementary graph-clustering rules are presented:
the strong rule and the weak rule. These rules are applied
successively and lead to a robust definition of the objects in
the scene.

6.1 Graph-Based Region Clustering
The region-merging process may be concisely formulated as
a graph-based clustering problem. A graph, G, is used to
represent the information upon which the region-merging

Fig. 4. Derivation of Max. The spatial coherence of region A with its
neighborhood is checked. The term Max reflects the importance of the
spatial coherence in the vicinity of region A.
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process is based. Each vertex in G represents one of the Nr

regions in the set 5 = R R RNr1 2, , ,LJ L. Every edge repre-

sents the spatiotemporal similarity between the two regions
corresponding to the two vertices it connects. The set of

edges is denoted $. The merging strategy should exploit
the structures revealed by the graph representation.

Several strategies have been proposed for graph clus-
tering. A good introduction to the topic is given in [46].
Most graph-based clustering algorithms are iterative in
nature. They differ mainly in the way the vertices to be
merged in a given iteration are selected. However, most of
the theory for graph-based clustering has been developed
under the assumption of a symmetrical similarity meas-
ure. That is, the similarity of vertex A to vertex B is as-
sumed to be the same as the similarity of B to A. This im-
plies that the graph has undirected edges, and each pair of
vertices, if connected, are attached by a single edge. Thus,
in the context of spatiotemporal region merging, most
graph-based techniques rely on symmetric similarity
measures [25], [42], [47]. The usual strategy follows the
Greedy Merging Algorithm (GMA). This algorithm itera-
tively merges the two regions showing the strongest
similarity, until a stopping criterion is triggered.

The similarity measure defined in Section 5.3 is not
symmetric: Sim(A, B) ≠ Sim(B, A). Clearly, therefore, the
corresponding graph is weighted as well as directed.
Pairs of vertices in the graph are connected by two di-
rected edges. A hypothetical example of the graph G is
depicted in Fig. 5. The set of regions 5 includes nine re-
gions, {R1, L, R9}. The spatiotemporal similarity of re-
gion A with region B is represented with an arrow going
from the vertex B to vertex A. For instance, the spatio-
temporal similarity of region R2 with region R1 is 81 per-
cent. Recall that the similarity is set to 0 percent for re-
gions that are not adjacent. These null edges as well as

the edges related to the reflexive property are not repre-
sented in the graph.

Graph G contains all the information necessary for the
region-merging process. The merging process corresponds
to the extraction of clusters existing in the graph. In order to
accomplish this, graph-based clustering rules have to be
defined. Their derivation is closely linked to the graph at
hand and to the problems which may have occurred while
constructing it. The directional and weighted edges define
natural structures in G which are directly related to the ob-
jects forming the scene. In the example shown in Fig. 5,
three natural structures may be easily identified. They are,
respectively, {R1, R2, R5}, {R3, R6}, and {R4, R7, R8, R9}. The
graph-clustering rules aim to exploit this structural infor-
mation. The rules also take into account the inaccuracies
and errors reported in the graph. In our case, certain prob-
lems stem from regions in 5 that have badly estimated
motion information. These are typically small regions, cre-
ated due to noise. The incorrect motion information may
jeopardize the clustering process by corrupting the set $ of
edges. Another type of problem arises from erroneous mo-
tion parameters. Spurious edges are produced, which may
also lead to undesirable clustering.

We propose two clustering rules that take the above
considerations into account. They are called the strong rule
and the weak rule, respectively. They are mutually com-
plementary and are designed to address the ensemble of
different situations which may occur during the merging
process. In order to decrease the complexity of the task,
both rules operate on a thresholded graph, which is ob-
tained by deciding whether to accept or reject the hy-
pothesis of spatiotemporal similarity between pairs of
regions. Given a threshold of acceptance, t, the hypothesis
that region A is spatiotemporally similar to region B is
accepted if and only if

Sim(A, B) ≥ t.                                  (15)

In case of acceptance (and using the arrow notation as in
Fig. 5), we write (B → A). The notation (B → A) represents a
binary-valued relationship, implying that the spatiotempo-
ral characteristics of B can also be used to describe A. (The
absence of an arrow represents the opposite case.) Fig. 6
gives an example of a thresholded graph. This has been
generated by setting t = 60 percent on the weighted graph
given in Fig. 5.

Next, the two clustering rules are explained. The strong
rule identifies the natural structures present in the graph. The
weak rule assumes that among the regions of 5, some are
very well-defined, both spatially and temporally. The weak
rule uses them as seeds to determine which regions should
be merged. In the following, Nc denotes the number of clus-
ters and is initially set to Nr. Through clustering, the regions
are distributed into clusters Ci, i ∈  [1, L, Nc], Nc ≤ Nr. The
number of clusters Nc is automatically determined by the
clustering rules. Below, we elaborate on the two rules. The
way these rules are used is discussed later.

6.2 The Strong Rule
Graph G is constructed from sets 5 and $. This implies
that the presence of inaccuracies or errors in these sets may

Fig. 5. Graph representation of the region similarities. The vertices
represent regions, and the edges represent the spatiotemporal
similarities between the regions. The similarities are expressed as
percentages.
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severely influence the graph-based region-merging process.
The graph-based clustering procedure should thus concen-
trate only on the secure pieces of information. Only regions
with well-defined and correctly estimated motion should
be considered. In view of these considerations, the strong
rule is designed to cluster regions which form a cycle in the
graph. More precisely, the strong rule clusters regions be-
longing to the same cycle only.

The strong rule operates on a binary graph. Such a graph
is generated by thresholding a weighted graph using a pre-
defined threshold, tsr. The cycle requirement imposed by the
strong rule defines the clusters Ci, i ∈ [1, L, Nc], as follows:

Ci = {Rj | ∃  (Rk, Rl ∈  Ci, k ≠ j, l ≠ j)

such that

(Rj → Rl and Rk → Rj),                            (16)

with Rj, Rk, Rl ∈  5.
By looking for cycles in the graph, the strong rule fo-

cuses on the secure information, thus avoiding the prob-
lems arising from doubtful regions or erroneous motion
parameters. The cycle implies that each region in the cluster
is spatiotemporally similar to at least one other region of
the cluster. In this way, only regions with strong spatiotem-
porally similarity are clustered together. The cycle require-
ment avoids regions with wrongly estimated motion pa-
rameters. Also, the cycle requirement excludes the doubtful
regions for which the motion characteristics are not well-
estimated. If a region is not assigned to any of the clusters
defined by (16), it is regarded as a separate cluster.

The strong rule imposes severe constraints on the clus-
tering process. Thus, the clusters are only formed of regions
which are very likely to belong to the same object. Two
types of clusters result from the application of the strong
rule. One type consists of clusters which contain several
very well-defined regions. These clusters foreshadow the
objects forming the scene. The remaining clusters typically
contain isolated (initial) regions which are either oddly de-

fined or for which the motion information is spurious.
These regions are processed using the weak rule.

6.3 The Weak Rule
The weak rule is very well-suited to cases where badly de-
fined or small regions coexist with regions having a strong
semantic significance. The weak rule merges the former
regions with the most appropriate of the latter ones. The
weak rule generalizes the GMA [42] to cluster regions hier-
archically. This is achieved by iteratively thresholding the
graph with successively lower thresholds until the lowest
predefined threshold twr is reached. At each iteration, the
current clustering relies on the clusters found in the previ-
ous iteration.

The threshold starts at 100 percent and decreases, by a
fixed step, to its lowest allowed value, twr. In each iteration,
the clusters previously defined serve as the basis for the cur-
rent clustering process. This implies that the number of clus-
ters, Nc, decreases as the hierarchical clustering progresses.
The hierarchical approach allows nondynamic merging of re-
gions. The merging procedure deals with clusters of regions.
This utilizes the structural information in the graph. This is
in contrast with the GMA which deals with only individual
regions. Although clusters of regions are created, there is no
need to merge them and update the graph. This improves the
robustness of the technique and also reduces the computa-
tional complexity.

In each iteration, the weak rule determines which regions
should be merged. This is performed in two steps. For each
cluster, Cm, m ∈ [1, L, Nc], the weak rule first determines the
set Ω of clusters Ci, i ∈ [1, L, Nc] and i ≠ m with which Cm

could be merged. For each cluster, Ci, the number of edges
from Ci to Cm is determined. This number is compared to the
number of regions present in Cm. The set Ω is defined as

W = π Æ ≥
%
&
K

'K

(
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K

*KŒ Œ

Â ÂC i m R R Ci
R C

k l
R C
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k i l m

, 2 7 2 7Card         (17)

where Card(Cm) denotes the cardinality of the cluster Cm,
and Rk, Rl ∈  5. Three cases are possible.

1)�The set Ω may be empty. In this case, the cluster Cm

remains as before.
2)�The set Ω may contain a single element Ci. In this case,

this element is merged with Cm.
3)�In case the set Ω has several elements, further tests are

required in order to select the cluster Cs ∈  Ω with
which the cluster Cm should be merged. This selection
is carried out according to the following rule
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where
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                               p = Area Ci2 7,

                               f = Æ
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Â Â
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k l
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R R2 7,

and Area(Ci) is the area of the cluster Ci.

Fig. 6. Example of a thresholded graph. The relationships between the
vertices are binary valued. Thus, (Ri → Rj) implies that the spatiotem-
poral properties of Ri also suit Rj very well.
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According to (18), the process of selecting cluster Cs in-
volves several stages. First, the number of edges, χ, from
each cluster Ci ∈  Ω to cluster Cm is determined. The cluster,
Cs, with the largest value of χ is merged with Cm. In this
case, cluster Cs is indeed the cluster whose regions are spa-
tiotemporally the most similar to the regions of cluster Cm.
If two or more elements of Ω have the same value of χ, a
further selection is made on the basis of the area, π, of the
cluster. The cluster, Cs, with the largest area is selected. This
selection is based on the observation that the likelihood of
having erroneous motion estimation decreases with the
area. For the same value of χ, the cluster with the largest
area should therefore be chosen as the cluster Cs. Finally,
two or more clusters in Ω may have the same values for χ
and π. In this case, the tie is broken by examining the num-
ber of edges, φ, from each cluster Ci ∈  Ω to all other clusters.
The cluster, Cs, with the largest value of φ is selected. This
choice has a very simple reason. As a cluster gathers new
regions, it tends to isolate itself from the other clusters. In
other words, when the cluster representative of an object
has gathered all the regions forming this object, the cluster
has mostly internal edges, with only a few (probably erro-
neous) external edges remaining. Conversely, a cluster,
which has not yet collected all the regions corresponding to
the object it represents, tends to have many edges pointing
to other clusters. Clusters of the latter type are favored by
the selection based on the value of φ.

6.4 Application of the Region-Merging Rules
Now we present the region-merging strategy used in this
work. An overview of the adopted region-merging strategy
is shown in Fig. 7. The strong rule is applied first. Indeed,
we consider the natural structures existing in the graph as
prime information. Most of the regions resulting from the
strong rule are reasonable first approximations of the ob-
jects present in the scene. There may be a few regions with
erroneously estimated (or otherwise ill-defined) motion
information. These regions are processed by the weak rule
which attempts to merge them with the other well-defined
regions. For the graph shown in Fig. 6, the two clustering
rules act as follows. The strong rule defines the three clus-
ters {R1, R2, R5}, {R3, R6}, and {R4, R7, R8, R9}. After applying
the weak rule, the clustering procedure results in the clus-
ters {R1, R2, R3, R5, R6} and {R4, R7, R8, R9}. For both the
strong and the weak rules, the merging process is carried
out iteratively and involves a dynamic update of the graph.
At each iteration, first the graph is thresholded, then the
regions are merged, and finally the graph is updated. Ini-
tially set to 100 percent, the threshold value for the strong
rule, tsr, is recomputed after each iteration. To that end, the
maximum value Es that would still allow the strong rule to
carry out a merging is determined from the edges in the
graph. The threshold tsr is then defined as

tsr = Int(Es) − Dsr,                               (19)

where Dsr is a predefined step size and the function Int(⋅)
returns the integer part of its argument. At the end of each
iteration, the graph is updated by recomputing the tempo-
ral and spatial characteristics of the newly created regions
and then recomputing the similarities among the current set

of regions. The iterative procedure stops either when tsr is
less than a predefined value tlsr or if no merging occurs in
the current iteration.

A similar strategy is used for the weak rule. In each it-
eration, the graph is first thresholded using a threshold twr

which is computed (for every iteration) as follows:

twr = Int(Ew) − Dwr,                              (20)

where Dwr is a predefined step size for lowering twr, and Ew

is the maximum value among the edges in the graph that
would still allow the weak rule to merge some regions. The
merging process stops when twr is lower than a predefined
value tlwr.

7 EXPERIMENTAL RESULTS

Some results of using the proposed technique for spatio-
temporal segmentation are presented in this section. We
show one set of results for three video sequences that are
well known in the video-coding community, namely,
“Akiyo,” at a frame rate of 10 Hz, “Table Tennis,” at 25 Hz,
and “Foreman,” also at 25 Hz. As mentioned before, the

Fig. 7. The region-merging strategy. The set of initial regions is as-
sumed to be provided. First, the strong rule is applied iteratively, and
the graph is updated to reflect the regions identified in each iteration.
When no further merging occurs, the weak rule is applied iteratively.
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proposed technique takes as input an initial set of regions
which represents an oversegmentation of the scene. Then,
the regions are iteratively merged in a two-stage process in
order to produce the final spatiotemporal segmentation.
The figures in this section show the previous and current
frames and the set of initial regions used to obtain the re-
sults. The intermediate results obtained after the first stage
(the strong rule) and the final spatiotemporal segmentation
(after application of the weak rule) are also presented. Re-
gion boundaries from the final segmentation are also
shown superimposed on the frame under consideration.

The shapes of the initial regions are strongly reflected in
the final outcome. For example, if the initial regions are
rectangular blocks, the final segmentation will consist of
regions with blocky boundaries. Nevertheless, the pro-
posed region-merging technique is applicable to initial re-
gions generated using any method. We present results us-
ing sets of initial regions generated using the method de-
scribed in Section 4. Results using blocky initial regions are
presented in [40].

When estimating the motion of the regions, a two-stage
global/local motion estimation approach is used [48]. Both
global and local motions are modeled as affine motions and
are estimated using the Minimum Absolute Difference
(MAD) estimator. Global motion estimation relies only on
the background information and is performed using a
matching technique. The parameters of global motion are
used to compensate for the camera motion, leading to a
better definition of the local motions. The local motions are
estimated between the globally affine motion compensated
version of the previous frame and the current frame [3]. The
local motion parameters are estimated using a matching
technique. The computational complexity is reduced by
building a Gaussian pyramid of the input images. This al-
lows a nonexhaustive search while avoiding local minima.
The final motion parameters at one level of the pyramid
propagate as initial estimates to the next level. At each level
of the pyramid, an iterative deterministic relaxation scheme
is applied during the estimation procedure, to avoid local
minima. The set of motion parameters of a given region is
compared to the sets of motion parameters of its neighbor-
ing regions. The set of parameters providing the lowest
prediction error is chosen as the new set of parameters for
the region. This relaxation process is repeated until no fur-
ther change occurs.

In order to perform the spatiotemporal segmentation,
the weighting function w(x) must be determined (see Sec-
tion 5.2.1). Based on the weight function of the MAD mo-
tion estimator, we have

w x
x

0 5 =
1

.                                    (21)

However, this weighting function cannot be used due to the
discontinuity it presents at x = 0. We avoid this problem by
defining w(x) as follows:

w x
x

0 5 =
+

1

1
.                                 (22)

The value of the luminance factor, fL, in (14) provides in-
formation about the relative significance of spatial and

temporal information. The values of tlsr , tlwr , and fL used for
the various sequences in our experiments are reported in
Table 1.

7.1 Results Using Spatiotemporally Homogeneous
Initial Regions

In this section, we present spatiotemporal segmentation
results for the three sequences: “Akiyo,” “Table-Tennis,”
and “Foreman.” The set of initial regions is generated using
the technique presented in Section 4. By construction, these
regions are spatiotemporally homogeneous.

The results of the proposed technique for spatiotemporal
segmentation are compared with those obtained using the
technique proposed by Dufaux et al. [3]. Their technique
merges the regions into objects by clustering the motion
parameters of the various regions in the initial set, using the
k-medoid clustering algorithm [49]. This is a supervised
technique and requires the user to specify the expected
number of objects beforehand.

Fig. 8 shows the experimental results obtained for a
frame of the “Akiyo” sequence. In this sequence, the body
of Akiyo is not absolutely rigid, and different areas have
different kinds of motion (for example, the head tilts and
the eyes close simultaneously). Also, the color contrast be-
tween Akiyo’s hair and the background is not very strong.
The corresponding threshold values (see Table 1) are cho-
sen so that the entire body of Akiyo is segmented out as
one object.

The previous frame (after global motion compensation)
and the current frame are shown in Figs. 8a and 8b, respec-
tively. The set of initial regions is shown in Fig. 8c. It con-
tains 14 regions. The application of the strong rule reduces
this to four regions. The corresponding intermediate result
is shown in Fig. 8d. The weak rule processes this interme-
diate segmentation to create two final regions. Fig. 8e
shows the final segmentation, and Fig. 8f shows the
boundaries of this segmentation superimposed onto the
current frame. Note that Akiyo has been segmented per-
fectly, including the hair on her head, which, in some
places, has spatial characteristics very similar to those of the
background. Fig. 8g shows the spatiotemporal segmenta-
tion of the current frame obtained using the technique pro-
posed by Dufaux et al. [3], and Fig. 8h shows the corre-
sponding region boundaries superimposed onto the current
frame. This segmentation has been generated by requiring
the technique to segment the image into two regions. As
can be seen, parts of Akiyo’s body are merged with the
background. These are regions of low motion (which are
nevertheless in sufficiently strong contrast to the back-
ground). The technique proposed in this paper clearly out-
performs the method used by Dufaux et al.

TABLE 1
THE SETTINGS UTILIZED FOR THE THREE VIDEO SEQUENCES

USED IN THE EXPERIMENTS REPORTED HERE

Variable Akiyo Table Tennis Foreman
tlsr 0.1 10.0 0.1
tlwr 0.1 25.0 0.7
fL 0.1 0.1 0.3
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In Fig. 9, the different stages of the spatiotemporal seg-
mentation for one frame of the “Table Tennis” sequence are
shown. (The thresholds used for this experiment are given
in Table 1.) In this sequence, all the objects in the scene have
fairly distinct motion and luminance characteristics. There-
fore, the threshold values should not be very low. Indeed, if
we wanted to have the entire right arm (with racquet) as
one object, the threshold values would have to be lowered.
Fig. 9a shows the global motion-compensated version of the
previous frame used. The current frame is shown in Fig. 9b.
Fig. 9c shows the initial segmentation, containing 31 re-
gions. The strong rule merges these regions to produce a
segmentation containing 11 regions (see Fig. 9d). Fig. 9e
shows the final segmentation, containing five objects, ob-

tained after applying the weak rule to the results of the
strong rule. The five objects are: the background, the arm,
the ball, the hand with the racquet, and the left hand. The
spatiotemporal segmentation from the method of Dufaux et
al. is produced by requiring a segmentation of five objects.
However, even this additional information does not pro-
duce a satisfactory spatiotemporal segmentation (see Fig. 9g
and 9h). Some parts of the arm are merged with the table,
while other parts are merged with the background.

The spatiotemporal segmentation results for a typical
frame of the “Foreman” sequence are given in Fig. 10. The
low threshold values for the two clustering rules encourage
more regions to be merged. Also, the luminance informa-
tion for Foreman’s face is highly distinctive. Therefore, this

                                      (a)                                                                         (b)                                                                        (c)

                                      (d)                                                                       (e)                                                                          (f)

                                                                            (g)                                                                          (h)

Fig. 8. “Akiyo”: Spatiotemporal segmentation using arbitrarily shaped initial regions. (a) Previous frame after global motion compensation.
(b) Current frame. (c) Set of initial regions (14 regions). (d) Intermediate spatiotemporal segmentation obtained from the strong rule (four regions).
(e) Final spatiotemporal segmentation obtained after the weak rule (two regions). (f) Boundaries of the final segmentation superimposed onto the
current frame. (g) Spatiotemporal segmentation obtained using the technique of Dufaux et al. by requiring a two-region partition. (h) Boundaries
obtained by Dufaux’s method superimposed onto the current frame.
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information is given a significant weight. Figs. 10a and 10b
show the previous frame and the current frame, respec-
tively. Again, the previous frame used here is preprocessed
to remove the effects of camera motion, by compensating
it for global motion. The set of initial regions shown in
Fig. 10c contains 105 regions. After applying the strong
rule, 21 regions remain. This intermediate result is shown
in Fig. 10d. In this image, the background, the face, and
the helmet are clearly discernible. Finally, the weak rule
produces a segmentation of the scene reflecting the pres-
ence of five objects: the background, the right part of the
face and the neck, the left part of the face, the back of the
helmet, and the rest of the helmet (see Figs. 10e and 10f).
We believe the reason for the relatively poor results lies in

the use of the affine motion model. The affine motion
model is unable to characterize the motion present in the
scene sufficiently well. In this case, a perspective motion
model would be expected to produce better results. The
spatiotemporal segmentation based on the method pro-
posed by Dufaux et al. (see Figs. 10g and 10h) is obtained
by requiring the algorithm to partition the scene into two
regions (the head of Foreman and the background). Even
with this additional information, the resulting spatiotem-
poral segmentation does not isolate the head of the man
properly. For example, note the hole in the region of the
chin and the thin strip of the background region between
the face and helmet.

                                      (a)                                                                          (b)                                                                        (c)

                                      (d)                                                                        (e)                                                                          (f)

                                                                            (g)                                                                         (h)

Fig. 9. “Table Tennis”: Spatiotemporal segmentation using arbitrarily shaped initial regions. (a) Previous frame after global motion compensation.
(b) Current frame. (c) Set of initial regions to be merged (31 regions). (d) Intermediate spatiotemporal segmentation obtained from the strong
rule (11 regions). (e) Final spatiotemporal segmentation obtained after the weak rule (five regions). (f) Boundaries of the final segmentation su-
perimposed onto the current frame. (g) Spatiotemporal segmentation obtained using the technique of Dufaux et al. by requiring a five-region
partition. (h) Boundaries obtained by Dufaux’s method superimposed onto the current frame.
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7.2 Effect of Luminance Information
As described in Section 5.3, the proposed spatiotemporal
similarity integrates both temporal and spatial information
into a single measure. In this section, we demonstrate why
spatial information is useful, even though the main crite-
rion for defining objects is temporal coherence.

Fig. 11 shows the different stages of the spatiotemporal
segmentation for a frame of the “Table Tennis” sequence,
using two different values of the luminance factor ( fL = 1.0,
and 0.0, respectively). The case of fL = 1.0 implies maximum
use of the spatial information, while in the other case no
spatial information is utilized. In this experiment, the cur-
rent frame corresponds to the time when the ball is nearly
at the top of its trajectory. Consequently, the motion of the

ball is very small. When fL is set to 1.0, the proposed spa-
tiotemporal segmentation technique is able to segment out
the ball (see Figs. 11d, 11e, and 11f). This is not possible
when no spatial information is used (i.e., fL = 0.0). (The cor-
responding results are shown in Figs. 11g, 11h, and 11i.) The
motion of the ball is indeed too small to discriminate it
from the background.

7.3 Effect of the Pondering Factor l
In Section 5.2, we stipulate that the temporal similarity
should rely on two kinds of temporal information: that em-
bodied in the parametric representation as well as the in-
formation present in the residual distribution. Although the
temporal information from the residual distribution is

                                       (a)                                                                         (b)                                                                        (c)

                                     (d)                                                                         (e)                                                                         (f)

                                                                             (g)                                                                          (h)

Fig. 10. “Foreman”: Spatiotemporal segmentation using arbitrarily shaped initial regions. (a) Previous frame after global motion compensation.
(b) Current frame. (c) Set of initial regions to be merged (105 regions). (d) Intermediate spatiotemporal segmentation obtained from the strong rule
(21 regions). (e) Final spatiotemporal segmentation obtained after the weak rule (five regions). (f) Boundaries of the final segmentation superim-
posed onto the current frame. (g) Spatiotemporal segmentation obtained using the technique of Dufaux et al. by requiring a two-region partition.
(h) Boundaries obtained by Dufaux’s method superimposed onto the current frame.
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given more importance, the parametric information is also
quite useful. In this experiment we evaluate the contribu-
tion of the parametric information, which is regulated by
the pondering factor, λ.

The importance of the pondering factor is demonstrated
by slightly modifying the conditions of the experiments
depicted in Fig. 8. Suppose we do not use the pondering
factor (i.e., λ = 1.0). In this case, measure of temporal simi-
larity draws on only the residual distribution. The corre-
sponding results are presented in Fig. 12. The spatiotempo-
ral segmentation identifies three objects: the background,
the head with the right part of the body, and the left part of
the body. Although only the temporal information available
in the residual distribution is used, the resulting decompo-

sition of the scene is fairly accurate. However, the addi-
tional contribution of the parametric information would
have allowed a better definition of the objects. This is ap-
parent by comparing Fig. 8f with Fig. 12d.

8 SUMMARY AND CONCLUSIONS

In this paper, a technique for unsupervised spatiotemporal
segmentation has been proposed. Only the information
present in two consecutive frames is used. The proposed
technique takes a set of initial regions as additional input.
This set typically represents an oversegmentation, resulting
from some other segmentation algorithm. In this work, we
have used the segmentation algorithm described in Section 4

                                      (a)                                                                         (b)                                                                        (c)

                                     (d)                                                                         (e)                                                                        (f)

                                     (g)                                                                         (h)                                                                        (i)

Fig. 11. “Table Tennis”: Effect of the luminance information on the spatiotemporal segmentation. (a) Previous frame after global motion compensa-
tion. (b) Current frame. (c) Set of initial regions. (d) Spatiotemporal segmentation with luminance factor fL = 1.0 after applying only the strong rule.
(e) Spatiotemporal segmentation with luminance factor fL = 1.0 after applying both rules. (f) The boundaries of the segments in (e) superimposed
on the current frame. (g) Spatiotemporal segmentation with luminance factor fL = 0.0 after applying only the strong rules. (h) Spatiotemporal segmen-
tation with fL = 0.0 after applying both rules. (i) The boundaries of the segments in (h) superimposed on the current frame.
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to generate the set of initial regions. However, the proposed
region-merging algorithm can be used with other segmen-
tation techniques as well. Results using a quadtree-based
initial segmentation are presented in [40].

The regions are iteratively merged in order to deter-
mine the objects forming the scene. The regions are
merged on the basis of their mutual spatiotemporal simi-
larities. Defined as a combination of temporal and spatial
information, the spatiotemporal similarity is formulated
in the statistical framework as a hypothesis test. To that
end, a new test statistic for the temporal information, the
MKS test, is presented. It permits the simultaneous use of
the temporal information available in the residual distri-
bution and in the motion parametric representation. The
merging of the regions is carried out by using a weighted,
directed graph. Two graph-based clustering rules are pro-
posed. They are called the strong rule and the weak rule.
The strong rule is applied first, followed by the weak rule.
Each rule is applied iteratively. The graph is updated at
the end of each iteration. The proposed graph-based clus-
tering strategy takes into account the specificities of the
problem at hand. It is able to efficiently exploit the infor-
mation represented in the graph, while being robust to
erroneous motion information as well as to oddly defined
regions.

The proposed technique has been evaluated on different
types of video sequences. The spatial and temporal preci-

sion of the object boundaries depends on the quality of the
initial regions. Our experiments also demonstrate the im-
portance of using spatial information. Such information
may contribute significantly when temporal information is
not discriminatory enough. Finally, the necessity of com-
bining the temporal information existing in both the resid-
ual distribution and the parametric representation has been
demonstrated.

An extension of the technique presented here to recur-
sive spatiotemporal segmentation and an unsupervised
object-tracking algorithm is proposed in [40]. It is a recur-
sive procedure for spatiotemporal segmentation through
the sequence. It combines the tracking information into
the segmentation process. The spatiotemporal segmenta-
tion of the successive frames is robustly derived, and the
objects forming the scene are tracked through time.
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