
IPSJ Transactions on Computer
Vision and Applications

Uddin et al. IPSJ Transactions on Computer Vision and

Applications            (2019) 11:9 

https://doi.org/10.1186/s41074-019-0061-3

RESEARCH PAPER Open Access

Spatio-temporal silhouette sequence
reconstruction for gait recognition against
occlusion
Md. Zasim Uddin1*, Daigo Muramatsu1, Noriko Takemura2, Md. Atiqur Rahman Ahad1 and Yasushi Yagi1

Abstract

Gait-based features provide the potential for a subject to be recognized even from a low-resolution image sequence,

and they can be captured at a distance without the subject’s cooperation. Person recognition using gait-based

features (gait recognition) is a promising real-life application. However, several body parts of the subjects are often

occluded because of beams, pillars, cars and trees, or another walking person. Therefore, gait-based features are not

applicable to approaches that require an unoccluded gait image sequence. Occlusion handling is a challenging but

important issue for gait recognition. In this paper, we propose silhouette sequence reconstruction from an occluded

sequence (sVideo) based on a conditional deep generative adversarial network (GAN). From the reconstructed

sequence, we estimate the gait cycle and extract the gait features from a one gait cycle image sequence. To regularize

the training of the proposed generative network, we use adversarial loss based on triplet hinge loss incorporating

Wasserstein GAN (WGAN-hinge). To the best of our knowledge, WGAN-hinge is the first adversarial loss that supervises

the generator network during training by incorporating pairwise similarity ranking information. The proposed

approach was evaluated on multiple challenging occlusion patterns. The experimental results demonstrate that the

proposed approach outperforms the existing state-of-the-art benchmarks.

Keywords: Silhouette reconstruction, Gait recognition occlusion handling, Video generation, Deep generative

adversarial network, Wasserstein GAN

1 Introduction
Biometric-based person authentication is becoming

increasingly important for various applications, such as

access control, visual surveillance, and forensics. Gait

recognition is one of the topics of active interest in the

biometric research community because it provides unique

advantages over other biometric features, such as the face,

iris, and fingerprints. For example, it can be captured

without the subject’s cooperation at a distance and has

discriminative capability from relatively low-resolution

image sequences [36]. Recently, gait has been used as a

forensic feature, and there has already been a conviction

produced by gait analysis [14].

However, gait recognition has to manage some practi-

cal issues that include observation views [27, 45], clothing
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[13], carried object [37], and occlusion. In this study, we

address the gait recognition problem against occlusion.

Occlusion for gait recognition can be one of two types

based on the relative position between the occluder

and the target subject in an image sequence: relative

dynamic occlusion and relative static occlusion. For rela-

tive dynamic occlusion, the occluded portion of the target

subject changes continuously over an image sequence,

whereas, for relative static occlusion, the occluded por-

tion does not change. An example of relative dynamic

occlusion is shown in Fig. 1a and b, in which the person

is occluded at different positions in each frame and the

occluded portion of the person’s body gradually changes

in the video sequence during the person’s gait cycle. For

the example of relative static occlusion shown in Fig. 1c,

the person is occluded at a fixed portion of the body

in each frame in the video sequence during the person’s

gait cycle.
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Fig. 1 Examples of occlusion in real-life applications (every fifth frame of a sequence). a Relative dynamic occlusion where the subject is occluded

by a tree and continuously changes the occluded portion from left to right. b Relative dynamic occlusion where the subject is occluded by a parked

car and continuously changes the occluded portion from bottom to top. c Relative static occlusion where the subject is occluded by wall in a fixed

position

Approaches to gait recognition against occlusion can

be roughly grouped into two categories. The first cat-

egory is reconstruction-free approaches [5, 28, 29, 48],

which focus on extracting features from a silhouette

sequence of a gait cycle or an average of them, such as

the gait energy image (GEI) [10]. Because gait features are

extracted by considering static shape and dynamic motion

information from a silhouette sequence for a gait cycle,

approaches of this type can achieve good performance

for a very low degree of occlusion; however, the obvi-

ous limitation of this type of approach is that it cannot

be applicable to cases in which the gait cycle is difficult

to estimate.

The second category is reconstruction-based approaches

[12, 33]. Approaches in this category focus on reconstruct-

ing occluded silhouettes. In these approaches, occluded

silhouettes are identified and a sequence is separated into

occluded and unoccluded gait cycles, and then silhou-

ettes of occluded gait cycles are reconstructed. These

approaches showed good silhouette reconstruction. How-

ever, these were applied on long sequences that consisted

of multiple gait cycles in which some frames were par-

tially occluded. These approaches are difficult to apply

in the case in which all frames are severely occluded in

a sequence, for example, the occlusion shown in Fig. 1a

and b. One of the major limitations of reconstruction-

based approaches is that the reconstructed silhouette

sequence sometimes deteriorates the discrimination abil-

ity of the individual after reconstruction. Therefore, it can

negatively influence gait recognition performance after

reconstruction [22].

With the great success of deep convolutional neural

networks (CNNs) and generative adversarial networks

(GANs) [8] in many research areas of computer vision

and biometrics, reconstruction-based approaches have

been formulated as a conditional image or video gener-

ation problem for image inpainting [15, 21, 30, 42, 44],

video inpainting [20, 39], and future prediction [4, 20, 23, 38].

Although, these works have been shown to generate very

good-looking realistic images, such as faces, objects, and

scenes, they sometimes lost subject identity [46]. An

approach that can generate not only good-looking sam-

ples but also samples with the discrimination ability of

an individual is necessary for biometric-based person

recognition.

We present an effective feed-forward conditional deep

generative network for silhouette sequence reconstruc-

tion considering dilated convolution [15, 43] and a skip

connection [32]. Dilated convolutional kernels are spread

out in the spatial and temporal directions, which allows

us to reconstruct each pixel by covering a large spatio-

temporal input area. This is important for silhouette

sequence reconstruction because each input pixel is

important for reconstruction, whereas a skip connection

allows us to retain unoccluded input pixels as output. The

input to the encoder network that maps hidden repre-

sentations is the occluded silhouette sequence, and the

output of the decoder is the reconstructed silhouette
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sequence. We regularize the training process of the gen-

erator network by incorporating triplet hinge loss into

Wasserstein GAN (WGAN) loss [1, 9] as adversarial loss

and reconstruction loss in pixel space. A triplet con-

tains a query sequence, positive sequence, and negative

sequence, where the query sequence is the reconstructed

silhouette sequence, the positive sequence is the unoc-

cluded silhouette sequences of the same subject as the

query subject, and the negative sequence is of a different

subject. The similarity relationship is characterized by the

relative distance in the triplet.

The entire network is trained end to end with the recon-

struction and proposed adversarial losses. Compared with

existing inpainting or reconstruction-based approaches,

one of the major advantages of our proposed approach is

that it does not require occluded or inpainting position

information (i.e., a mask) for reconstruction. Therefore,

it can be applied to an arbitrarily structured occluded

silhouette sequence during reconstruction. Because of

the silhouette sequence reconstruction approach, we can

evaluate gait recognition without knowing the gait cycle

in advance because the gait cycle can be estimated from

the reconstructed silhouette sequence.

The contributions of this paper are summarized as fol-

lows:

1. We propose to design a conditional deep generative

network (sVideo) that consists of a generator with

dilated convolution and a skip connection, and a

critic network. It can reconstruct any type of

occluded silhouette sequence.

2. We propose a novel adversarial loss based on triplet

hinge loss incorporated with WGAN loss (WGAN-

hinge). To the best of our knowledge, WGAN-hinge

is the first adversarial loss that supervises the

generator network during training by incorporating

pairwise similarity ranking information.

3. We demonstrate the stability of the proposed

generative network using the supervision of

adversarial loss for WGAN and also propose

WGAN-hinge loss during training for various

experiments to reconstruct the silhouette sequence

and present superior results for gait recognition

compared with the state-of-the-art methods.

Additionally, we also demonstrate that the proposed

WGAN-hinge for a different generator network

yields performance improvements over WGAN.

2 Related work

2.1 Existing approaches for gait recognition against

occlusion

In this section, we review the works related to gait recog-

nition against occlusion as two families: reconstruction-

free approaches and reconstruction-based approaches.

Regarding reconstruction-free approaches, the follow-

ing methods have been proposed. Zhao et al. [48]

extracted features based on fractal scale wavelet analysis

for each silhouette from a sequence of a gait cycle and

then averaged them. They evaluated robustness against

noisy data in addition to occluded data by adding a verti-

cal bar in the silhouette sequence. Chen et al. [5] proposed

an approach for an incomplete and occluded silhouette

for gait recognition. They divided the silhouette sequence

of a gait cycle into clusters, and the dominant energy

image (DEI) was calculated by denoising each cluster. The

frame difference energy image (FDEI) for a silhouette was

computed as the summation of its corresponding clus-

ters’ DEI and the positive portion of the difference from

the previous frame. Finally, features are extracted from the

FDEI representation that mitigated the problem of spatial

and temporal silhouette incompletion caused by imper-

fect silhouette segmentation and occlusion. In [29], a

robust statistical framework was proposed thatminimized

the influence of silhouette defects. The authors evaluated

gait recognition on GEIs and gradient histogram energy

images by adding occlusion and noise into a silhouette

sequence. A different technique to manage the problem of

occlusion was addressed in [28], in which a GEI was sep-

arated into four modules and a module was excluded for

gait recognition if occlusion was detected.

Regarding reconstruction-based approaches, Roy et al.

[33] proposed a framework in which a silhouette sequence

was first divided into a few subsequences of gait cycle(s)

based on key poses. It also allowed the determination

of whether a silhouette of a gait cycle was occluded.

Occluded silhouettes were then reconstructed using a bal-

anced Gaussian process dynamical model. Although the

authors evaluated the reconstruction accuracy, they did

not evaluate gait recognition using the reconstructed sil-

houette sequence. Hofmann et al. [12] proposed a simple

approach to detect partially occluded gait subsequences

from a sequence using foreground pixels. Occluded sil-

houettes were then replaced by similar-pose clean sil-

houettes from other cycles. In [26], a complete GEI

was regenerated from a partially observable GEI using

subspace-based method. Gait recognition was evaluated

according to whether a matching pair did not share a

common observable region.

We can observe that, from the above discussion, some

approaches manage occlusion directly on pre-process fea-

ture GEI for a gait cycle. Thus, they assume that the gait

cycle is known in advance. The remaining approaches

estimate the gait cycle from the occluded silhouette

sequence, which is very difficult or error prone when all

frames are occluded in a sequence, for example, Fig. 1.

Furthermore, they consider a large sequence where multi-

ple gait cycles are available for gait recognition. However,

there are many scenarios in real-world applications in
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which only a few frames (i.e., not more than a gait cycle)

are available in a sequence, and all are partially or totally

occluded. In those scenarios, existing approaches are not

applicable.

2.2 Deep generative approach

GAN [8] is a framework for training the generative model

implemented by a system of two neural networks: gener-

ative network G and auxiliary discriminator network D.

The discriminator network serves to distinguish whether

content is generated by a network or is real, whereas the

generator network is trained to fool the discriminator net-

work. Specifically, G and D are trained by solving the

following minimax problem :

min
G

max
D

E
x∼Pr

[

logD (x)
]

+ E
G(z)∼Pg

[

log (1 − D (G (z)))
]

,

(1)

where E(·) denotes the expectation operator, and Pr

and Pg are the real and generated data distributions,

respectively. Generator G transforms input sample z to

mimic a real sample. However, one of the main concerns

of GAN is instability during training. Numerous works

have addressed improving the training stability. Radford et

al. [31] introduced deep convolutional GANs (DCGAN)

that imposed empirical constraints on the architecture of

the GAN and optimized the hyperparameters. Recently,

Arjovsky et al. [1] introduced WGAN [9], which mini-

mizes the Earth Mover’s Distance (a.k.a Wasserstein-1)

between the generator and real data distribution. Specif-

ically, the objective function was constructed by applying

the Kantorovich-Rubinstein duality:

min
G

max
D∈D

E
x∼Pr

[D(x)] − E
G(z)∼Pg

[D (G(z))] , (2)

where D is the set of 1-Lipschitz functions. To enforce

the Lipschitz constraint on the critic function, Gulrajani

et al. [9] proposed an improved version of WGAN with a

gradient penalty term with respect to the input. The new

objective is as follows:

min
G

max
D

E
x∼Pr

[D(x)] − E
G(z)∼Pg

[D(G(z))] + λLGP , (3)

where LGP = E
x̂∼Px̂

[

(∥

∥∇x̂D(x̂)
∥

∥

2
− 1

)2
]

, x̂ = ǫx +

(1 − ǫ)x̃, and λ is a gradient penalty coefficient and ǫ ∼

U[ 0, 1]. The authors called the auxiliary network a critic

instead of discriminator because it is not a classifier. In

this paper, we train our proposed approach using the

framework of WGAN with the gradient penalty coeffi-

cient [9]. We present our approach in detail in Section 3.

2.3 Image and video reconstruction

A large body of literature exists for image and video recon-

struction from traditional approaches to learning-based

approaches (i.e., deep learning). Traditional approaches

include diffusion-based [3] and patch-based tech-

niques[7]. The diffusion-based technique propagates the

image appearance around the target position, where prop-

agation can be performed based on the isophote direction

field, whereas the patch-based technique extracts patches

from a source image and then pastes them into a target

image. The patch-based technique is also used for video

completion [40] by replacing image patches with spatio-

temporal synthesis across frames. However, these types

of approaches can only fill a very small and homogeneous

area, and one obvious limitation is the repetition of

content.

Recently, conditional GAN-based [25] approaches have

emerged as promising tools for image and video comple-

tion. Regarding image completion, a context encoder (CE)

[30] was the first attempt to train deep neural networks

for image completion. It is trained to complete the center

region using pixel-wise reconstruction and single dis-

criminator loss. Some approaches in the literature intro-

duce two discriminators/critics [15, 21, 44] as adversarial

losses, where one discriminator/critic considers the entire

image and the other focuses on a small hole area to enforce

local consistency. However, the main issue for these

approaches is that they assume the occluded/inpainting

position is known during training and testing. The gen-

erator takes the masked image as input and outputs

the generated image, and finally, it replaces pixels in

the non-masked region of the generated image with the

original pixels.

Regarding video completion, there are very few works

in the literature. Vondrick et al. [38] first proposed a video

generative network for video generation and predicted the

future frame using the DCGAN model [31] and spatio-

temporal three-dimensional (3D) convolutions [18, 35].

Later, Kratzwald et al. [20] improved the video genera-

tive network using WGAN with a gradient penalty critic

network and applied it to multi-functional applications.

With the goal of achieving high accuracy for gait recog-

nition in the presence of a high- or poor-quality generated

silhouette sequence, we propose a conditional genera-

tive network for silhouette sequence reconstruction using

spatio-temporal 3D convolution [18, 35] with a dilated

kernel [43] in a bottleneck layer to increase the more

receptive fields of the output neurons while maintain-

ing a constant number of learnable weights. To regularize

the generative networks, we explore triplet hinge loss

incorporating WGAN with gradient penalty loss.
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3 Spatio-temporal silhouette sequence

reconstruction
The goal of the proposed approach is to reconstruct a sil-

houette sequence from an occluded sequence based on

conditional GANs. An overview of our approach is shown

in Fig. 2. The proposed approach uses generator G and

critic D networks. A single generator network is used

for the reconstruction, whereas the additional network

critic is used to supervise the generator network during

training to realistically reconstruct and preserve subject

identity. After training, generator G can take an occluded

silhouette sequence and reconstruct it.

Different from existing video generative approaches [20,

38], we propose to design a very deep architecture for

the generator network considering the spatio-temporal

3D convolution with small kernels along with dilated con-

volution and a skip connection; we will explain the detail

in Section 3.1. Regarding the critic network, we chose

similar critic architecture to [20]. However, the train-

ing procedures are different; we will explain the detail in

Section 3.2.

3.1 Generator network

Generator G is designed as a simple encoder-decoder

pipeline. The occluded input silhouette sequence to the

encoder is first mapped to hidden representations, which

allows low memory and low computational cost by

decreasing the spatial and temporal resolutions. Unlike a

pooling layer, the encoder decreases the resolution twice

using strided convolutions to avoid a blurred texture in

the occluded regions. Then, the decoder takes this low-

dimensional feature representation and restores it to the

original spatial and temporal resolution through the con-

volutional layers with fractional strides [47]. Unlike [15,

38], we use convolution kernels of 3×3×3 (time × width

× height) and 4 × 4 × 4 because it is proven that small

kernels perform better in a deep 3D network [35]. An

illustration of the generator network architecture is shown

in Fig. 3.

We use dilated convolution [43] in the mid-layer and a

skip connection [32] in the top layers. The dilated convo-

lutional kernels are spread out in spatio-temporal direc-

tions, which allows us to compute each output pixel by

considering a much larger input area, whereas the number

of parameters and computational cost still remains con-

stant. This is important for the silhouette sequence recon-

struction from a partially observable occluded sequence

because the spatial context and neighbor frame informa-

tion are critical for reconstruction. To keep unoccluded

input pixels in the reconstructed sequence, we use a U-

shape-like network with skip connections (i.e., feature

map of the encoder are combined with the decoder)

because the decoder path is more or less symmetric to the

encoder path.

Fig. 2 Overview of our silhouette sequence reconstruction framework. It consists of a generator (encoder and decoder) and a critic network. The

generator takes the occluded silhouette sequence as input and outputs the reconstructed silhouette sequence. The critic is used to supervise the

generator network during training (i.e., positive reference is unnecessary for the target subject reconstruction during testing)
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Fig. 3 Illustration of the architecture of the generator network. The silhouette sequence and feature dimensions are shown in the figure and

denoted as “time × width × height”

We initialize the convolutional weights for stable train-

ing and faster convergence as [11] and perform batch

normalization [16] to zero mean and unit variance fol-

lowed by ReLU activation functions after each layer,

except the final output layer. A hyperbolic tangent

function is used in the last layer, which is beneficial

for normalizing the reconstructed sequence within the

range [− 1, 1].

3.2 Critic network

Different from existing GANs [1, 9, 20] in which a dis-

criminator/critic distinguishes generated samples from

ground truth samples and adversarial supervision of the

generator network maximally fools the discriminator, in

a different direction, we propose exploring an updated

WGAN. Our proposed critic network, D, can distinguish

a silhouette sequence of a subject from ground truth

and simultaneously use the pairwise similarity ranking, in

which the critic network assigns a smaller distance to a

silhouette sequence of the same subject and larger dis-

tance to a different subject, and it is realized using hinge

loss. Using hinge loss along with WGAN loss, we use the

adversarial loss so that the generator can maximally fool

the critic.

The architecture and layer settings are similar to [20].

Specifically, we use five convolutional layers, followed by

a linear downsampling layer with 4 × 4 × 4 kernels along

with a stride of 2 × 2 × 2. We set the number of output

channels for the first layer to 64 and double the values

as the layer gets deeper. Similar to DCGAN [31], we use

LeakyReLU [41] with a threshold of 0.2. Similar to [9], we

use layer normalization [2] instead of batch normalization.

Because the critic is not trained to classify between the

reconstructed silhouette sequence and ground truth, we

exclude softmax or any other activation in the final layer

and instead train the network to provide good gradient

information for generator updates.

3.3 Training objective

To train our networks, we use objective functions

composed of silhouette sequence reconstruction loss,

WGAN loss along with hinge loss as adversarial loss.

Given occluded silhouette sequences z and corresponding

ground truth sequences x along with a positive reference

x̄ and a negative reference ¯̄x, respectively, as the same and

different subject as ground truth, our proposed approach

is trained to minimize the generative loss for generator

network G:

Lgen = Ladv + γLimg, (4)

where γ is a weighting parameter to control the trade-

off between adversarial Ladv and image loss Limg.

Image loss Limg calculates the mean squared error,

which attempts to minimize the pixel-wise error between

the reconstructed (x̃ = G(z)) and ground truth silhouette

sequence. It is well known that stabilizing the adversar-

ial training is a significant issue in GANs. A loss in image

space is added with adversarial loss, and the loss in image

space can contribute to stabilizing the training [6]. We,

therefore, employed the image loss Limg with adversarial

loss in our proposed approach, which can be defined as

follows:

Limg = E
x̃,x∼Pg ,Pr

[

(x̃ − x)2
]

, (5)

where Pg and Pr represent the distributions of recon-

structed silhouette sequence x̃ and ground truth x, respec-

tively.

Adversarial loss Ladv is the generator loss in adversar-

ial training, which is the combination of WGAN loss and

triplet ranking hinge loss, which can be defined as follows:

Ladv = LWGAN − κLhinge, (6)
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where LWGAN = − E
x̃∼Pg

[

D(x̃)
]

is the WGAN loss, Lhinge

is the hinge loss for pairwise similarity ranking, and κ is

the coefficient to control the trade-off between WGAN

and the proposed hinge loss. The output of critic network

D is a real-valued scalar, and the hinge loss is calculated

using the relative distance of the output of the recon-

structed silhouette sequence with the positive reference

(i.e., the silhouette sequence of same subject to the

reconstructed silhouette sequence) and negative refer-

ence (i.e., the silhouette sequence of a different subject

to the reconstructed silhouette sequence). Specifically, the

triplet pairwise ranking hinge loss function can be defined

as follows:

Lhinge = max(margin− E
x̃, ¯̄x∼Pg ,P ¯̄x

[

|D(x̃) − D( ¯̄x)|
]

+ E
x̃,x̄∼Pg ,Px̄

[

|D(x̃) − D(x̄)|
]

, 0),

(7)

where Px̃, Px̄, and P ¯̄x represent the distributions of

reconstructed x̃, positive reference x̄, and negative refer-

ence silhouette sequence ¯̄x, respectively.

Similar to generator network G, we train critic network

D using the framework of the improved WGAN with a

gradient penalty [9] together with the proposed hinge loss.

Specifically, critic network D is trained to minimize the

following loss function:

Lcritic = E
x̃,x∼Pg ,Pr

[

D(x̃) − D(x)
]

+ λLGP + κLhinge, (8)

where LGP = E
x̂∼Px̂

[

(
∥

∥∇x̂D(x̂)
∥

∥

2
− 1

)2
]

, x̂ = ǫx +

(1 − ǫ)x̃, and λ is a gradient penalty coefficient and ǫ ∼

U[ 0, 1]. We used Adam optimization [19] to update both

network G and D with a batch size of 32 and learning rate

of α = 0.0001 for fixed number of iterations n for the gen-

erator network. The other hyperparameters for the Adam

optimizer were set to β1 = 0.5 and β2 = 0.99. Algorithm 1

shows the complete algorithm for training our proposed

framework in this paper. We used default λ = 10, as

suggested in [9], and γ = 1000 according to [20]. The

values of the coefficients κ and margin were determined

empirically as 20 and 3, respectively, for each experiment.

All the networks were implemented in Python with the

Tensorflow library, and all experiments were trained from

scratch. We normalized all silhouette sequences to be in

the range [− 1, 1].

Algorithm 1 Training of our proposed framework. We

use default values ncritic = 4, α = 0.0001, λ = 10,

margin = 3, γ = 1000, κ = 20, β1 = 0.5, β2 = 0.99

Require: Batch size b, training iterations n, gradient

penalty coefficient λ, number of critic iterations per

generator iteration ncritic, coefficient κ , width W,

height H of silhouette, Adam hyperparameters α, β1,

β2

Require: Initial critic parameter WD0 , initial generator

parameterWG0

1: for iter ← 1 to n do

2: for i = 1, ..., ncritic do

3: Sample batches for occluded silhouette

sequences z, ground truth silhouette sequences

x, positive reference x̄ and negative reference ¯̄x, a

random number ǫ ∼ U[ 0, 1]

4: Update the weight WD of critic network D using

Eq.(8) :

x̃ = G(z), x̂ = ǫx + (1 − ǫ)x̃

LWdist = 1
b

∑b
j=1 D(x̃j) − D(xj),

LGP = 1
b

∑b
j=1(‖∇x̂jD(x̂j)‖2 − 1)2,

Lhinge = max(margin −
1
b2

∑b
j=1

∑b
k=1

∣

∣D(x̃j) − D( ¯̄xk)
∣

∣ +

1
b

∑b
j=1

∣

∣D(x̃j) − D(x̄j)
∣

∣ , 0)

WD ← Adam(∇WD(LWdist + λLGP +

κLhinge),WD,α,β1,β2)

5: end for

6: Sample batches for occluded silhouette sequences

z, ground truth silhouette sequences x, positive

reference x̄ and negative reference ¯̄x

7: Update the weight WG of generator network G

using Eq.(4):

Limg = 1
bWH

∑b
j=1(x̃j − xj)

2, Ladv =

1
b

∑b
j=1 −D(x̃j) − κLhinge

WG ← Adam(∇WG(Ladv + γLimg),WG,α,β1,β2)

8: end for

4 Experiments

4.1 Overview

To evaluate the accuracy of the proposed approach against

a wide variety of occlusion patterns, we artificially sim-

ulated several occlusion patterns because there is no

large-scale gait recognition database with occlusion vari-

ation that is publicly available, and systematic analysis for

multiple occlusion patterns is necessary for evaluation.

Regarding the evaluation, we used three sets of experi-

ments to validate the proposed approach. These exper-

iments were intended to address a variety of challenges

for different occlusion patterns and different training set-

tings that simulate multiple scenarios. We compared the

results with the state-of-the-art approaches. The purposes
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of these experiments were to evaluate gait recognition for

the following conditions:

1. The occlusion pattern was known and the same for a

matching pair (probe against gallery)

2. The occlusion pattern was known and different for a

matching pair

3. The occlusion pattern was unknown for a matching

pair

4.2 Dataset

We used the OU-ISIR Gait Database, Multi-View Large

Population Dataset (OU-MVLP) [34], which is composed

of gait image sequences with multiple views from 10,307

subjects, with a wide variety of ages and equal distribution

of males and females. The image sequences were captured

in a controlled environment with a green background for

25 fps using cameras placed approximately 8 m from the

course at a height of 5 m. The silhouette sequence was

extracted using a chroma key technique, and then the

size was normalized by considering the top, bottom, and

horizontal center of the silhouette regions for the sub-

ject of interest such that the height was 64 pixels and the

aspect ratio of each region wasmaintained. Finally, 44×64

pixels silhouette images were generated. For our exper-

iments, we choose a subset of side views and included

only subjects (9001) that had at least 2 sequences. To

simulate occlusion, 32 contiguous size-normalized silhou-

ettes of a sequence were used; if a sequence had fewer

than 32 samples, we repeated the last frame to make

it uniform.

4.2.1 Occlusion pattern

We considered two categories of real-world occlusion that

could occur in daily life, that is, relative dynamic and rel-

ative static occlusion, together with one artificial random

occlusion. Regarding relative dynamic occlusion, we sim-

ulated an occlusion type in which a person walked from

right to left occluded by a beam, pillar, or tree cover-

ing the entire height (e.g., Fig. 1a). As a result, we can

imagine that occluder objects move from left to right in

a continuous motion within the subject of interest in an

image sequence if the person walked at a constant speed.

To realize this pattern, we added a background rectan-

gle mask (i.e., set to zero in the occluded position) to

cover a certain area against the entire silhouette in the

left-most position of first frame of a sequence, and grad-

ually changed the position of the mask toward the end of

the frame with the right-most position. Later, we refer to

this type of occlusion as a relative dynamic occlusion from

left to right (RDLR). Similarly, we simulated the relative

dynamic occlusion from bottom to top (RDBT) when an

occluder occluded a person from the bottom to the top

(e.g., Fig. 1b).

Regarding relative static occlusion, we added a back-

ground mask in a fixed position for all frames in a

sequence. Therefore, we simulated relative static occlu-

sion in the bottom (RSB), top (RST), left (RSL), and right

(RSR) positions. Regarding random occlusion, we added

a background mask in a random position in horizon-

tal and vertical directions across the silhouette sequence.

Later, we refer to this as random occlusion horizon-

tally (RandH) and random occlusion vertically (RandV),

respectively. For each silhouette in a sequence, we added

30%, 40%, and 50% degrees of occlusion against the

full area for each of type of occlusion. As a result,

we simulated a total of 24 occlusion patterns. Figure 4

shows the simulated occluded silhouette sequence for

a subject.

4.3 Experimental settings

We divided the total subjects randomly into three dis-

joint sets of approximately equal size: 3000 training, 3001

validation, and 3000 test subjects. Then, the validation

and test sets were divided into two subsets: gallery set

and probe set. The validation set was used to select the

best iteration number n for experiments, whereas the

test set was used to evaluate the accuracy of our pro-

posed approach and other state-of-the-art approaches.

Because the number of samples was large for the experi-

ments of unknown occlusion pattern compared with the

experiments of known occlusion pattern, it took more

iterations to converge. We, therefore, trained the pro-

posed approach using a validation dataset for up to

30,000 iterations for experiments for known occlusion

pattern, whereas we used 60,000 iterations for unknown

occlusion pattern and saved the learned parameter every

3000 iterations to select the best iteration from them

for testing. We followed the same procedure for all

other state-of-the-art benchmarks for a fair comparison

to select the best learned model using the validation

dataset.

OU-MVLP contained multiple subsequences of more

or fewer than 32 silhouette frames; therefore, we selected

all the subsequences of 32 silhouette frames for training

to increase the training sample, and the centered subse-

quences of 32 samples were used for the validation and

test sets where the starting pose was not the same between

the probe and gallery. We padded both sides of the width

with zeros for each silhouette in a sequence to make a

64 × 64 pixels resolution from a 44 × 64 pixel resolution

to fit the network. After reconstructing a sequence, we

padded it out to make it the original size (44 × 64) of the

silhouette.

4.4 Evaluation method

Unlike the existing conditional video generative

approaches [20, 38], those quantitatively evaluate their
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Fig. 4 Example of simulated occlusion for a subject. The left-hand side of the figure: labels for the occlusion pattern, where the first term indicates

the type of occlusion and the second term shows the degree of occlusion. The occluded area is gray only for visualization purposes; in the

experiment, we masked the occluded area with black, namely the values of the masked area are set to zero; this value is the same for the background

samples by rating manually, but we evaluate the accu-

racy of gait recognition from reconstructed silhouette

sequence.

Because GEI is the most widely used feature in gait

recognition, and it can achieve good recognition accu-

racy, we used the GEI as a gait feature. A GEI was

constructed by averaging the subjects’ silhouette image

sequence over a gait cycle. The gait cycle was determined

using normalized autocorrelation [17] of the silhouette

image sequence along the temporal axis. If several gait

cycles were detected, then we chose the first gait cycle.

Finally, we calculated the dissimilarity using the L2 dis-

tance between two GEIs (i.e., probe and gallery).

4.5 Evaluation criteria

We evaluated the accuracy of gait recognition using two

modes: identification and verification. We plotted the

cumulative matching curve (CMC) for identification and

the receiver operating characteristic curve (ROC) for ver-

ification, which indicates the trade-off between the false

rejection rate of genuine samples and false acceptance rate

of imposter samples with varying thresholds. Moreover,

we evaluated more specific measures for each evaluation

mode: rank-1/5 for identification and the equal error rate

(EER) for verification.

4.6 Comparison methods

In this section, we describe the three existing meth-

ods used for the evaluation of the experiments. Each

of them is a state-of-the-art method for the generative

approach. For the comparison, we retrained the model

using our dataset from scratch to determine the best-

performing model. We used the same hyperparameters

as those mentioned in the original papers for the existing

methods.

4.6.1 Context encoder [30]

We compared our results with those obtained from the

CE, which is a state-of-the-art method for semantic

image inpainting. The network architecture is similar to

DCGAN [31], that is, the encoder and auxiliary discrim-

inator architecture is similar to that of the discriminator

of DCGAN, whereas the decoder is similar to the decoder

of DCGAN. However, the bottleneck is 4000 instead of

100. We evaluated the CE by processing the restoration of

pixels outside the occluded position for the experiment in

which the occlusion pattern is known.

4.6.2 Video GAN (VideoGAN) [38]

VideoGAN is the first model for video generation from

random noise. The model is also capable of predict-

ing the future frame given a conditional input frame in

the encoder network. Therefore, we adopt it as silhou-

ette sequence reconstruction by changing its input to the

occluded silhouette sequence in the encoder network. The

architecture of the decoder is similar to that of DCGAN

[31], except it is extended in time, whereas we added an

encoder network with four strided convolutional layers

followed by batch normalization for each layer and a ReLU

activation function.

4.6.3 Improved video GAN (iVideoWGAN) [20]

iVideoWGAN is the improved version of VideoGAN. The

major modification is that the discriminator network is

replaced by a critic network and the network is trained

using the framework of WGAN with gradient penalty [9].
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In addition to the aforementioned existing methods,

we evaluated our proposed generator network using the

training of a critic network with WGAN and WGAN-

hinge loss. Later, we refer to them as sVideoWGAN and

sVideoWGAN-hinge, respectively. Similarly, we evaluated

the proposed critic network (WGAN-hinge) with the

generator networks of iVideoWGAN [20] and analyzed

how the proposed critic could supervise the generator

to update the parameter to reconstruct the silhouette

sequence. Later, we refer to it as iVideoWGAN-hinge.

4.7 Experiment for the known and same occlusion pattern

In this section, we analyze the accuracy for gait recogni-

tion using the reconstructed silhouette sequence where

the occlusion pattern is the same between a match-

ing pair (the probe and gallery). To prepare the experi-

ments, we selected typical occlusion patterns from artifi-

cially simulated relative dynamic-type occlusion, such as

RDLR and RDBT, with the highest and lowest degrees

of occlusion (i.e., 30% and 50%). We consequently pre-

pared four subsets of occlusion patterns, denoted by

RDLR_30, RDLR_50, RDBT_30, and RDBT_50, where the

first and second subscripts indicate the type of occlusion

and degree of occlusion, respectively. For the evaluation,

the training sets for each subset were prepared in the same

manner to reflect the corresponding test sets.

Figures 5 and 6 show the reconstructed silhouette

sequences for the occlusion patterns of RDLR_50.

From these silhouettes, we can see that sVideoWGAN-

hinge, VideoWGAN-hinge, and iVideoWGAN-hinge

could reconstruct the silhouette sequence well. In

addition, we can also observe that the reconstructed

silhouette sequence by comparing with ground truth,

sVideoWGAN-hinge is similar with that of sVideoWGAN.

We explain the causes in Section 4.9.1.

The results for CMC and ROC are shown in Fig. 7,

and Rank-1, Rank-5, and EER are shown in Table 1. From

these results, we can see that our proposed generator

with the proposed critic (i.e., sVideoWGAN-hinge) out-

performed the existing benchmarks in all settings. We

can also observe that the proposed generator and pro-

posed critic improved accuracy separately. For example,

if we compare the proposed generator and the genera-

tor for VideoGAN [20] with the critic of WGAN, referred

to as sVideoWGAN and iVideoWGAN, respectively, then

accuracy improved from 80.8 to 81.9% and 6.2 to 6.1%

(see Table 1) for the Rank-1 and EERs, respectively, for

the occlusion pattern of RDLR_30, and 71.3 to 74.7%

and 7.4 to 6.8% for RDLR_50. Similarly, the accuracy

improved for the proposed generator network from 81.4

to 82.4% and 6.1 to 6.0% for Rank-1 and EERs, respec-

tively, for RDLR_30, and 73.2 to 75.9 and 6.8 to 6.6% for

RDLR_50 while the critic was trained with WGAN-hinge.

By contrast, the proposed critic WGAN-hinge also (i.e.,

incorporating hinge loss in WGAN) improved the accu-

racy separately, for example, 81.9 to 82.4% and 6.1 to 6.0%,

for Rank-1 and EERs, respectively, while the generator

network was proposed for the type of occlusion pattern of

RDLR_30.

Regarding existing benchmarks, CE reconstructed the

silhouette sequence in blurred and easy-to-identify areas

because it reconstructed only the occluded area frame

by frame, which led to a bad recognition accuracy com-

pared with other benchmarks, particularly for a high

degree of occlusion. Although iVideoWGAN used an

identical generator network to VideoGAN to reconstruct

the silhouette sequence, it improved the accuracy for

each experiment because the WGAN loss guided the

generator network better than that of the discriminator

of DCGAN.

4.8 Experiment for the known but different occlusion

pattern

In this section, we analyze the accuracy of gait recogni-

tion using the reconstructed silhouette sequence where

the occlusion pattern is different between a matching pair

(the probe and gallery). To prepare such experiments, we

selected patterns with the same occlusion type but dif-

ferent degrees of occlusion, and different occlusion types

with different degrees of occlusion. Specifically, we com-

pared the gait recognition accuracy of RDLR_30 against

RDLR_50 and RDLR_30 against RDBT_50. For the eval-

uation, in the same manner as the previous experiments

in which the occlusion pattern was known, the train-

ing sets for each experiment were prepared to reflect the

corresponding test sets.

The results for CMC and ROC are shown in Fig. 8,

and those for Rank-1, Rank-5, and EER are shown in

Table 2. From these results, we can see that the recogni-

tion accuracy without reconstruction drastically changed

because of the appearance change between the different

occlusion patterns. However, the tendency of recogni-

tion accuracy for other benchmarks was the same as

the experiment for the known and the same occlusion

pattern.

4.9 Experiment for the unknown occlusion pattern

In previous sections, we analyzed the experimental results

for gait recognition from the reconstructed silhouette

sequence within the same and different occlusion pat-

terns, and trained the parameters of CNN using the same

occlusion pattern as a test sample. Therefore, we know

the occlusion pattern in advance. However, it is difficult

to collect such data in a real-world scenario because of

the uncooperative and non-intrusive nature of gait bio-

metrics. In this section, we analyze the accuracy of gait

recognition when the occlusion pattern is unknown. For

this purpose, we trained the parameter of our proposed
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Fig. 5 Reconstructed silhouette sequence for the experiment for the known and same occlusion pattern for RDLR_50. The left-hand side of the

figure: second to seventh rows show the labels for the benchmark used to reconstruct the silhouette sequence, whereas the first and last rows show

the input and GT, respectively. Values in the parentheses under each label show the average L2 distance for the reconstructed and the ground truth

sequence. Occluded areas are gray only for visualization purposes; in the experiment, we masked the occluded area with black, namely the values of

the masked area are set to zero; this value is the same for the background

Fig. 6 Reconstructed silhouette sequence (every second frame) for the experiment for the known and same occlusion pattern for RDLR_50 to show

how a benchmark can reconstruct silhouette sequence. Green and red colors indicate falsely reconstructed and falsely unreconstructed pixels,

respectively, compared with GT. The left-hand side of the figure: second to seventh rows show the labels for the benchmark used to reconstruct the

silhouette sequence, whereas the first and last rows show the input and GT, respectively. Occluded areas are gray only for visualization purposes; in

the experiment, we masked the occluded area with black, namely the values of the masked area are set to zero; this value is the same for the

background



Uddin et al. IPSJ Transactions on Computer Vision and Applications            (2019) 11:9 Page 12 of 18

0.75

0.80

0.85

0.90

0.95

0 5 10 15 20

I
d

e
n

ti
fi

c
a

ti
o

n
 r

a
te

Rank

W/O reconstruction
CE
VideoGAN
iVideoWGAN
iVideoWGAN-hinge
sVideoWGAN
sVideoWGAN-hinge

0.00

0.05

0.10

0.15

0.00 0.05 0.10 0.15

F
R

R
 

FAR

W/O reconstruction

CE

VideoGAN

iVideoWGAN

iVideoWGAN-hinge

sVideoWGAN

sVideoWGAN-hinge

0.75

0.80

0.85

0.90

0.95

0 5 10 15 20

I
d

e
n

ti
fi

c
a

ti
o

n
 r

a
te

Rank

W/O reconstruction
CE
VideoGAN
iVideoWGAN
iVideoWGAN-hinge
sVideoWGAN
sVideoWGAN-hinge

0.00

0.05

0.10

0.15

0.00 0.05 0.10 0.15

F
R

R
 

FAR

W/O reconstruction

CE

VideoGAN

iVideoWGAN

iVideoWGAN-hinge

sVideoWGAN

sVideoWGAN-hinge

0.75

0.80

0.85

0.90

0.95

0 5 10 15 20

I
d

e
n

ti
fi

c
a

ti
o

n
 r

a
te

Rank

W/O reconstruction
CE
VideoGAN
iVideoWGAN
iVideoWGAN-hinge
sVideoWGAN
sVideoWGAN-hinge

0.00

0.05

0.10

0.15

0.00 0.05 0.10 0.15

F
R

R
 

FAR

W/O reconstruction

CE

VideoGAN

iVideoWGAN

iVideoWGAN-hinge

sVideoWGAN

sVideoWGAN-hinge

0.75

0.80

0.85

0.90

0.95

0 5 10 15 20

I
d

e
n

ti
fi

c
a

ti
o

n
 r

a
te

Rank

W/O reconstruction
CE
VideoGAN
iVideoWGAN
iVideoWGAN-hinge
sVideoWGAN
sVideoWGAN-hinge

0.00

0.05

0.10

0.15

0.00 0.05 0.10 0.15

F
R

R
 

FAR

W/O reconstruction

CE

VideoGAN

iVideoWGAN

iVideoWGAN-hinge

sVideoWGAN

sVideoWGAN-hinge

Fig. 7 CMC and ROC curves for the different experiments for the known and same occlusion pattern. The left side shows the CMC curves, and the

right side shows the ROC curves; P vs G means occlusion pattern of the probe and gallery, respectively, whereas RDLR_XX and RDBT_XX indicate

relative dynamic occlusion left to right and relative dynamic occlusion from bottom to top, respectively, along with the degree of occlusion (XX%).

Note that some benchmarks do not provide curves. a P vs G = RDLR_30 vs RDLR_30. b P vs G = RDLR_50 vs RDLR_50. c P vs G = RDBT_30 vs

RDBT_30. d P vs G = RDBT_50 vs RDBT_50
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Table 1 Rank-1/5 [%] and EER [%] for the experiment for the known and same occlusion pattern

Reconstruction method
RDLR_30 vs RDLR_30 RDLR_50 vs RDLR_50 RDBT_30 vs RDBT_30 RDBT_50 vs RDBT_50

Rank-1 Rank-5 EER Rank-1 Rank-5 EER Rank-1 Rank-5 EER Rank-1 Rank-5 EER

W/O reconstruction 57.4 70.0 9.5 30.9 39.6 18.6 66.4 79.4 8.4 52.2 66.8 10.8

CE 72.6 83.8 7.2 54.3 70.5 9.5 76.1 84.9 7.0 66.0 77.6 8.5

VideoGan 79.7 87.5 6.3 70.9 81.8 7.3 80.7 87.9 6.0 74.7 84.6 6.7

iVideoWGAN 80.8 87.8 6.2 71.3 82.0 7.4 80.5 88.0 6.0 75.2 84.8 6.7

iVideoWGAN-hinge 81.4 88.1 6.1 73.2 83.8 6.8 81.4 88.0 5.8 75.9 84.9 6.7

sVideoWGAN 81.9 88.5 6.1 74.7 84.5 6.8 82.0 88.7 6.0 76.8 85.4 6.6

sVideoWGAN-hinge 82.4 88.6 6.0 75.9 85.4 6.6 82.5 89.0 5.9 77.3 86.3 6.2

Bold and italic data indicate the best and second best accuracies throughout the work in this paper, respectively

approach and other benchmark networks by considering

all the occlusion patterns using training sets to make a

robust model that was capable of reconstructing any type

of occlusion pattern. For testing, we used the cooperative

and uncooperative setting and the unknown but the same

and different occlusion patterns.

4.9.1 Cooperative and uncooperative setting

The implicit assumption of the uncooperative setting is

that the occlusion pattern is inconsistent for all sam-

ples throughout the probe and gallery sets [24] (i.e., the

occlusion pattern is unknown), whereas for the cooper-

ative setting, the occlusion pattern is consistent for all
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Fig. 8 CMC and ROC curves for the different experiments for the known but different occlusion pattern. The left side shows the CMC curves, and the

right side shows the ROC curves; P vs G means the occlusion pattern of the probe and gallery, respectively, whereas RDLR_XX and RDBT_XX indicate

the relative dynamic occlusion left to right and relative dynamic occlusion from bottom to top, respectively, along with the degree of occlusion

(XX%). Note that some benchmarks do not provide curves. a P vs G = RDLR_30 vs RDLR_50. b P vs G = RDLR_30 vs RDBT_50
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Table 2 Rank-1/5 [%] and EER [%] for the experiment for the known but different occlusion pattern

Reconstruction method
RDLR_30 vs RDLR_50 RDLR_30 vs RDBT_30

Rank-1 Rank-5 EER Rank-1 Rank-5 EER

W/O reconstruction 0.8 2.2 39.6 2.0 5.5 29.2

CE 55.2 73.7 10.3 58.3 73.8 9.2

VideoGan 75.0 84.5 6.8 76.7 85.7 6.7

iVideoWGAN 75.3 84.7 6.6 77.0 85.8 6.6

iVideoWGAN-hinge 76.8 85.5 6.6 77.4 86.5 6.4

sVideoWGAN 78.7 86.6 6.5 78.2 86.5 6.3

sVideoWGAN-hinge 78.8 86.9 6.3 78.9 87.3 6.2

samples in a gallery set. To create such an uncoopera-

tive setting, occlusion patterns were randomly selected for

each subject for the probe and gallery sets, whereas for

the cooperative setting, ground truth samples were used

in the gallery set.

The results for the cooperative and uncooperative set-

tings for CMC and ROC are shown in Fig. 9, and Rank-1,

Rank-5, and EER are shown in Table 3. From these results,

we can see that the recognition accuracy for the coopera-

tive setting was better than that for the uncooperative setting

for each of the benchmarks. We can observe that the accu-

racy of CE degraded drastically from the cooperative to

uncooperative settings compared with other benchmarks.

For example, CE degraded the Rank-1 identification by

12%, whereas the maximum degradation for a benchmark

was 8.2% (e.g., for iVideoWGAN-hinge). We believe that

CE reconstructed the silhouette sequence frame by frame

and therefore lost the motion information, particularly

when a silhouette was completely occluded, as shown in

Figs. 5 and 6. As a result, CE lost subject discrimination.
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Fig. 9 CMC and ROC curves for the experiment for cooperative and uncooperative settings for the unknown occlusion pattern. The left side shows

the CMC curves, and the right side shows the ROC curves. Note that some benchmarks do not provide curves. a Cooperative. b Uncooperative
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Table 3 Rank-1/5 [%] and EER [%] for the experiment for

cooperative and uncooperative settings for the unknown

occlusion pattern

Reconstruction Uncooperative Cooperative

method Rank-1 Rank-5 EER Rank-1 Rank-5 EER

W/O
reconstruction

3.9 5.0 46.4 7.4 11.0 45.5

CE 42.1 59.2 11.5 54.1 68.9 9.8

VideoGan 56.8 71.4 8.9 64.1 75.6 8.3

iVideoWGAN 58.4 72.8 8.8 65.4 77.4 8.1

iVideoWGAN-
hinge

59.7 73.8 8.3 67.9 78.7 7.7

sVideoWGAN 63.4 75.6 8.5 69.8 80.1 7.6

sVideoWGAN-
hinge

64.7 76.5 8.4 70.5 79.9 7.6

We can also observe that sVideoWGAN-hinge did not

improve the accuracy from sVideoWGAN for the coop-

erative setting. We think that the proposed generator

network used element-wise addition of the encoder with

the decoder to keep the unoccluded silhouette in the

reconstructed silhouette as much as possible, andWGAN

supervised the generator to reconstruct by comparing the

reconstructed sequence with the ground truth sequence.

However, the proposed critic (WGAN-hinge) supervised

the generator by comparing not only the ground truth

but also the positive and negative reference sequences.

Therefore, the reconstructed silhouette sequence by com-

paring with ground truth, sVideoWGAN-hinge is similar

or slightly worse than that of sVideoWGAN as shown in

Figs. 5 and 6.

4.9.2 Unknown but the same and different occlusion

pattern settings

Because the learned parameter of CNN for the experi-

ment for the unknown occlusion pattern can reconstruct

any type of occlusion pattern considered in this research,

we selected the same and different occlusion patterns

between the probe and gallery for evaluation. Hence,

we chose the RDLR_30 occlusion pattern as the probe;

two typical occlusion patterns for each type of relative

dynamic occlusion, such as RDLR_30 and RDLR_50, and

RDBT_30 and RDBT_50, together with the ground truth

silhouette sequence as the gallery. Therefore, we could

compare the accuracy of learned parameters of CNN

for unknown occlusion patterns with known occlusion

patterns.

The results for CMC and ROC are shown in Fig. 10,

and Rank-1, Rank-5, and EER are shown in Table 4.

From these results, we can see that the recognition accu-

racy for CE degraded for each combination when com-

pared with that of the combination from the known

occlusion pattern. For example, Rank-1 and EER were

72.6% and 7.2%, respectively, when the occlusion pat-

tern was known for RDLR_30 vs RDLR_30, and 70.7%

and 7.4% for the unknown occlusion pattern. We think

that, because the occlusion pattern was unknown and

we therefore did not know the occlusion position to

replace the original unoccluded input pixel in the out-

put as post processing, the reconstructed silhouette

sequence for the experiment for the unknown occlusion

pattern is worse than that of known occlusion pattern.

Similar to the results for the experiment of coopera-

tive setting, sVideoWGAN-hinge did not improve the

accuracy from sVideoWGAN for RDLR_30 versus GT

(see Table 4).

We can also see that the identification accu-

racy degraded for VideoGAN, iVideoWGAN, and

iVideoWGAN-hinge when compared with the same

combination for the known occlusion pattern; how-

ever, the verification accuracy improved. We think that

those benchmarks used the same generator network of

comparatively shallow architecture and therefore lost

inter-subject discrimination when training the param-

eter for a wide variety of occlusion patterns. However,

the proposed generator can manage a wide variety of

occlusion patterns to train a robust model and improve

accuracy.

5 Conclusion and future work
We focused on gait recognition where all frames in a

sequence were occluded. For this task, we proposed an

approach based on deep conditional GAN that consisted

of a generator and critic networks. It allowed us to

reconstruct an unoccluded image from an occluded sil-

houette sequence for gait recognition. We showed that

triplet hinge loss along with WGAN regularized the

training of the generative network and reconstructed

the silhouette sequence with a high discrimination abil-

ity, which led to the better accuracy for gait recogni-

tion. To demonstrate the effectiveness of the proposed

approach, we considered several occlusion patterns with

relative dynamic and relative static occlusion for dif-

ferent degrees of occlusion that were quite common

in real-world scenarios and designed a set of experi-

ments in which the occlusion pattern between the probe

and gallery was the same/different and known/unknown.

The experimental results demonstrated that the recon-

structed silhouette sequence of the proposed approach

achieved state-of-the-art accuracy. Therefore, we con-

clude that the proposed approach has the potential to

tackle the challenges for gait recognition in the presence

of occlusion.

There are a number of limitations that need to be

addressed in future work. We considered artificially

simulated occlusion for a side view silhouette sequence.
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Fig. 10 CMC and ROC curves for the experiment for the unknown but same and different occlusion pattern settings. The left side shows the CMC

curves, and the right side shows the ROC curves; P vs G means the occlusion pattern of the probe and gallery, respectively, whereas RDLR_XX and

RDBT_XX indicate the relative dynamic occlusion left to right and relative dynamic occlusion from bottom to top, respectively, along with the

degree of occlusion (XX%). Note that some benchmarks do not provide curves. a P vs G = RDLR_30 vs RDLR_30. b P vs G = RDLR_30 vs RDLR_50. c

P vs G = RDLR_30 vs RDBT_30. d P vs G = RDLR_30 vs RDBT_50. e P vs G = RDLR_30 vs GT
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Table 4 Rank-1/5 [%] and EER [%] for the experiment for the unknown but same and different occlusion pattern settings

Reconstruction method
RDLR_30 vs RDLR_30 RDLR_30 vs RDLR_50 RDLR_30 vs RDBT_30 RDLR_30 vs RDBT_50 RDLR_30 vs GT

Rank-1 Rank-5 EER Rank-1 Rank-5 EER Rank-1 Rank-5 EER Rank-1 Rank-5 EER Rank-1 Rank-5 EER

W/O reconstruction 57.4 70.0 9.5 0.8 2.2 39.6 6.1 15.4 25.6 2.0 5.5 29.2 1.3 2.6 36.7

CE 70.7 82.4 7.4 51.3 70.5 10.7 66.4 78.7 8.1 52.5 69.9 9.9 62.9 77.4 8.1

VideoGan 78.0 86.3 6.2 72.9 83.5 6.8 78.0 86.2 6.2 74.3 84.6 6.7 75.5 85.0 6.5

iVideoWGAN 79.4 87.2 5.9 74.5 84.7 6.5 78.9 87.5 6.0 74.2 85.0 6.5 78.1 85.7 6.4

iVideoWGAN-hinge 80.0 87.8 5.8 76.3 84.9 6.5 79.8 87.4 6.0 76.3 85.6 6.3 78.6 86.6 6.2

sVideoWGAN 82.8 89.3 5.8 78.2 86.6 6.3 82.8 89.2 5.8 79.4 88.2 6.0 80.6 88.0 6.2

sVideoWGAN-hinge 83.1 89.4 5.5 78.5 86.8 6.2 82.7 89.3 5.7 79.8 87.5 5.9 80.5 88.0 6.2

In the future, we will use occlusion with multiple view

variation.
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