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Abstract

The current paper presents the spatio-temporal stabildlyais

of an instance of laminar separation, with the intentioneitd
mining the most appropriate forcing frequency to initiatawl
reattachment. The flow configuration is a NACA 0015 airfoil at
an angle of attacka) where laminar separation occurs imme-
diately downstream of the leading edge. A zero-net-mass-flu
(ZNMF) jet, normal to the surface and spanning the entird-lea
ing edge is used to achieve reattachment. The uncontrotied fl
field was generated numerically in [5] using a three-dimemeli
(3-D) Large Eddy Simulation (LES) and compared to the com-
plementary water tunnel experiments of [22]. Initial sianul
tions of the uncontrolled case agree well with the PIV anddor
measurements. The stability analysis presented herein-is u
dertaken on the mean velocity field of the LES. The frequency
determined by the stability analysis to maximise spatiaign

of the disturbance is finally compared to the forcing frequyen
that maximised lift enhancement in the experimental study.

Introduction

The control of separation in a laminar separated boundgeyr la

is inherently linked to the initiation of the transition torbu-
lence. Laminar separation occurs due to the presence of-an ad
verse pressure gradient (APG). In the present case, the PG i
applied via the curvature of the airfoil surface with regptec
the freestream. Laminar velocity profiles on the verge of sep
aration are significantly more unstable to small disturleares
opposed to those with a healthy velocity profile [14]. The for
mer are therefore more amenable to transition to turbuléorce

a given disturbance level in the environment, or an actiegly
plied control. If the flow becomes turbulent, by virtue of the
enhanced mixing, higher momentum fluid is drawn toward the
wall and the potential for reattachment is increased. Thé-pr
lem of determining the frequency that best promotes rdattac
ment in a laminar separated boundary layer, is thereforgy-eq
alent to determining the frequency that best initiatessitaon

to turbulence. The latter can be determined using the fertur
tion form of theNavier Stokes Equatior®NSE) to determine
the frequency that will maximise the spatial growth of awlist
bance.

Proper selection of the forcing frequency ensures that alow
control amplitude is required and hence less energy expende
to achieve the desired goal. This was illustrated in theystid
[16], when both steady and oscillatory tangential blowirgsw
applied to achieve a lift enhancement on a NACA 0015 airfoil
for a Reynolds number based on chord lengtRef= 1 x 1.

This study found that an order of magnitude less energy was
required for an oscillatory jet to achieve the same lift erdea
ment when compared to the jets generated by the steady blow-
ing mode. In the present study a ZNMF jet is adopted to apply
the control.
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ZNMF jets are a special case of oscillatory jets as they have
zero net mass injection into the domain over one complete cy-
cle, but importantly a non-zero momentum flow into the do-
main. They are typically formed by an oscillating membrane
within a cavity flush-mounted below the aerodynamic surface
The cavity locally inhales and exhales the working fluid, -gen
erating a separated shear layer from its orifice [7]. ZNME jet
have successfully been applied to a range of airfoil andnarb
flow configurations for separation control. Studies withlapp
cation to low-pressure turbines have again illustratedaved
efficiency of unsteady over steady suction, and jets normal t
the wall were more effective than tangential blowing [192]1
The airfoil application of [17] aRe; = 3 x 10° found that jets
closer to the uncontrolled separation point require a lgeer
velocity to achieve the same lift enhancement.

Paying attention to these previous findings, [22] later vt
experiments on a NACA 0015 airfoil &e. = 3 x 10°, with the
ZNMF jet normal to the surface and at the leading edge, which
was near the uncontrolled separation point for angles atlatt
past the post-stall region. An LES of this flow configuraticesw
then undertaken in [5]. This paper will provide a brief ovew

of both the experimental and numerical studies and thereptes
the stability analysis of the mean velocity field from the LES

Overview of Experimental Measurements

The parameter space explored in the experimental study2pf [2
is presented below non-dimensionalised on the basis of cord
length €) and freestream velocityJ,). The pertinent non-
dimensional parameters are the Reynolds numBey)( forc-

ing frequency £*), momentum blowing coefficienty), and

for completeness an alternate measure of the jet velotity, t
velocity ratio ¥ R). Table 1 outlines the parameter definitions,
the range explored with force measurements, and the parame-
ter set that maximised the lift enhacement. Flow visuatisat
were then undertaken at= 18° for the uncontrolled and con-
trolled flow with the parameters maximising lift enhancment
Dye streak visualisations gave a qualitative indicatiorthef
mean velocity fields, illustrating that the control sigruintly
reduced the mean separated region (see Fig.1). Particgelma
Velocimetry (PIV) measurements were also undertaken to-qua
tify the velocity fields.

Itis assumed that the maximum lift enhancement coincidés wi
the greatest level of reattachment and hence the mostieéfect
transition to turbulence of the laminar flow region. This as-
sumption allows the comparison of the frequency determimed
the experiments to maximise lift enhancemd®t(, ) to the
forcing frequency determined in the stability analysis taxm
imise spatial growth of a disturbandé,;(ax,sg).

Overview of Numerical Simulation

The study of [5] utilised the incompressible version of tbee



Parameter Range Lift Enhacement
Definition Explored Maximised with
Re = %€ 3x 10 3x 10
Fr={° 03<F*<2 13
u=2"(F™)2 | 0<<138x10° | 1.38x10°3
VR= ™= 0<VR<07 0.7
o1 0°<a<27 a=18

Table 1: Parameter exploration with force measurementseiexperiments of [22]

(@ (b)

Figure 1: Die streak flow visualisations of a NACA 0015 airftiac = 18°. (a) uncontrolled; (b) controlled. Modified from [22]
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Figure 2: Topology of the modified C-type grid. (a) block taymy; (b) body-fitted airfoil grid; (c) ZNMF jet cavity. [5]

Direction | Domain Size| Cell Count Cell Spacing Viscous Scaling
C 28c 808 2x10% <AC/c<1x 1072 ACT/c<24
N 6c 80 AN/c=12x10"3 ANT/c<3
z 1c 40 AZ/c=5.0x10"72 AZT /c < 150

Table 2: LES grid spacing details of [5]

boundary condition o%( = 0 was applied at the outlet and a
periodic boundary condition was applied in the spanwise di-
rection. The computational domain size, cell count, andl cel
spacings (non-dimensionalised by the cord and also in uisco
units) are summarised in Table 2. The ZNMF jet cavity was
also resolved by the grid, but note that no controlled resaré
presented herein. For further details on the numericalcambr
refer to [5].

It is acknowledged that the resolution in the spanwise toec

is not adequate, and the domain size in the spanwise dinectio
is possibly larger than necessary. The LES data presented ha
aAZ* <150, which is greater than the recommended level of
AZ+ < 2 as observed in the related studies of [1] and [23]. The
airfoil study of [23] also used a spanwise domain size @t0

in contrast to the domain size of lised in LES data presented.
Simulations are currently being undertaken with the approp

CDP to replicate the experimental study of [2Z}DP was de-
veloped at theStanford Center for Turbulence Reseasuid is

an unstructured finite volume based solver. Numerical dissi
pation is minimised by discretising the continuity and mome
tum equations such that they discretely conserve kinetoggn
This is enforced on the pressure and convective terms useng t
approach outlined in [8]. The dynamic Smagorinski subgrid
scale (SGS) model of [3] was adopted for the 3-D LES calcula-
tion.

A modified C-type grid of the NACA 0015 airfoil was adopted
with the block topology as illustrated in Fig. 2(a). The grid
was summarised by the inlet ar€)( the distance between the
body and the outer boundari{), and in the spanwise domain
(Z). A Dirichlet boundary condition ofu,v,w) = (U, 0,0) was
applied at the inlet, top, and bottom boundaries. A Neumann
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Figure 3: Mean streamlines of the natural state from: a) Péasarement of [22]; and b) 3-D LES of [5]

ate modifications (note the cavity has also subsequently bee
removed). Despite the lack of resolution in the spanwisecdir
tion, the integrated forces agreed with the force measurtame
to within measurement error and there is a qualitative agree
ment with the PIV measurements as illustrated in Fig. 3. From
this perspective the author assumes that the data is ademuat
perform an initial stability analysis.

Stability Analysis Formulation

The stability of a fluidic system is governed by the perturba-
tion form of the NSE to determine the effect that small per-
turbations have on the transition to turbulence. The pleatur
tion form of the NSE, considering the vortical instabil#iare
formed by substituting the Reynold’s decomposition of eéio

(ui = Uj + G;) and pressurep(= p+ f) into the NSE and ex-
panding the terms. Theverbar modifier designates the time
averaged mean and tlkille a small fluctuating component. As-
suming the mean component is not time varying, then the NSE
of only the mean terms are then subtracted away to return the
following system of equations

oG;
— =0, and 1
ax oan 1)
oG oG oG  op 10%G . ol
ot o Yok ok Rea@ T ax @)
whereuj g“' are quasi-linear terms and neglected in linear anal-

ysis methods [15].

For the present application, in the above system of equation
X1 = X is the wall tangential directiorx, =y is the wall nor-

mal andxs = z the spanwise. Usually for an attached semi-
bounded domain a boundary layer length scale is used to non-
dimensionalise the system. In this case, however, the veloc
ity profiles of interest are all separated. Consequentlystise

tem is instead non-dimensionalised on the basis of momentum
thickness ®s)) and convection velocityug| ) of the shear layer.
UgL = “15”2 whereu; anduy are the maximum and minimum
velocities at the ends of the shear layer respectively.

The analysis can then be classified as being either locabbadl
depending on the dimensionality of the mean velocity fielet L

us first introduce the state vectgr= (u,v,w, p)T. The most
general case is when all mean velocity components are non-
zero and each are functions of all three spatial dimensgrt

that

q: (LT(X7 Y, Z)7WX> Y, Z)>VV(X7 Y, 2)7 6()(7 Y, Z)) (3)
This mean field structure only allows Fourier decomposition
the time domain such that the perturbation vector is of thefo

d(x.y,zt) = G(x,y,2)e "%t cc. (4)

where thehat modifier designates the associated eigenvector
andc.c stands for complex conjugate. Substituting the pertur-
bation vectorgand mean field structurginto the perturbation

for of the NSE, results in a 3-D eigenvalue problem [21].

the physics of the system, however, suggest %ak % and
<< aq then the mean field can be simplified to be a function

of onlyx andy. This case is terme8iGlobalwith an associated
2-D mean field and perturbation vector of the form

a=(u(x,y),v(xy),0,p(x,y)).
d(xy,zt) = G(x,y)ek 1%t 4 cc.

©)
(6)

resulting in a two-dimensional (2-D) eigenvalue probler][2

Local stability analysis is applicable when the physicshe t
system suggest th%g < aq and$§ "q oq . This means that the

mean velocity field is paraIIeI and only a function of the wall
normal directiory as follows

q= (u(y),0,0,p(y)), @)
with associated perturbation vector
dxy.zt) = 4y)er i e (8)

whereky andk; are the complex wave numbers in thandz
directions respectively an@ is the complex temporal eigen-
value. Substituting) into into the perturbation form of the NSE
produces a second order four-equation system calle®the
Sommerfeld Equation€OSE) [10] [18]. In the invicid limit,
they are termed thRayleighequations [13]. The pressure per-
turbation is often removed by manipulating the OSE by utilis
ing an alternate state variablegs="(V, Coy)T, wherev'and Gy
are the wall normal velocity and vorticity perturbationspec-
tively. After some manipulation a forth order two-equatgys-
tem is produced, termed ti@r-Sommerfeld Squire Equations
(OSSE) [20]. The generalised eigenvalue problem is stated a

iOMG=Lg (9)
02 o v _( Los O v
'Q<0 ')(G&)_(C tso J\ @ ) O
with

Los= —ikxU2 + ik @+iu4 (11)

OoSs= X xayz Re

U

:|kza—y (12)
Lo ikl— — (2 (13)

ST ™Y Re
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Figure 4: Indicators of valid regions for local linear stépianalysis

unsteadiness quantified y/uZ s+ Vans + W2y /UsL-

— (il O 2_ & 2 4 _ 0%
whered = (|kX7W,|ky). Hencel< = W —kél and* = W

2kl + k41, wherek? = k2 + k2 and| is the identity matrix [15].

The above formulation captures the linear growth of a lotsl d
turbance in all three spatial dimensions and time. For an in-
stability to be unstable, it must grow in both space and time.
The imaginary components (subscripof the wave numbers
and eigenvalues indicate the growth rates and real comg®nen
(subscriptr) the period of oscilation. From equation 8 it can be
seen that ikyj < 0, § will grow and the system is spatially un-
stable, and the system is temporally unstabl;if- 0. Within

the framework of the linearised OSSE, the most unstableneige
value will always havé; = 0 [2]. This uncouples the equations
and it is valid to solve for only the wall normal velocity pert
bationV. If, however, a given system is found to be stable for
all possible wave numbers it is possible that there is a gerio
of significant initial transient growth due to non-orthogdity

of the eigenvectors, even though all disturbance will deoay
the limit of larget. If this is the case then it is possible to find
a larger transient growth for non-zekg and it is important to
search this space and also to solve for botnd ¢y [15]. If

the transient growth is large enough then non-linear effexift
become important. This then provides an alternate meaheof t
system to possibly become unstable in the limit of large

The present study will focus on the search of primary in$tabi
ities so the analysis will be confined kg = 0 and the solution

of only V. Strictly speaking the physics of the system suggest
that theBiGlobal formulation is the simplest model allowable
for the stability analysis. The local formulation, howewveill

be applied to regions in flow field that best satisfy the piibscr
assumptions.

Regions of Validity for Local Linear Stability Analysis

Three key assumption have been made up to this point regard-
ing the stability analysis: one, the flow is parallel; twag thean
velocity field is steady; and three, non-linear effects agligi-

ble. The degree to which each of these assumptions are met is
discussed in this section. The most appropriate regionden
take the stability analysis is then determined as the pritfde

best satisfies these assumptions.

To quantify how parallel the flow actually ig,is spatially aver-
aged (denoted by}) for a series of profiles normal to the air-
foil surface. Figure. 4(a) illustrates this quantity péattagainst

100
(Xcord — XcordAsep)/@BL,sep

L1 L1 L1 |
200 300 400 500

(b)

: (a) degree of parallelism quantified @y/ug; (b) degree of

the distance along the cord lengtk.d;q) from the point of
separationkqrdsep and non-dimensionalised by the boundary
layer momentum thickness at the point of separatég (ep-

All spatial averages were undertaken over a profile length of
5000, sep At the point of separatiorgorg = 3.60BL sep) (V)

is as large as.@us, and then reaches a minimum oflQs;
atXeorg = 1000 sep This is equivalent to a distance from the
leading edge oforqg = 0.08c. Past this pointv) again increases
and plateaus t0.0Ux atXcord = 3000 sep (0.24c).

The second assumption is addressed by spatially averaging t
magnitude of all root mean squanen) velocity components.
Figure. 4(b) illustrates that there is always an unsteady-co
ponent from the point of separation onward. It increasesifro
an initially modest level of @4ug, to approximately Glug, at
Xcord = 50095 sep (0.4¢).

The third assumption of linearity is quantified by determgi
the manner in whicl®g| grows with position along the shear
layer. In contrast to the previous two figures, where theorelo
ity profiles were taken normal to the airfoil surface, in tbése
they are taken normal to the centre of the shear layer as illus
trated in Fig. 5(a), and referenced with respect to the iigta
along the shear layers, again from the point of separation
XsLsep The centre of the shear layer was determined by fitting
a spline to the region of zero time averaged spanwise viyrtici
(wy). Fig. 5(b) illustrates an initial period of non-linear grih
within 1000g_sepOf the point of separation. Past this point the
growth is linear, and hence validates the linearity assiamnpt
over the range illustrated.

Assuming the shear layer has a parallel hyperbolic tangent p

file and the flow is invicid, the result of [9] can be used to
provide an indication of the frequency that will best proeot

reattachment. The study of [9] showed that the most spatiall
amplified wave grows when excited at the non-dimensional fre
quencyFmax-sg = 0.032. This result can then be dimension-
alised via

14
OsL OsL (14)

fmaksg =
where fmax sg is the associated dimensional frequency. This
relationship is applied to each velocity profile normal te th
shear layer and then non-dimensionalised with respecteo th
fmax-sgC

cord length Fm+ax,sg U->) to relate the results back to
the experimental study of [22]. Figure 5(c) illustratesttha
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Figure 5: Shear layer properties: (a) location of velocitgfites, with the shear layer illustrated by contourswf (b) degree of

linearity quantified by9s| /OgLsep (C) indication of best frequency
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F,ﬁax,sg plateaus pasts, = 3000g| septo a frequency simi-
lar to that determined to maximise lift in the experimentatly
of Fi.iist = 1.3. The velocity profile normal to the airfoil
surface that intersects the shear layexat= 3000g| sep is
Xcord = 2700 sep The stability analysis to follow will be ap-
plied normal to the airfoil surface at this position as it ishin

the linear region, equally satisfies the steady and parféiiel
assumption and the shear layer analysis method of [9] itelica
that the frequency that would maximise the spatial growth of
the disturbances is similar to that stated in the experiment
Sensitivity of the Orr-Sommerfeld Squire Stability Analys is

The Orr-Sommerfeld Squire local stability code solves the-g
eralised eigenvalue problem of equation 9 using a spectral
Chebyshev collocation method to discretise the wall nodiiral
mension. TheChebyshewerivative matrice®(™ replace the

% operators applied to the perturbation components. For de-
tails in this approach the interested reader is referred 1. [
The code is written inC++, utilising the Blitz++ library to
handle the complex number mathematics and matrix opegation
andclapackfor the eigenvalue calculations.

The sensitivity of the code to the reconstruction of the mean
velocity profiles and theChebyshespatial resolution is dis-
cussed in this section with application to the velocity peofi
atXcord = 2700pL sep For this particular profil®s, = 0.01%,

us, = 0.54U,, and the Reynolds number based on these param-

to initiate transitiorttmbuIencd:nﬁax,sg.

055:
054k
i a
0.53//./
os2f
0.51fF
057“|“|“|“|“|
: 200 400 600 800 1000
number of collocation pointsN
(b)

on.

etersRey, — 295 — 196. A domain size of 8B is used in
the following simulations.

The accuracy of the mean velocity field is very important in
. . 27 .
the analysis. Getting accurate data %?g required for the

term Log, is the most difficult task and the source of greatest
error. The error is minimised by using the unstructured dis-
cretisation withinCDP to find all of the Cartesian second order
spatial derivatives of the mean velocity field. The derixesi
and the mean velocities themselves were then interpolatied o
the velocity profile by fitting a 2-D polynomial surface to the
LES data. The stencil of node points on the LES mesh utilised
to fit the polynomial surface was selected on the basis of-prox
imity to the point on the velocity profile required for intelp-

tion. gilz‘_ (wherey is wall normal direction and not the Cartesian

direction) was then reconstructed from the cartesian seoon
der derivatives. The sensitivity of the most unstable aigkre

to the polynomial orderf) was tested. Figure 6(a) illustrates
an initial fluctuation in the real component of the wave speed
(cr = Qr/kxr) and then plateaus pagt= 3. The imaginary
component § = Q;/kxr) changed negligibly in comparison.
p =5 was required for the velocity profiles to be completely
smooth and utilised for the all of the following simulationis

is acknowledged that the largest accumulation of errorsirscc
at this step. The error will be quantified in the future by gsin
an appropriate analytical test function to trace the acdation

of the error throughout the process.
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The sensitivity of the spatial resolution was then testetdig-

ing the polynomial order constant pt= 5 and increasing the
number of Chebyshev collocation poir(td + 1). Figure 6(b)
shows a convergence gf atN = 512. This level of spatial res-
olution was then used for all following simulations. Thelsca
on they axis is the same in both Figure 6(a) and Figure 6(b)
to highlight the greater variability io, as a result of the poly-
nomial order. The effect of wall normal domain size was also
tested and found to modifgt a negligible amount in compari-
son to the polynomial order and spatial resolution.

Mapping of the Orr-Sommerfeld Squire Equations

As previously stated a system is spatially unstablg jif< 0. In

this section a series of unstable spatial wave numbers gf var
ing growth rate and period are mapped to the temporal com-
plex plane through the OSSE. For each grid point in Fig. 7(a)
an eigenvalue problem is solved and the most unstable eigen-
value identified. Each grid point is then coloured by the ghow
rate of the eigenvalu€;. The thick black line indicates the
line whereQ; = 0. Fig. 7(b) is an alternate representation of
the same data. Instead of being plotted on the complex spa-
tial ky wavenumber plane, it is plotted on the complex tempo-
ral Q plane and now coloured with contours of spatial growth
rate kyj. The thick black lines in each figure are equivalent.
This line is important as it is the line with no temporal growt
This is representative of the ZNMF jet providing a perturba-
tion at a constant amplitude. The task now is to identify for
which temporal period; the spatial growth is a maximum.
This is achieved by interpolating the values of the spatiath
ratekyj onto the thick black line. The result of this interpola-
tion is plotted in Fig. 7(c) withkj negated as a perturbation is
spatially unstable foksj < 0. The maximum spatial growth
occurs atQrmax-sg = 0.227. The frequency that maximises

spatial growth is thereforérmax_sq = % = 0.036. This

is in close agreement with the previously stated result df [9
Of Fmax-sg = 0.032. TheFmax_sg determined from the current
analysis is dimensionalised via

FmaxfngSL _ 0.036x 0.544J, _ 1.64U

OgL 0.01x - C (15)

fmax—sg =

and finally scaled with respect to the airfoil length scales t

yield

fmax-sgC
Uo

This is again in close agree with the frequency determinétn

experimental study of [22] to maximise the lift enhancenant

o + _
the airfoil of F.1, isy = 1.3.

1.64. (16)

Fmax—sg =

The complexky associated with the eigenvalue wi =

Qr max-sg+ 0i was interpolated from the results of the eigen-
value simulations to bé&y = 0.232— 0.125. This particular
wave number was simulated and produces a temporal eigen-
value ofQ = 0.227+4 0.002. This eigenvalue has no temporal
growth, to two decimal places, and is assumed to be an ade-
quate representation of the desired disturbance. The toagni

of the normalised wall normal velocity eigenvectpl) associ-

ated with this eigenvalue is illustrated in Fig. 7(d). It Istted
along sideu/ugy, to illustrated that the majority of the energy
within ¥ is concentrated in the shear layer region. It is therefore
evident that the excitation of the shear layer is respoadii

the transition to turbulence. This causes an increase imgix
with the freestream at this station and higher momentum fluid
is draw to the wall, thus promoting reattachment.

This instability can also be classed as convective. Thehpinc
point in Fig. 7(b), designnated by the poRtindicates the lo-
cation where the group velociigyr = 0 [6]. cgr is the speed

at which a wave is convected in space. If an instability is un-
stable wheregr = 0, then the instability is classed as absolute,
as eventually the instability will grow and fill the entirerdain
and remain even after the source of the instability has been r
moved [4]. In this case, however, the pinch point is spatiafi-
stable (by virtue of only simulating spatially unstable waum-
bers), but temporally stable & < 0 at this point. The instabil-
ity is, therefore, convective. This means that when thecoaf
the control is removed, the the instability will convect gnend
the system will return back to the initial uncontrolled st§t].
This behaviour was also observed in the experiments of [22].

Concluding Remarks

The present paper has discussed the process of undertdking a
cal stability analysis on an instance of laminar separatitre

key issue throughout the process has been one of spatial reso
lution. This line of research was initiated with the expegirts

of [22], with PIV measurements providing an initial mean ve-
locity field. The spatial resolution of this mean velocityldie
was then increased in the numerical study of [5] using the PIV
measurements to validate the LES. The spatial resolution re
quirements for the stability analysis presented hereiwgher,

is still greater than available from the LES. A 2-D polynomia
surface was fit to the LES data to interpolate the data redjuire
for the additional spatial resolution. It is this final stég@ittre-
quires additional development and verification.

Despite the issues surrounding the interpolation of therwea
locity field, and the analysis not strictly adhering to theelsta-
bility assumptions, the analysis presented herein hasgedv

an understanding of the physics of the system. The frequency
determined to maximise spatial growth of a perturbatiomesta
with respect to the cord Iengﬂﬁﬁax_sg = 1.64, was found to

be very similar to the frequency determined in the experisien
of [22] to maximise lift enhancment o' . =13. The
analysis has also highlighted that the associated initatsl
convective in nature and that the excitation of shear layéne
key physical mechanism for transition to turbulence.
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