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Abstract In part due to the proliferation of GPS-equipped mobile devices,
massive volumes of geo-tagged streaming text messages are becoming available
on social media. It is of great interest to discover most frequent nearby terms
from such tremendous stream data. In this paper, we present novel indexing,
updating, and query processing techniques that are capable of discovering top-
k most frequent nearby terms over a sliding window. Specifically, given a query
location and a set of geo-tagged messages within a sliding window, we study the
problem of searching for the top-k terms by considering term frequency, spatial
proximity, and term freshness. We develop a novel and efficient mechanism to
solve the problem, including a quad-tree based indexing structure, indexing
update technique, and a best-first based searching algorithm. An empirical
study is conducted to show that our proposed techniques are efficient and fit
for users’ requirements through varying a number of parameters.
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1 Introduction

With the proliferation of social media, cloud storage, and location-based ser-
vices, the amount of messages containing both text and geographical infor-
mation (e.g., geo-tagged tweets) are skyrocketing. Such messages, which can
be modeled as geo-textual data streams, often offer first-hand information for
a variety of local events of different types and scale, including breaking news
stories in an area, urban disasters, local business promotions, and trending
opinions of public concerns in a city.

Data streams from location-based social media bear the following natures:
(1) bursty nature - messages regarding a particular topic can be quickly buried
deep in the stream if the user is not fast enough to discover it [28]; (2) local-
intended nature - users from different locations may post messages related
to diverging topics [62]. With thousands of messages being generated from
location-based social media each second, it is of great importance to maintain
a summary of what occupies minds of users.

To address the problem, existing proposal [47] aims at finding the top-k
locally popular terms in content within a user-specified spatio-temporal region.
However, in most cases it is difficult for a user to specify a rectangular region
on the spatial domain. Instead, a user may prefer a rank-ordered list of terms
by taking both term frequency and location proximity into consideration.

Based on the user requirements, we consider two kinds of top-k term query,
Location-based Top-k Term Query (LkTQ) and Spatio-Temporal Top-k Term
Query (STkTQ). In particular, the LkTQ returns top-k locally frequent terms
by taking into account both location proximity and term frequency for geo-
textual data over a sliding window, and the STkTQ returns top-k locally trend-
ing terms by taking into account location proximity, term frequency, and term
freshness for geo-textual data over a sliding window.

Figure 1 provides a toy example of LkTQ. Let us consider 10 geo-tagged
tweets located on the map of China. The point with square label indicates
the query location. The points with circle labels are geo-textual messages. For
each geo-textual message, we present its textual information and correspond-
ing distances to the query point. The results of the LkTQ are the k most
locally popular terms based on a location-aware frequency score, which are
shown in Figure 1b. The score of a term is computed by a linear combina-
tion of the term frequency and location proximities between the query and
the messages containing the term. Figure 2 presents an example of STkTQ.
Besides textual and spatial information, STkTQ takes temporal information
into consideration (i.e., the timestamp of each message). For each geo-textual
message, we present its textual information, distance to the query point, and
timestamp. The results of the STkTQ are the k most locally trending terms
based on a Spatio-temporal frequency score, which are shown in Figure 2b.
The score of a term is computed by a combination of the term frequency,
location proximities, and freshness of messages that contain the term.

A straightforward approach for answering an LkTQ or an STkTQ is to eval-
uate all terms of messages within the current sliding window. Specifically, for
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(a) Messages and distances (b) Tag Cloud

Fig. 1 Example of LkTQ

01-29 9:58

01-29 19:23

01-30 10:31

01-31 0:31

02-02 14:22

02-03 15:32

02-03 19:12

02-05 06:45

02-03 17:09

02-05 21:38

(a) Messages, distances, and timestamps

haze B&R
virus

affect

oldest newest

(b) Tag Cloud

Fig. 2 Example of STkTQ

each of such terms we compute the location-aware frequency score or spatio-
temporal frequency score between the term and the query. This approach,
however, will be very expensive for a large number of geo-textual messages.
For efficiently processing a query, we need to address the following challenges.
First, it is computationally expensive to return the exact result of LkTQ or
STkTQ. Hence, we need seek approximate solutions with high accuracy. Sec-
ond, we need to measure term frequency, term location proximity, and term
freshness in a continuous fashion. Therefore, it is non-trivial to propose a
hybrid indexing structure and its corresponding algorithm that could effec-
tively prune the search space based on term frequency, location proximity ,
and freshness simultaneously. Because of the sliding-window scenario of LkTQ
and STkTQ, the indexing mechanism must be able to handle geo-textual data
streams with high arrival rate.

This paper expands on a previous study [55]. In particular, based on the
LkTQ we define a novel query STkTQ for discovering bursty and trending
terms over a stream of geo-textual objects. The STkTQ additionally takes
temporal aspect into account. We introduce a matric for measuring the spatio-
temporal popularity of a term within a sliding window, which considers term
frequency, spatial proximity, and term freshness. Unlike the metric of LkTQ,
the scoring function of STkTQ (spatio-temporal popularity score) is changing
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over time as time elapses. To efficiently compute spatio-temporal popularity
score, we develop a backdate mapping method that capable of preventing the
score from being re-computed over time. Next, we propose a best-first search
algorithm to efficiently process the STkTQ. We also report on experiments
that offer insight into the efficiency performance of our proposed algorithm for
processing STkTQ in different settings.

Our contributions are summarized as follows:

1. We define a new problem of processing LkTQ that searches for the top-k
locally popular terms by taking into account both term frequencies and
location proximities from geo-textual dataset.

2. For taking term freshness into account, we propose a new query named
Spatio-Temporal Top-k Term Query (STkTQ) that searches for the top-k
locally trending terms by considering term frequencies, location proximi-
ties, and term freshness from geo-textual dataset.

3. A hybrid quad-tree based indexing structure that has low storage and
update cost and a searching algorithm with effective pruning strategies are
proposed to enable the fast and accurate top-k term search. Specifically,
since it is impossible to store every messages in such a big streaming data,
we augment each quad-tree node with a summary file for summarizing the
term frequencies. The non-leaf node maintains an upper bound error by
storing the merging summaries of its child nodes. Misra-Gries summary
(MG summary) [27] and Space-Saving summary (SS summary) [25] [26]
are two simple and popular summaries for frequency estimation and heavy
hitters problems. Due to the merge processing [1] of MG summaries is
lightweight and has a guarantee on the accuracy of frequency [47], and
there are a lot of merging manipulations in quad-tree nodes, we adopt the
MG summary instead of the SS summary.

The rest of this paper is organized as follows: In Section 2, preliminaries
and some related works are introduced. In Section 3, we provide our proposed
solution on the problem. An experimental analysis is presented in Section 4.
Section 5 provides a discussion and a conclusion is presented in Section 6.

2 Preliminaries and Related Work

2.1 Top-k Spatial Querying

Top-k spatial-keyword query (e.g., [3–5, 10, 15, 29, 59–61, 65]) retrieves k most
relevant geo-textual objects by considering both location proximity (to query
location) and textual similarity (to query keywords). Hybrid indices are de-
veloped to store the location and text information of objects, which use both
location information and text information to prune search space during the
query time. Most of such indices combine spatial index (e.g., R-tree, quad-tree)
and the inverted file for storing location and text information, respectively.
However, these studies aim at retrieving top-k geo-textual objects, which is
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different from the problem of retrieving top-k terms. Shang et. al. extended this
idea to trajectory data and studied spatial-keyword trajectory search [37,64].

2.2 Frequent Item Counting

In stream data processing, aggregation is a widely studied problem. Exist-
ing aggregation techniques are commonly categorized into counter-based tech-
niques and sketch-based techniques.

Counter-based techniques monitor all the items with a fixed number of
counters, each message for an individual counter in a subset of S. When an
item in the monitored set comes, its counter is updated. If the item is not in
the monitored set and the counters are full, then some other actions will be
taken in different algorithms. For instance, Space-Saving algorithm can find
any item with the minimum counter value, replace the new item with it, and
then increase the counter by 1.

Another popular algorithm - MG summary is very simple to implement.
Given a parameter k, since an MG summary stores k − 1 (item, count) pairs,
there are three cases when dealing with a new coming item i in the stream.

1. if i has already maintained in the current counters, increase its counter
value by 1;

2. if i is not in the monitoring list and the number of counters does not reach
k, insert i into the summary and set its counter value to 1;

3. if i is not in the monitoring list and the summary has maintained k coun-
ters, we decrement all the counter value of messages in the monitored set
by 1 and remove all the messages whose counter value is equal to 0.

Other notable counter-based algorithms include LossyCounting [24] and Fre-
quent [8] [14].

Sketch-based techniques monitor all the messages rather than a subset of S
using hashing techniques. Messages are hashed into the space of counters, and
the hashed-to counters will be updated for every hit of the corresponding item.
The CountSketch algorithm [51] solves the problem of finding approximate top
keywords with success probability (1-δ). The GroupTest algorithm [7] aims at
searching queries about hot items and achieves a constant probability of failure,
δ. And it is generally accurate. Count-Min Sketch [6] is also a representative
Sketch-based technique.

Sketch-based techniques have less accuracy and less guarantees on fre-
quency estimation than counter-based techniques due to hashing collision.
Moreover, they do not provide guarantee about relative order in the continuous
stream. Therefore, we adopt counter-based techniques in our work.

2.3 Systems for Term-based Searching

There are several recent systems using related techniques. Skovsgaard [47] de-
signs a framework supporting indexing, updating and query processing which
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are capable of return the top-k terms in posts in a user-specified spatio-
temporal range. The called adaptive frequent item aggregator (AFIA) system
is implemented through multiple layers of grids to partition space into multiple
granularities. In each grid cell, a precomputed summary is maintained. The
system also performs a checkpoint to prevent the situation where a counter
enters the top-k counters along with its possible error as a standalone system
employing spatial-temporal indexing.

BlogScope [2] is a system which collects news, mailing list, blogs, and so
on. It supports finding and tracking the objects, events or stories in real world,
monitoring most of the hot keywords as well as the temporal/spatial bursts.
The biggest drawback of BlogScope is that it cannot aggregate keywords ac-
cording to user-specified spatio-temporal region. Moreover, it has weak time-
liness which only support the search in a few minutes.

NewsStand [48] and TwitterStand [30] are two similar systems. NewsStand
is a news aggregator of spatio-textual data, collecting geographical contents
from RSS feeds into story clusters. Users are expected to retrieve and search
some stories related to the query keywords within the geographical region.
The difference between NewsStand and TwitterStand is that TwitterStand
uses Tweets as data source instead of RSS feeds. They both adopt a spatio-
textual search engine, which supports spatio-temporal searching not long, on
a small ProMED dataset. However, both of the systems have a not high rate
of updating.

In the next step, it is of interest to integrate spatial, temporal, and textual
data to define novel queries. First, we may integrate trajectory data [18–23,
31, 34, 35, 38, 63, 66] with textual data and to conduct novel spatio-textual
trajectory search, recommendation, and analysis studies. Second, we may use
POI (points of interest) data and geo-tagged social media data to discover
hot regions and locations [11, 36, 39, 43–46, 49, 57]. Third, we may also study
how to integrate textual data to routing problems [32, 33, 40–42, 52, 56, 68] as
well as spatio-textual routing problem. Fourth, we may study how to integrate
streaming data sampling methods and pattern analysis [12,13,16,17,50,53,54,
58,67] integrating with spatio-textual data.

3 Problem Statement

3.1 Geo-textual Message

Let D be a 2D Euclidean space, W be a sliding window, S be a set of geo-
textual messages located within D and W . Each geo-textual message is de-
noted by o = (pos, text, time), where pos is a point location in D, text is text
information, and time denotes timestamp.
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3.2 Location-aware Top-k Term Query (LkTQ)

An LkTQ q is represented by a tuple (loc, k) where loc indicates the query
location and k denotes the number of result terms. It returns k terms with the
highest location-aware frequency score of messages within W .

The location-aware frequency score of a term t in the sliding window W is
defined as a linear combination of the distance and the frequency of the term
in W :

FS(t) = α×
freq(t)

|W |
+ (1− α)× (1−

d(q,Wt)

ddiag × |Wt|
) (1)

where freq(t) is the number of messages containing term t, |W | is the number
of messages in the sliding window W , d(q,Wt) is the sum of distance between
the query and the messages that contain t in window W , ddiag is the diagonal
length of the rectangular region R, |Wt| denotes the number of messages in W
that contain t, and α (0 ≤ α ≤ 1) is a parameter which balances the weight
between the term frequency and the location proximity.

3.3 Spatio-temporal Top-k Term Query (STkTQ)

An STkTQ q is represented by a tuple (loc, k) where loc indicates the query
location and k denotes the number of result terms. It returns k terms with the
highest spatio-temporal popularity score of messages within W .

The spatio-temporal popularity score of a term t at timestamp δ in the
sliding window W is defined as follows:

PS(t, δ) = (α×
freq(t)

|W |
+ (1− α)× (1−

d(q,Wt)

ddiag × |Wt|
))× TS(δ) (2)

where freq(t) is the number of messages containing term t, |W | is the number
of messages in the sliding window W , d(q,Wt) is the sum of distance between
the query and the messages that contain t in window W , ddiag is the diagonal
length of the rectangular region R, |Wt| denotes the number of messages in
W that contain t, α (0 ≤ α ≤ 1) is a parameter which balances the weight
between the term frequency and the location proximity, and TS(δ) denotes the
temporal score of term t at timestamp δ, which is computed as Equation 3:

TS(δ) =
1

|Wt|
×

∑

o∈Wt

×D−(δ−o.time), (3)

where D is base value that reflects the rate of the freshness decay. Based on
Equation 3 we can find that the value of TS(δ) is monotonically decrease with
te−o.tc. It is widely applied as a popular measurement of recency for streaming
items (i.e., we prefer the fresh items in the sliding window). According to the
experimental evaluations [9], the exponential decaying function is capable of
effectiveness in blending the freshness and text similarity of messages.
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Fig. 3 The basic structure of a quad-tree.

Theorem 1 Equation 2 guarantees that the relative ranking of two different

objects w.r.t. a query is consistent as time elapses. Specifically, if PS(t, δ) >
PS(t′, δ), then ∀∆ > 0 we have PS(t+∆, δ) > PS(t′ +∆, δ).

Proof . Based on Equation 3 and the assumption that PS(t, δ) > PS(t′, δ), we

have (α× freq(t)
|W | + (1− α)× (1− d(q,Wt)

ddiag×|Wt|
)) > (α× freq(t′)

|W | + (1− α)× (1−
d(q,Wt′ )

ddiag×|Wt′ |
)). Because ∆ > 0, we have D−(δ−o.time) > D−(δ+∆−o.time). So we

complete the proof.

4 Proposed Solution

The details of our algorithm is presented in this section for handling top-k
query. Specifically, we first introduce the data indexing model in the algorithm
to store all the data items (Section 3.1). Then, we show the process of the query
searching in Section 3.2, including the best-first algorithm which explain how
we can get the terms with highest scores.

4.1 Data Indexing Model

We use a data structure of quad-tree to store all the spatial-text data items in
stream for faster indexing. Quad-tree is a tree-like data structure, whose basic
idea is to divide the geography space into different levels of tree structures. It
divides the space of known range into four equal subspaces, recursively until
the tree reaches a certain depth or stops after a certain requirement. Quad-
tree is widely used in image processing, spatial data indexing, fast collision
detection in 2D, sparse data, and so on. The basic structure in our algorithm
is shown in Figure 3. One thing to mention, the different color of the nodes
corresponds to the certain quadrant areas in the rectangle of right side.

Quad-tree has very simple structure, and when the spatial data object
distribution is relatively uniform, it has relatively high insertion and query
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efficiency. The black points in the figure is the data items which locate in their
expected region. In our algorithm, we set M as the largest number of data
items in which a leaf node will contain. That means, if the number of items
stored in a node is more than M , this node will be split into four nodes with
an equal size. This is our stop splitting condition of a node instead of fixing
tree depth.

4.2 Processing of LkTQ

According to our problem definition in Section 2.1, we proceed to describe
the framework we use to get top-k terms with the highest scores rapidly and
accurately in a specified situation adapting the continuous increases of the
social geo-tagged stream data.

4.2.1 Overview

Different from the conventional spatial querying algorithm, the location com-
ponent of LkTQ is a point instead of a specified spatial region. We aim to find
the most relevant k terms in a comprehensive consideration with distance and
frequency. Since we maintain a fixed number of items over a sliding window,
so when an item in the stream comes and is inserted, an item with the oldest
time stamp should be deleted.

Algorithm 1: Misra-Gries(counters k, stream T)

n← 0;
T ← ∅;
foreach i do

n← n+ 1;
if i ∈ T then

ci ← ci + 1;

else if |T | < k − 1 then
|T | ← |T | ∪ {i};
ci ← 1;

else

for all j ∈ T do
cj ← cj − 1;
if cj = 0 then
|T | ← |T |\{j}

4.2.2 Summary Merging

Each quad-tree leaf node stores the summaries of all the textual information
of contained items. [1] has proved that MG summary and SS summary are
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10

isomorphic and SS summary can be transferred by MG summary. Recall that,
for the reason that the merge processing of MG summaries is easy and efficient,
while there are a lot merging manipulations in quad-tree, we adopt the MG
summary instead of the SS summary. The process of merging MG summaries
is pretty simple. First combine two summaries by adding up the corresponding
counters. This step will result in up to 2k counters. Then a prune operation
is manipulated: take the (k + 1)-th largest counter, and subtract its counter
value from all the counters, and finally remove all the non-positive counters.
This is a process with constant number of sorts and scans of summaries of size
O(k). The details of the algorithm is shown in Algorithm 1.

In this algorithm, all the nodes including leaf nodes and parent nodes store
summaries of the items in it. In leaf nodes, summaries are computed using the
process stated in Algorithm 1, while in parent nodes, summaries come from the
merging processing of all its child node using the method we describe above.

4.2.3 Computing the Location-aware Frequency Score

Given a term, to obtain its score, we have two steps:

1. first we need to compute the score in each node employing the summaries
stored in each node. As we define in Section 2.1, the formula to calculate
the score is:

score(t) = α ∗
fre

|S|
+ (1− α) ∗ (1−

d

ddiag
)

For convenience, we divide and score calculation formula as the ”Frequency
part” ( fre|S| ) and the ”Distance part” (1 − d

ddiag
). Essentially, the score is

a linear integration of the two parts. As the MG summaries estimate the
frequency of any item with error at most n/(k+1) (n is the number of all
the items), we add the maximum error to fre to calculate the ”Frequency
part”. d is defined as the distance between the query and the object which
contains the term, here, we use the minimum distance between the query
and the four edges of the node which contains the term as an upper bound
value.
Since a term may occur more than one time in a node, we need to consider
the redundant calculation of the same term in distance. For each part, we
recursively compute the maximum part score from the quad-tree root, after
that, the ”Distance part” needs to be divided by the number of the the
same term shown in the same node. Finally, we calculate the sum of the
two parts with a linear balance parameter α. Obviously, in this way, we
get an upper bound score for each term in each node.

2. After we get all the scores in each node for a term, the score of the term can
be integrated. It is computed by adding the score of several nodes to make
the score value as big as possible. The rule must be kept that the nodes
involved should cover the whole area of the given region (the quad-tree).
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4.2.4 Best First Querying Algorithm

Pseudo code of the detailed algorithm implementation is provided in Algorithm
2.

α is a weight parameter to balance the distance and frequency in comput-
ing score. This parameter will be varied in our experiments to validate the
influence. C in Line 2 is a priority queue storing all the candidate words. To
get the candidate terms, we extract the summaries in root node of the quad-
tree. However, we consider the situation, if the candidates are thousands level
while the user specified k is only a very small number, then the redundant
computing of thousands term scores will cost a lot and waste too much time.
So we come up with a pruning method to avoid this while ensuring that we
will not miss any real valuable candidate terms.

The pruning process is as follows: after we get the exact k from user, we
recompute the score of the k-th term, making the score of ”distance part” to 0
as a lower bound. Then, from the (k + 1)-th term in the root summary (since
the summary are all sorted), we recompute their score of ”distance part” as
full value as their upper bound. When i-th (i > k) term has an upper bound
score which is smaller than the lower bound score of the k−th term, we believe
that all the words after the i-th term have no possibilities to get onto the top
of the priority queue in the near future of k times of manipulation of Line 4-13
in Algorithm 2.

Algorithm 2: GetTopKTerms(QuadTree tree, Query query)

α← ALPHA;
C ← a priority queue storing candidate words;
Result← the list storing the top− k results;
foreach i = C.poll()&&Result.size() < query.getK() do

tree.traverse(root, node) :
i.score′ ← score of i in one of node′s children;
i.score′ ← getWordScore(tree, query, i, α);
if i.score′ < i.score then

replace(i.score, i.score′);

until node is Leaf and get the exact score : i.score exact;
C.add(i);
if C.poll().score == i.score exact then

Result.add(i);

Return Result;

Line 4-13 shows the process to find the exact score of a term. For each
candidate which is popped from the top of the priority queue, we traverse the
whole tree from the root to leaf nodes. If we find a smaller score in a child node
than in the parent node, we replace the current score with the new smaller
score and insert the new score into the queue until we get a small enough score
which is equal to the top element in the priority queue. Then, this term with
an exact score will be added in our result list - see Line 12-13.
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4.3 Processing of STkTQ

We proceed to present our method for processing STkTQ. The framework of
processing STkTQ is similar to the framework of processing LkTQ. However,
we need to compute spatio-temporal popularity score instead of location-aware
frequency score. Differently from location-aware frequency score, the spatio-
temporal popularity score of a term is changing over time. It is computational
prohibitive to maintain an up-to-date spatio-temporal popularity score by re-
computation. To address this challenge, we propose a novel method to compute
spatio-temporal popularity score without re-computation, which is presented
as follow.

Computing the Spatio-temporal Popularity Score Based on Equation 2,
to avoid re-computation of spatio-temporal popularity score of a given term
we need to make TS(δ) consistent. So we develop a backdating technique
that maps the spatio-temporal popularity score to a constant timestamp. In
particular, we first split the spatio-temporal popularity score into a set of
elements. Each element is the score value that is contributed by an object. For
each score element, we backdate its scoring value to the earliest timestamp
of the sliding window. However, we have to process a large number of score
elements, and each score element may have different object timestamps.

Definition 1 Score Element: Given a term t, a timestamp δ, and a geo-
textual object o that contains t, the score element contributed by o for term t
at timestamp δ is calculated as follows:

Element(t, δ, o) = FS(t)××
1

|Wt|
×D−(δ−o.time). (4)

Different objects may have different timestamp, which make it difficult
to compute the score element because we have to compute them one by one
based on unique timestamp for each object. So we convert Element(t, δ, o) of
different objects into a score element that has a unique timestamp, which is
called backdate timestamp. Definition 2, instead of the subscription update
threshold, where tb is a subscription-independent backdated time.

Definition 2 Backdate Timestamp Score Element. Let o be an object,
the backdate tiemstamp score element at time δ is defined as Equation 5

Element(t, δ, o) = FS(t)××
1

|Wt|
×D−(δ−b), (5)

where b is a backdate timestamp, which is the earliest time of the current
sliding window.

5 Experimental Study

We conduct experiments to evaluate the solution and to compare with other
feasible methods. All the experiments are conducted on a workstation with
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Intel(R) Xeon(R) CPU E5−2643 0 @3.30GHz and 64 GB main memory on a
64-bit Windows operating system. And the whole framework is implemented
in Java.

The dataset consists of tweets collected in the United States. It has 20,000,000
messages, and each of them contains a timestamp, a list of terms, and the lon-
gitude and latitude of the tweet (i.e., the geographical tag set by user). Notice
that the result of each set of experiments is averaged over 10 independent trails
with different query inputs.

5.1 Baselines

We use the following exact algorithm as the baseline for making comparison
and validation of our approach. The indexing structure of the baseline is also
based on a quad-tree. Specifically, in each leaf node of the quad-tree, we store
the exact frequency of each term. When a new message arrives, we update
the frequency in the corresponding node. To get the frequency information of
a non-leaf node, we traverse the quad-tree recursively until we reach the leaf
node. This approach can return the exact result of both LkTQ and STkTQ.
Therefore, it can be used as a measure of querying accuracy in subsequent
experiments.

5.2 Index Updating of Quad-Tree

First, we conduct an experiment to evaluate the performance when we insert
and remove a message in the sliding window. Because we aim to find the top-k
term over a sliding window, if the sliding window is full, when a new message
is generated, an old message will be deleted. Experimental results are shown
in Figures 4 and 5. We can see that the two manipulations in baseline and our
approach scarcely cost time as the index updating process are included. This is
based on a well-constructed quad-tree. Therefore, we conduct an experiment to
find out the time cost of constructing a quad-tree with all the term frequencies
computed and index updating.

Specifically, for the baseline method, constructing the quad-tree includes
counting and merging all the term frequencies. On the other hand, for our
approach, the construction stage includes computing all the MG summaries of
all the nodes in the quad-tree. We see that the time cost of index construction
of our approach is higher than that of the baseline method. In the following
experiments, we show that our approach can achieve a much higher query
efficiency.

5.3 Varying Message Capacity in Quad-Tree Leaf Node

Recall that when we construct a quad-tree to index all the messages, we have a
condition to determine when we split the node and generate new child nodes.

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



14

Fig. 4 Time cost of updating index on varied size of data for LkTQ

Fig. 5 Time cost of updating index on varied size of data for STkTQ

The condition is that when the number of messages in a node reaches M ,
the node should be split. We conduct an experiment to vary the maximum
number of messages stored in a leaf node, so that we can find out what is the
best message capacity of leaf node with better performance. Other parameter
settings are: the targeted k is 20, α = 0.7, and the number of counters in MG
summary is 500. Specially, the number of counters is set to 500 mainly for
large data sets to reduce summary error.

Figure 6 shows the experimental results. Figure 6a shows the comparison
results when the data set amount is 10,000. M is ranged from 100 to 2000. Our
approach is much faster than the baseline method. It has a little fluctuation in
varying M . The message capacity of quad-tree leaf node has no big influence
on the performance in baseline. Once M is fixed, the tree is fixed and the
score is stable to compute. However, M actually influences the performance
of our algorithm. In theory, the bigger the M is, the smaller the depth of the
quad-tree is. Because when computing score in each node, we use the nearest
edge to the query in “Distance part”. If the tree is deeper, the distance will be
smaller and the number of leaf node is larger. As shown in Figure 6b, when
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(a) Time cost comparison (b) Time cost on varied message capacity

Fig. 6 Varying Message Capacity in Quad-Tree Leaf Node

(a) Time cost comparison for LkTQ (b) Time cost comparison for STkTQ

(c) Time cost on varied amount of data (d) No. candidates after pruning

Fig. 7 Varying targeted k

M increases, time cost is higher because when M is getting larger, the cost of
splitting is larger. There is a little turning down when M is around 300 and
500. And in this range, it has almost the best performance.

5.4 Varying Targeted k

In this experiment, we vary the targeted k (see Figure 7). The targeted k
is actually specified by users, and other fixed parameters are set as follows:
α = 0.7, the maximum number of messages in each leaf node M is 1,000, and
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the number of counters in MG summary is 100. Although M around 300 to
500 has the most excellent results, 1,000 is chose for controlling the quad-tree
depth and for more accurate results. Because, experiments are conducted to
prove that, when M is close to 1,000, the results will be consistent when other
parameters varied.

Figure 7 shows the results. The range of targeted k is set according to the
normal requirements of users. The performance of our algorithm is remarkably
better than the baseline, which counts one by one (Figures 7a and 7b). The
amount of data set in Figures 7a and 7b is 10,000, however, baseline need
approximately seven minutes to return the results. The time cost of baseline
is on a stable and inefficient level which is around 400,000 ms. For larger data
sets, baseline has an extremely slow running speed. For instance, dealing with
5,000 messages, it needs about 12 million milliseconds and it costs nearly 60
million milliseconds to handle 100,000 messages, which is very inefficient. So
we do not show the non-competitive results.

Actually, as expected, the time cost of our approach increases as the target-
k increases. It is not obvious to see for the great disparity of the time cost on
tick labels. Therefore, another further experiment has proved this shown in
Figure 7b. Moreover, as the amount of data set is getting larger, the tendency
is more conspicuous. Specifically, to find out the origin of the fastness, we
conduct another experiment to validate the number of candidates after our
pruning algorithm according to k is truly close to k. The result is shown in
Figure 7c as proof.

5.5 Accuracy Versus Baseline

Accuracy is a vital factor which users concern. The accuracy experiment results
of our algorithm versus baseline are shown in Figure 8. We measure the fraction
of the correct top-k returning from our algorithm for different amount of data
sets. Since the baseline has such inefficient running speed, we choose relatively
small data sets, which however, does not influence the high performance of our
algorithm. When targeted-k is set to a low value, our approach produces pretty
accurate results and can guarantee 80% correctness. As targeted-k becomes
large, the accuracy is a little decreasing. However, the lowest accuracy is above
0.39 even when targeted-k is 100 and enable satisfy most of users’ requirements.

5.6 Varying Parameter α

α is a parameter which balances the weight of the score computing formula.
Varying parameter α is to adjust the influence rate of distance and term fre-
quency. It depends on users to determine their preferences. Through experi-
ments, it is proved that the results of our algorithm are sensitive in a range
of (0.9, 1.0). Certainly, when α is set to 0 or 1, then the results represent the
unilateral influence of distance or frequency. Specifically, the sensitive range
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Fig. 8 Accuracy on varied amount of data

of α is influenced by the distribution of data sets. However, the experiments
we conduct prove that our algorithm can be sensitive to the results by varing
α so that it can satisfy the preferences of users.

6 Conclusions

We propose a new approach for supporting querying the local top-k most fre-
quent, popular, and trending terms in social stream data with a huge amount
of geo-tagged tweets. A comprehensive definition of term score considering
both distance with queries and the term frequencies is presented. Quad-tree
is used for indexing and extended to employ MG summaries to count term
frequencies rapidly. Query processing adopts a best-first algorithm to pick up
candidate terms and obtain exact term score for results. An empirical ex-
periment is conducted to validate our algorithm and offers performance and
accuracy of top-k term querying in spatial-textual social data streams and the
framework is capable of returning results accurately and rapidly.
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