

Canadian Journal of Fisheries and Aquatic Sciences Journal canadien des sciences halieutiques et aquatiques

Spatio-temporal variation in size-structured populations using fishery data: an application to shortfin mako (Isurus oxyrinchus) in the Pacific Ocean

Journal:	Canadian Journal of Fisheries and Aquatic Sciences
Manuscript ID	cjfas-2016-0327.R1
Manuscript Type:	Article
Date Submitted by the Author:	11-Nov-2016
Complete List of Authors:	Kai, Mikihiko; National Research Institute of Far Seas Fisheries, Fishery Research Agency, Thorson, James T.; Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA Piner, Kevin; Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Maunder, Mark; Inter-American Tropical Tuna Commission
Keyword:	spatio-temporal model, catch per unit effort, length data, shortfin mako, template model builder

SCHOLARONE[™] Manuscripts

- 1 Spatio-temporal variation in size-structured populations using fishery data: an application to shortfin
- 2 mako (Isurus oxyrinchus) in the Pacific Ocean
- 3
- 4 Mikihiko Kai¹, James T. Thorson², Kevin R. Piner³, and Mark N. Maunder^{4,5}
- $\mathbf{5}$
- ⁶ ¹National Research Institute of Far Seas Fisheries (NRIFSF), Japan Fisheries Research and Education
- 7 Agency
- 8 5-7-1, Orido, Shimizu, Shizuoka 424-8633, Japan
- 9 ² Fisheries Resource Analysis and Monitoring Division, Northwest Fisheries Science Center, National
- 10 Marine Fisheries Service (NMFS), NOAA
- 11 2725 Montlake Boulevard E, Seattle, WA 98112, USA.
- 12 e-mail: james.thorson@noaa.gov
- ¹³ ³Southwest Fisheries Science Center, National Marine Fisheries Service (NMFS), NOAA
- 14 8901 La Jolla Shores Drive, La Jolla, CA 92037, USA.
- 15 e-mail: Kevin.Piner@noaa.gov
- 16 ⁴Inter-American Tropical Tuna comission
- 17 8604 La Jolla Shores Drive, La Jolla, CA 92037-1508, USA.
- 18 e-mail: mmaunder@iattc.org
- ¹⁹ ⁵Center for the Advancement of Population Assessment Methodology, Scripps Institution of
- 20 Oceanography, La Jolla, CA 92093, United States
- 21 *Correspondence to M Kai:
- 22 Tel(Fax): +81-543-36-6035

23 e-mail: <u>kaim@affrc.go.jp</u>

24

25 Abstract

26	We develop a length-disaggregated spatio-temporal delta-generalized linear mixed model
27	(GLMM) and apply the method to fishery-dependent catch rates of shortfin mako sharks in the North
28	Pacific. The spatio-temporal model may provide an improvement over conventional time-series and
29	spatially stratified models by yielding more precise and biologically interpretable estimates of abundance.
30	Including length data may provide additional information to better understand life history and habitat
31	partitioning for marine species. Nominal catch rates were standardized using a GLMM framework with
32	spatio-temporal and length composition data. The best fitting model showed that most hotspots for
33	"Immature" shortfin mako occurred in the coastal waters of Japan, while hotspots for "Subadult and adult"
34	occurred in the offshore or coastal waters of Japan. We also found that size specific catch rates provide an
35	indication that there has been a recent increasing trend in stock abundance since 2008.
36	
37	Keywords: spatio-temporal model, catch per unit effort, length data, shortfin mako, template model
38	builder
39	
40	1. Introduction
41	Reliable indices of population abundance are an important type of data for stock assessment
42	(Francis 2011). For stocks lacking designed fishery independent surveys, fishery catch-per-unit effort
43	(CPUE) data provide information on trends in stock abundance that is otherwise missing. Abundance
44	indices provide not only trends, but can be used to estimate population scale when combined with catch in

45	population dynamic models (Lee et al. 2014). Key to the use of these data is the assumption that the
46	change in the index is proportional to changes in population abundance (Wilberg et al. 2010). Much
47	attention has been devoted to estimation of CPUE from fishery dependent catches and effort (Maunder
48	and Punt 2004). Methods for standardizing CPUE data rely on introduction of auxiliary information to
49	separate changes due to changing population abundance from those due to changes due to fishing
50	practices and other factors. For widely dispersed stocks, the effects of spatial heterogeneity of both fish
51	and fisheries need to be considered with respect to the assumption of proportionality between estimates of
52	CPUE and population abundance. This becomes even more important when large areas of the stock
53	distribution receive little or no effort and assumptions about these areas becomes influential on estimates
54	of stock trend (Walters 2003; Carruthers et al. 2010; Carruthers et al. 2011).
55	Spatio-temporal modeling methods have been introduced to deal with spatial variation in
56	population distribution and density. Spatio-temporal methods can be used to estimate population
57	abundance indices using formal statistical tools such as likelihood functions and sampling designs (Bez
58	2002; Kristensen et al. 2014; Nishida and Chen 2004; Petitgas et al. 2014; Petitgas 1998; Roa-Ureta and
59	Niklitschek 2007; Thorson et al. 2015b, 2015c). Recent studies show that the approach may yield more
60	precise, biologically reasonable, and interpretable estimates of abundance than common methods such as
61	GLM (generalized linear model) and GLMM (generalized linear mixed model) (Shelton et al. 2014;
62	Thorson et al. 2015b) by reducing sample selection bias and filling in the spatial gaps common in
63	fishery-dependent data (Walter et al. 2014; Carruthers et al. 2011; Thorson et al. 2016).
64	Spatial and temporal changes in the size (or age) structure of the population is an important
65	aspect of the population abundance because marine fishes such as billfishes and oceanic pelagic sharks
66	show evidence of spatial size (or age/stage) segregation (Nakano and Nagasawa 1996; Piner et al. 2013).

67	Inclusion of auxiliary information about length into spatio-temporal methods allows prediction of the
68	annual trends of the standardized CPUE by length which may better accounts for changes in spatial
69	patterns of size structure of the stock. Kristensen et al. (2014) developed a spatio-temporal dynamics
70	model for Skagerrak cod (Gadus morhua) and Thorson et al. (2015a) developed a stage-structured model
71	for rex sole (Glyptocephalus zachirus) in the Gulf of Alaska using information from different types of
72	survey gear. These models incorporated size-structured information and described abundances of
73	different size classes and spatial bycatch risk. It would be therefore useful to illustrate the temporal
74	changes in the size specific CPUE using the fishery dependent data for pelagic sharks, which could be
75	used to distinguish juvenile and nursery habitats for these species, similar to recent length-structured
76	spatio-temporal analysis of survey trawls for shallow-water hake in the Benguela current (Jansen et al.
77	2016).
78	Shortfin mako (Isurus oxyrinchus) is a large and highly migratory shark species, and is widely
79	distributed in the Pacific Ocean between 50°N to 50°S (Compagno 2001). Shortfin mako is susceptible to
80	overexploitation due to slow growth rates, maturity at a late age, and low fecundity (Compagno 2001).
81	Female shortfin make attain maturity at a much larger size and older age (256 cm PCL: pre-caudal length
82	/ approximately 17 years old) than males (156 cm PCL / approximately 5 years old) (Semba et al. 2011).
83	
<u>.</u>	In the western and central North Pacific, mainly 60-240 cm PCL (0-20 years old) individuals are caught
84	In the western and central North Pacific, mainly 60-240 cm PCL (0-20 years old) individuals are caught as bycatch by Japanese commercial pelagic longline fisheries targeting tuna and billfish (Kai et al. 2015).
84 85	In the western and central North Pacific, mainly 60-240 cm PCL (0-20 years old) individuals are caught as bycatch by Japanese commercial pelagic longline fisheries targeting tuna and billfish (Kai et al. 2015). Standardized CPUE of shortfin mako in the North Pacific were estimated using the onboard observer data
84 85 86	In the western and central North Pacific, mainly 60-240 cm PCL (0-20 years old) individuals are caught as bycatch by Japanese commercial pelagic longline fisheries targeting tuna and billfish (Kai et al. 2015). Standardized CPUE of shortfin mako in the North Pacific were estimated using the onboard observer data from 1995 to 2010, however, the historical trends of population abundance were poorly estimated due to
84 85 86 87	In the western and central North Pacific, mainly 60-240 cm PCL (0-20 years old) individuals are caught as bycatch by Japanese commercial pelagic longline fisheries targeting tuna and billfish (Kai et al. 2015). Standardized CPUE of shortfin mako in the North Pacific were estimated using the onboard observer data from 1995 to 2010, however, the historical trends of population abundance were poorly estimated due to the misspecification of the model (See Table 1. Clarke et al. 2013). Therefore, improvement of the

89	The objectives of this paper are to develop a length-disaggregated spacio-temporal delta-GLMM
90	using fishery-dependent catch-rate data and to apply the method to shortfin mako in the western and
91	central North Pacific. This method is used to predict not only the temporal (yearly) changes in the CPUE
92	but also the spatio-temporal distribution of CPUE for the different growth stages (size classes) of shortfin
93	mako. Improvements in both standardized CPUE and understanding of spatial patterns of shortfin mako
94	should result in better assessment and management of the stock.
95	
96	2. Materials and Methods
97	2.1. Data sources
98	Catch and effort data of Japanese shallow-set longliners operating in the western and central
99	North Pacific from 2006 to 2014 were used to estimate the spatio-temporal variation in population density
100	for shortfin mako in the last nine years. We have a long time series of the catch and effort data from 1994
101	to 2014 but we used the data from 2006 to 2014 due to the limitation of the reliable length data. The
102	set-by-set data used in this study included information on species of sharks, catch number, amount of
103	effort (number of hooks), number of branch lines between floats (hooks between floats: HBF) as a proxy
104	for gear configuration, and location (longitude and latitude) of set, with a resolution of 2×2 degree
105	square. Only the shallow-set data were used in the analysis. The shallow-set data could be determined
106	because fishermen changed the depth of the gear to change the target species, and the number of HBF
107	varied depending on the depth (Nakano et al. 1997). We defined the shallow-set fishery by the use of a
108	small number of HBF (3 - 5). The hooks of the regular longline gear using these HBFs are estimated to
109	hang at the depth around 50 to 120 m (Suzuki et al. 1977).

110	The National Research Institute of Far Seas Fisheries in Japan commenced a project to collect the
111	length data of shortfin mako caught by Japanese coastal and offshore longline fishery in 2003. The
112	fishermen in the Kesennuma fishing port measure the precaudal length (PCL) of shortfin mako on the
113	boat. The Kesennuma fishing port is located in the northeast part of the Japanese mainland and it is well
114	known for its large landings of tuna, billfish and sharks (Ishimura and Bailey 2013). The longliner
115	recorded the size and other auxiliary information such as sex and exact location of the starting position of
116	each sets in addition to the information of the logbook data. We used the length data during 2006 and
117	2014 because many inaccurate records were included in the earlier periods during 2003 and 2005. The
118	size data of each individual caught by shallow set longliner was collated with the catch record of shortfin
119	mako in the logbook of the longline boat with a resolution of 2 x 2 degree square and year and quarter.
120	We then multiplied the catch rates from length-aggregated catch records by the proportion-at-size in the
121	longliner logbook data and analysed these length-disaggregated catch rates. When a given 2x2 square did
122	not have both longliner catch records and logbook data in a given quarter or year, we did not include that
123	location in that time period in the model. Available data include the average location and time of all sets
124	with a resolution of 2 x 2 degree square and year and quarter. The detailed information about the data
125	aggregation was summarized in Appendix A (Table A1).
126	The available data covered core areas of shortfin mako catch in the western and central North
127	Pacific (24 -44°N and 138°E -160°W) (Fig. 1) and four seasons. Four seasons (quarters 1 to 4) were
128	defined as follows: Q1 was spring from January to March; Q2 was summer from April to June; Q3 was
129	fall from July to September; and Q4 was winter from October to December. The fishery data provide

130 enough quantitative data to estimate the year-specific changes in the species distribution function and

131 relative trends of CPUE for growth stages of shortfin mako in the western and central North Pacific.

Three growth stages were defined as follows: "Juvenile" denotes the body size smaller than 90 cm PCL
(age-0), "Immature" denotes the body size between 90 cm and 160 cm PCL, and "Subadult and adult"
denotes the body size larger than 160 cm PCL.

135

136 **2.2. Spatio-temporal model with length composition data**

137Size and CPUE data originate from two different sampling processes, such that length 138 measurement and catch per shot are not always directly matched. Then, the density estimate per station 139(i.e. grid cell) is informed by the CPUE data and then decomposed by the estimated contribution of each 140 size class. The decomposition of the CPUE trend into individual size classes is the novel feature in this 141study. Previous studies that incorporated auxiliary length information into spatial and temporal models 142(Kristensen et al. 2014; Nielsen et al. 2014; Thorson et al. 2015a; Jansen et al. 2016) have focused on 143 research trawl survey data based on underlying randomly stratified sampling designs, whereas we attempt 144to fit both length and CPUE to shallow-set longline fishery data. The fisheries-dependent data is collected 145from a highly unbalanced sampling design due to systematic changes in the spatial effort allocation and 146targeting behavior of the fleet (Carruthers et al. 2010, 2011; Thorson et al. 2016). A spatio-temporal 147modeling approach can in some cases account for fishery targeting occurring at large spatial scales, and is 148 therefore appropriate to account for some common forms of bias that arise when analyzing in 149fishery-dependent catch rates (Thorson et al. 2016). 150We develop a model that accounts for both size-specific spatio-temporal variabilities in the 151distribution and the relative trends of catch rate of shortfin mako in the last nine years in the western and 152central North Pacific. We use a length-structured spatio-temporal model for this task, so that we can explicitly decompose variance into additive components representing variation among years and size 153

154	classes (Krisensen et al. 2014). We then use the model to predict density at unsampled locations, times
155	and length classes, to provide a best-estimate of the distribution of species, relative trends of total
156	abundance, and length compositions. Spatio-temporal and length modelling of CPUE data assumes that
157	nearby locations and nearby size classes should have similar density estimates during each time interval.
158	The correlation between statistical stations (latitude and longitude) and length classes (length bins) in a
159	given interval is then used to estimate density in each year for all stations and length classes, including
160	stations and length bins that do not have data in a given period. We then visualize the predictions of
161	spatio-temporal variation in density and the temporal (yearly) changes in the total abundance for the
162	different growth stages (size classes).
163	
164	2.3. Model description
165	The spatio-temporal model incorporating length data estimated the density $d(s, t, q, l)$ in each
166	station <i>s</i> (latitude and longitude with a resolution of 2×2 degree square), year <i>t</i> (where <i>t</i> =1 in signifies
167	2006 and $t=9$ signifies 2014), quarter q (signifying a three-month quarter, where $q=1$ in signifies
168	Q1(Jan-March) and $q=4$ in signifies Q4(Oct-Dec)) and body length l (bin #1: 50-80 cm; #2: 80.1-90cm;
169	#3: 90.1-100,, #12: 180.1-190 cm; #13: 190.1-340 cm., e.g., where the first bin is all individuals less
170	than or equal to 80cm, and the last bin is all individuals greater than 190 cm). After estimating parameters,
171	we then calculate juvenile density as the sum of density for 50-80 cm and 80.1-90 cm (i.e., the 1^{st} and 2^{nd}
172	length bins), immature as the sum of density for 90.1-100 cm to 150.1-160 cm (i.e., the 3 rd to 9 th length
173	bins), and subadult and adult as density for larger than 160.1 cm (i.e., the sum of the 10 th to 13 th length
174	bins).

175	We modeled variation in density among both years and quarters, to capture both annual trends in
176	abundance and quarterly changes in catch rates. Each station, year, quarter and length-bin had the density:
177	$d(s, t, q, l) = \exp\left(d_0(t) + \gamma(s) + \tau(l) + \theta(s, t, l) + \delta(q) + \sum_{j=1}^{n_j} \beta_j x_j(s, t, q, l)\right) $ (1)
178	where $d_0(t)$ represents intercept for year t, $\gamma(s)$ represents spatial variation (the average density in
179	station s relative to the average station), $\tau(l)$ represents the non-parametric impact of length on expected
180	catch rates (the average density in length <i>l</i> relative to the average length), $\theta(s, t, l)$ represents an
181	interaction term and spatio-temporal and length variation (variation in density for station s, year t and
182	length <i>l</i> after accounting for spatial, temporal and length variation), $\delta(q)$ is an offset that represents the
183	impact of quarter (q) on average density, β_j is the effect of the j^{th} covariate on predicted density, and
184	$x_j(s, t, q, l)$ is the value of the j^{th} covariate for a given location, year, quarter, and length-category. In the
185	following, we use as covariate the length of the individual (i.e., $n_j = 1$ and $x(s, t, q, l) = l$), which
186	generates a log-linear increase or decrease in expected density with length, but future research could
187	incorporate additional habitat variables. The marginal (common to all spatial stations and times) length
188	variation, $\tau(l)$, is modeled using a first-order autoregressive process (AR1) to explain the correlations
189	among length bins.:

190
$$\mathbf{\tau} \sim MVN(0, \sigma_{\varepsilon}^2 \mathbf{R}_{\tau})$$
 (2)

191 where MVN is a multivariate normal distribution with mean 0 correlation matrix \mathbf{R}_{τ} , and pointwise 192 variance σ_{ε}^2 :

193
$$\mathbf{R}_{\tau}(l,l') = \rho_{\tau}^{|l-l'|} \tag{3}$$

194 where ρ_{τ} is a parameter governing autocorrelation, while |l-l'| is the difference in length among samples 195 in length-bin *l* and *l'*. ρ_{τ} is the magnitude of autoregression (where $\rho_{\tau} = 0$ implies that all lengths are 196 statistically independent, while $\rho_{\tau} = 1$ implies that total density approaches a random-walk process 197 among lengths). The model (Eq. (1)) includes both a parametric effect of length (by including a log-linear 198 impact of length on expected catch using parameter β_i) and a non-parametric effect of length (by 199 including a first-order autoregressive component using $\tau(l)$). We therefore interpret this as a 200 "semi-parametric" model with respect to the impact of length on catch rates (e.g., Kristensen 2014; 201Thorson and Taylor 2014). 202 Spatial variation $\gamma(s)$ is modeled as a Gaussian random field (GRF), which reduces to a 203multivariate normal distribution when evaluated at a finite set of stations (Thorson et al. 2015c): 204 $\gamma \sim MVN(\mathbf{0}, \boldsymbol{\Sigma}_{spatial})$ (4)205where $\Sigma_{spatial}$ is spatial covariance for the random field and approximated using a Matérn correlation 206 function with smoothness $\nu = 1$: $\boldsymbol{\Sigma}_{spatial}(s,s') = \frac{\sigma_{\gamma}^2}{\Gamma(\lambda)2^{\nu-1}} \cdot (\kappa |\mathbf{H}(s-s')|)^{\nu} K_{\nu}(\kappa |\mathbf{H}(s-s')|)$ 207 (5) where |s-s'| is the Euclidian distance between two generic locations s and s', σ_{γ} is the marginal variances 208 209 of the spatial random field, Γ is the gamma function, and K_v is the modified Bessel function of second 210kind (Lindgren et al. 2011). This covariance function calculates the correlation between γ at stations s 211 and s' given their distance |s-s'| after linear transformation **H** which accounts for geometric anisotropy 212(see supplementary in Thorson et al. 2015a). If the spatial covariance structure is equivalent in all 213directions, it can be described as a function of distance only and is said to be isotropic (i.e. H is a 214two-dimensional identity matrix). If the spatial covariance structure varies in different directions, then it is 215a function of the distance and direction and is said to be anisotropic (where the directions of slow and fast 216decorrelation are given by **H**). Isotropic processes form an inadequate basis in modelling many spatially 217distributed data, while **H** is essentially a linear transformation of coordinates as is common for 218estimating stationary anisotropy (Budrikaite and Ducinskas 2005). $\kappa > 0$ is a scaling parameter related to

219the range that means the distance at which the spatial correlation becomes almost null. We use a 220 stochastic partial differential equation (SPDE) approximation to this function, and can calculate the geostatistical range $\left(\frac{\sqrt{8\nu}}{\kappa}\right)$ as the distance at which correlation is close to 10 %, for each smoothness 221222 parameter v > 1/2 (Lindgren et al. 2011). We used the Matérn correlation function because previous 223research demonstrated how the probability of GRFs could be calculated efficiently given this assumption 224(Diggle and Ribeiro 2007; Lindgren et al. 2011; Roa-Ureta and Niklitschek 2007). GRF is a convenient 225statistical approach for implementing a 2-dimentional smoother for a response variable (in this case, 226catch) over spatial dimensions (Thorson et al. 2015b). The spatio-temporal and length variation, $\theta(s, t, l)$, 227is modeled by combining the GRF for spatial variation with first-order autoregressive process (AR1) for 228temporal and length variation: $\operatorname{vec}(\boldsymbol{\theta}_t) \sim MVN(\mathbf{0}, \boldsymbol{\Sigma}_{spatial} \otimes \mathbf{R}_{\theta})$ 229(6)where $vec(\theta_t)$ is the vectorized value of $\theta(s, t, l)$ for all stations and length-bins in year t, \otimes is the 230

231 Kronecker product where if **A** is an *m* x *n* matrix and **B** is a *p* x *q* matrix, then the Kronecker product 232 $\mathbf{A} \otimes \mathbf{B}$ is the *mp* x *nq* block matrix:

233
$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} a_{11}\mathbf{B} & \cdots & a_{1n}\mathbf{B} \\ \vdots & \ddots & \vdots \\ a_{m1}\mathbf{B} & \cdots & a_{mn}\mathbf{B} \end{bmatrix},$$
(7)

234 \mathbf{R}_{θ} is the correlation in $\boldsymbol{\theta}_t$ among length-bins

235
$$\mathbf{R}_{\theta}(l,l') = \rho_{\theta}^{|l-l'|}$$
(8)

where ρ_{θ} is a parameter governing autocorrelation among length bins for the spatio-temporal variance component. In the following, $\delta(q)$ represents a increase or decrease in expected catch rates for each quarter relative to the 1st quarter ($\delta(1) = 0$ to ensure identifiability). We included both the covariate length as well as the AR1 for length variation, and we interpret this as a semi-parametric specification of the effect of length on expected catch rates. We estimated a separate standard deviation for spatial (σ_{γ}) 241and spatio-temporal and length (σ_{θ}) components, but estimated the same decorrelation distance (κ) for 242the processes, using the implicit assumption that dynamics were defined by a "characteristic scale" that 243defined decorrelation distance for each of them. Following the parameterization from Lindgren et al. 244(2011), we estimated a magnitude parameter η for each spatial (η_{γ}) and spatio-temporal and length (η_{θ}) 245process and the corresponding standard deviation was then calculated as: $\sigma_{\nu} = 1/\sqrt{4\pi\eta_{\nu}^2}$ (9) 246247where the other standard deviation (i.e., σ_{θ}) was calculated similarly (from η_{θ}). Aside from this, we also 248estimated a magnitude parameter η for length (η_{τ}) process. 249Expected catch λ_i is a function of density and fishing effort f_i (number of hooks), $\lambda_i =$ $d(s_i, t_i, q_i, l_i)f_i$, and is compared with the observed catch (in numbers) c_i for the *i*-th observation, in 250251station s_i , year t_i , quarter q_i and length l_i . Count data of the sharks typically included many observations 252with zero catch and a few observations with large values when the sharks were aggregated (Bigelow et al. 1999; Ward and Myers 2005). Population trends of by-catch species such as sharks are commonly 253254estimated using the delta lognormal model to account for the occurrence of excess zeros (Lo et al. 1992; 255Zuur et al. 2009) and the negative binomial model or gamma model to account for overdispersion 256(Brodziak and Walsh 2013). The delta lognormal model is a combination of the probability of non-zero 257catches ("encounter") assuming a logistic model and the probability of positive catch rates ("catch rates 258for each encounter") assuming a log-normal model. 259Because the compiled spatio-temporal data of shortfin mako showed evidence of excess zeros 260(51.3%) and the dispersion ratio (variance/mean = 34.9), we assume that available catch data c arises from 261the following delta (a.k.a. two stages) model, where the probability that a given sample is non-zero: $\Pr(\mathcal{C} > 0) \equiv p = \left(\frac{1}{1 + \exp(-z_0)}\right) \times (1 - \exp(-z_1\lambda))$ 262(10)

where z_0 governs the encounter probability given very high local densities (i.e., $p \rightarrow \frac{1}{1 + \exp(-z_0)}$ as $\lambda \rightarrow \infty$), and z_1 governs how the probability of encounter increases with local expected catch λ . Catches then follow a lognormal distribution or a gamma distribution:

266
$$\Pr(\mathcal{C} = c | c > 0) = \operatorname{Lognormal}\left(\mathcal{C}; \log\left(\frac{\lambda}{p}\right), \sigma^2\right)$$
(11)

267
$$\Pr(\mathcal{C} = c | c > 0) = \operatorname{Gamma}\left(\mathcal{C}; \frac{1}{cV^2}, \frac{\lambda cV^2}{p}\right)$$
(12)

where Lognormal ($x; m, \sigma^2$) is the lognormal probability density function evaluated at x, given log-mean m and log-standard deviation σ , σ is the time-varying (i.e. yearly changes in) log-standard deviation for catch rates given an encounter, Gamma ($x; \alpha, \beta$) is the probability density function of a gamma distribution with shape α and scale β , evaluated at x, CV is the coefficient of variations for catch rates

given an encounter, and these equations are defined such that
$$median(C) = \lambda$$
.

273Parameters representing temporal (year) variance (d_0), spatial covariance (κ and η_{ν}), length variance (ρ_{τ} and η_{τ}), spatial-temporal and length covariance (κ , ρ_{θ} and η_{θ}), covariates of respective 274275length (β) and quarter (δ), and residual variation (σ) were estimated as fixed effects while integrating 276across random effects representing spatial (station), length, and spatio-temporal and length variations (see 277Appendix Table A2). This integral was approximated using the Laplace approximation, and the fixed 278effects were estimated using gradient information as provided by Template Model Builder (TMB), which 279is an R package (R Core Team 2013) for fitting statistical latent variable models to data. It was inspired by 280ADMB (Fournier et al. 2012). The details of TMB are described by Kristensen et al. (2016). Further 281details regarding GRF estimation can be found in Thorson et al. (2015b, 2015c). 282After estimating the fixed effects by maximizing the marginal likelihood of the data, the 283distribution of catch rates of shortfin make were predicted from the random effects using Empirical Bayes 284(i.e., by fixing them to the value that maximizes the joint likelihood with respect to random effects, while

285	fixed effects are set to their maximum likelihood estimates; Appendix B). We used a recent
286	bias-correction algorithm to account for retransformation bias when predicting and visualizing total
287	abundance and size composition (Thorson and Kristensen 2016). Model convergence was confirmed by
288	ensuring that the hessian matrix was positive definite and that the absolute-value of the final gradient of
289	parameters was less than 0.1.
290	
291	2.4. Model selection and diagnostics
292	We selected the most parsimonious model using Akaike Information Criterion (AIC; Akaike
293	1974) and percent deviation (Maunder and Punt 2004). AIC identifies which model greater support had
294	given available data: this model-selection is appropriate given that TMB implements maximum marginal
295	likelihood estimation (Hoeting et al. 2006, Thorson et al. 2015c). Latter methodology examined a
296	common ad hoc response that is to require each addition of model complexity to explain more than some
297	agreed minimum (0.5 % was arbitrarily given) of additional percent deviation (%) explained (Maunder
298	and Punt, 2004). First, we chose the best model with regards to the error distribution of positive catch part
299	in the zero-inflated model and the necessity of the anisotropy from the following four models:
300	Model-A: delta-lognormal distribution model without anisotropy,
301	Model-B: delta-lognormal distribution model with anisotropy,
302	Model-C: delta-gamma distribution model without anisotropy,
303	Model-D: delta-gamma distribution model with anisotropy,
304	where the full model in Eq. (1) was used for these models. Second, we chose the best model with regards
305	to the combinations of the explanatory variables for the selected model in the first model selection. We
306	also compared the yearly changes in predicted catch rates among multiple models for first and second

307	model selection. Coefficient of variations (CV) and confidence intervals of annual changes in the CPUE
308	were calculated for the best-fitting model using the information matrix and delta-method (Fournier et al.
309	2012). We also examined the standard regression diagnostic statistics for the best-fitting model to identify
310	model misspecification and heteroscedascity (Maunder and Punt 2004).
311	
312	3. Results
313	The delta-lognormal distribution model with anisotropy and most complex model including
314	temporal (quarter), spatial (station), length (precaudal length) and spatio-temporal and length variances as
315	random effects was identified as the most parsimonious model by AIC (Table 1). Overall, the trend in
316	predicted CPUE was almost similar among four models, however, the difference of the error distribution
317	had a large impact on the trends in predicted CPUE in spite of the random field (Fig. 2a). The predicted
318	CPUE was slightly changed if we added sequentially random effect components to the null model (Fig.
319	2b). These results and the marginal standard deviation (SD) in Table 1B indicated that the interaction
320	terms and station had more impact on the changes in the trends than single length effect. Percent deviation
321	also supported the result of the model selection by AIC (Table 1). We also examined the goodness-of-fits
322	for the best fitting model using residual diagnostics plots (Appendix C). We then used the best fitting
323	model to predict both the temporal (yearly) changes in the CPUE and also the spatio-temporal distribution
324	of CPUE for the different growth stages of shortfin mako.
325	Average overall spatial distribution of the predicted CPUE showed that most of the hotspots for
326	shortfin mako were in the coastal (32–42 °N and 136–146 °E) and offshore (34–44 °N and 150–170 °E)
327	waters off Japan (Fig. 3a). The predicted CPUE in offshore water tended to be lower than those in the
328	coastal waters with the highest CPUE was found between 36-38 °N and 142-144 °E. The results were

similar to the spatial distribution of the nominal CPUE except that the CPUE is generally higher at thenorthern boundary (Fig. 3b).

Predicted annual CPUE exhibited a slight decline to the lowest level in 2008, and then sharply
increased until 2009 and increased again in 2014 (Fig. 4). Uncertainty in CPUE estimates is larger in the
most recent years (2012-2014) than in the early years (2006-2008).

334 Predicted CPUE by pre-caudal length intervals (cm) was dome shaped with the highest CPUE 335peaking at a length bin from 140 to 150 cm PCL (Fig. 5). This was a sharp contrast from the nominal 336 peak in CPUE which occurred at length bin from 110 to 120 cm PCL. The overall mean length of 337 predicted CPUE (146 cm PCL) was shifted to larger sizes compared to that of nominal CPUE (138 cm 338 PCL) because the nominal CPUE by size class represented the pooled length weighted by the data 339 (nominal catch divided by effort) and predicted CPUE by size class is weighted by area (predicted catch 340 based on the spatial effect divided by effort). Uncertainty in CPUE estimates is larger in the middle ranges 341of the length classes (length from 110-170 cm PCL) than both sides (smaller than 100 cm PCL and larger 342 than 170 cm PCL).

343 The average spatial distribution of the predicted CPUE for the three growth stages (Fig.6) shows 344that most of the hotspots for "Juvenile" shortfin make smaller than 90 cm PCL were in the offshore 345waters off Japan (Fig.6a), while most of the hotspots for "Immature" shortfin mako between 90 and 160 346 cm PCL were in the coastal waters off Japan (Fig.6b). Most of the hotspots for "Subadult and adult" 347shortfin mako larger than 160 cm PCL (Fig. 6c) were in the offshore waters off Japan with some higher 348 CPUE located in coastal waters (34–36 °N and 138–142 °E). The predicted CPUE hotspots were similar 349 to those of nominal CPUE observations except that the nominal CPUE for juveniles was patchy (Fig. 350 6d-f).

371

351Yearly changes in the predicted CPUE for different growth stages are shown in Fig.7 and Table 352 A3. The values in Table A3 was calculated using the equations in Appendix D. Predicted CPUE of 353 "Juvenile" shortfin make had a decreasing trend except in 2009 and 2014 and high CPUE were observed 354in 2006, 2009 and 2014 (Fig. 7a). The sharp increase in CPUE for juveniles from 2013 to 2014 was 355 unlikely to occur for a low fecundity species like shortfin mako. Predicted CPUE of "Immature" shortfin 356 mako illustrated a slight decline to the lowest level in 2008, and then gradually increased and approached 357to approximately 1.5 in 2014 (Fig. 7b). The trends in the CPUE time series is strongly similar to those for 358all size classes in Fig. 4 because Japanese shallow set longline fishery dominantly catch the immature size 359 classes between 90-160cm in PCL (see Fig. 5). The CVs of the predicted CPUE for "Immature" shortfin 360 mako were smaller than those for "Juvenile" and "Subadult and adult" shortfin mako (Table A3). 361Predicted CPUE of "Subadult and adult" shortfin make exhibited an increasing trend with larger CVs in 362 accordance with the length of the elapsed time (Table A3). The fishing effort (number of hooks) showed a 363 gradual decreasing trends since 2007, declining to approximately 0.5 million hooks in 2011 due to the 364 Great East Japan Earthquake. Fishing effort increased in 2012 and maintained at approximately 0.75 365 million hooks until 2014. 366 The spatial distributions of the predicted CPUE for different growth stages showed that the 367 locations of hotspots were not fixed through time (Fig. 8). "Juvenile" shortfin mako hotspots varied 368 primarily latitudinally with one instance of a coastal hotspot. For the others (i.e. "Immature", "Subadult 369 and adult", "All stages"), annual variability in hotspots of CPUE were high and the numbers of hotspots

were increased in more recent years than early years especially for "Subadult and adult" stage. During

2014 there was a particularly large hot spot for juveniles at the northern border, which probably caused

the dramatic increase in the CPUE index for juveniles in that year.

373	Predicted CPUE by pre-caudal length (cm) showed similar dome shapes across years (Fig. 9).
374	The years 2010 and 2013 were the most strongly peaked (at length bins from 140 to 150 cm PCL) with
375	the other years estimated to have broader peaked CPUE (130-160 cm PCL).
376	
377	4. Discussion
378	We developed a length-disaggregated spatio-temporal delta-generalized linear mixed model and
379	applied the method to shortfin mako sharks in the North Pacific. Inclusion of auxiliary length data into the
380	spatio-temporal model provided a tool to better understand life history and habitat partitioning for marine
381	species such as shortfin mako shark.
382	Oceanic pelagic sharks such as a shortfin make typically have relatively little reliable data
383	because of the low economic values of these sharks compared with the more valuable species such as
384	tuna and billfish (Bonfil 1994; Walker 1988). Because stocks of pelagic sharks are often data poor (e.g.,
385	shortfin mako, which only has reliable length data starting in 2006), fishery indicators such as CPUE
386	trends often provide the only information on stock status (ISC 2015). However, spatial shifts in fishing
387	operations and the large spatial boundaries of stocks has made standardization of fishery catch rates
388	problematic.
389	The spatio-temporal model used in this study predicted both density and length composition in
390	areas where there is no data or inadequate data by explicitly considering the correlation of the data
391	regarding the body length in addition to the space and time (Shelton et al. 2014; Thorson et al. 2015b).
392	Thorson et al. (2015b) raised a concern about the spatio-temporal model which may result in biased
393	estimates when fishing effort is correlated with population abundance (Diggle et al. 2010). However,
394	Japanese longline fishery does not target shortfin mako, so that this may not be a problem. It is true that

395	the spatio-temporal method will be subject to bias and increased variance if the hotspots of the shortfin
396	mako overlaps with those of other target species, but this should also be true with more classical
397	standardization methods.
398	In this study, we used a time varying standard deviation for the statistical model. The fitting to
399	the data could be better given a separate log-standard deviation for catch rates for each year because the
400	observation errors fluctuate with changes in the operational patterns of the fishery for each year, although
401	the number of the parameter is increased. In addition, it was shown that the inclusion of a stochastically
402	time-varying common variance component can lead to substantial improvements in the fit of the time
403	series (Bos and koopman 2010).
404	Generalized linear mixed model commonly bases the AIC on the marginal model with the
405	random effects integrated out which may lead model selection to favor including more covariates than is
406	optimal (Greven and Kneib 2010). Hoeting et al. (2006) demonstrated that the corrected AIC for a
407	spatio-temporal model was superior to the standard approach of ignoring spatial correlation in the
408	selection of explanatory variables. However, we used a standard AIC because the corrected AIC is similar
409	to the standard AIC for large sample size.
410	In this modeling, we did not explicitly account for the differences in distribution or density
411	between males and females because many records of length were associated with individuals for which
412	the sex was not measured. Oceanic pelagic sharks such as a shortfin make show evidence of remarkable
413	sexual segregation in the estimated distribution (Mucientes et al. 2009) and sexual dimorphism occurs
414	(Bishop et al. 2006; Semba et al. 2009). Separately modelling spatio-temporal density for males and
415	females would allow future analyses to identify differences in spatial distribution (and potentially different
416	exploitation rates) for males and females as well as annual trends of the standardized catch rate by sex,

417	and we recommend this line of future research. The spatio-temporal maps might provide the geographical
418	segregation of species by sex from year to year and might be useful to identify the essential habitat such as
419	pupping grounds and mating grounds. Ohshimo et al. (2016) reported that there was no strong evidence
420	for sexual differences in the distribution patterns or environmental preferences for juvenile shortfin mako.
421	However, their survey periods and areas are limited, so it is valuable to repeat those studies using more
422	complete data in future work. Future spatio-temporal models could account for missing data about
423	individual sex by treating sex as a random effect (where observed catch rates follow a mixture distribution
424	with two components). However, this requires prior information regarding the proportion by sex for each
425	length category, and would therefore require further model development.
426	The analysis we present is generally applicable and should be considered as a standard tool in
427	fisheries stock assessment. CPUE data is typically standardized for factors such as area, season, and gear
428	characteristics to develop indices of relative abundance, but the most common procedures (e.g. GLMs)
429	give equal weight to each data point (Maunder and Punt 2004). However, since the index is supposed to
430	represent the whole stock, the data may not be evenly spread over all areas biasing the index and some
431	form of area weighting should be used. The spatio-temporal approach automatically provides area
432	weighting in addition to augmenting areas with no or little data (Thorson et al. 2015b). However, our
433	approach takes this one step further to include length structure in the analysis. Despite CPUE data being
434	standardized to produce an index of abundance, the accompanying composition data that is used to
435	estimate the selectivity representing the index (i.e. the age or size of fish represented by the index) is not
436	standardized or area weighted. Use of our approach would harmonize the use of CPUE and composition
437	data for creating indices of abundance for use in contemporary stock assessment models.

438	Hiraoka et al. (2016) reported that annual target shifts by Japanese shallow-set longliner
439	occurred seasonally and geographically; the greatest change in target species, from swordfish to blue
440	shark, occurred in spring (April-June). They used 10th percentile of the swordfish CPUE values to
441	incorporate this variable target behavior into the abundance index. We applied the same target indicator
442	(rank of swordfish CPUE) to reduce the influences of the target behavior on the CPUE prediction of
443	shortfin mako (Appendix E). The results indicated that the target changes between two target species had
444	a small impact on the annual trends in the CPUE of shortfin mako (Fig. A3). Since shortfin mako shark is
445	bycatch species unlike the swordfish and blue shark, the target shifts may not largely influence on the
446	trends in the CPUE.
447	We used state-of-the-art methods to standardize the catch and effort data, including extending
448	the geostastical method to include length data. Three conclusions were derived from the application study:
449	(1) most of the hotspots for "Immature" shortfin make between 90 and 160 cm PCL occurred in the
450	coastal waters of Japan, while most of the hotspots for "Subadult and adult" larger than 160 cm PCL
451	occurred predominately in the offshore waters of Japan: (2) the predicted CPUE for the different growth
452	stages provided an indication that the recent stock trends of shortfin mako in the western and central
453	North Pacific was better than that in mid-2000s: (3) part of the juvenile population is probably outside the
454	range of the fishery during some years and therefore the CPUE based index of abundance for juveniles is
455	unreliable. Further research and testing of this promising approach is recommended towards making it a
456	widely applicable standard tool for fisheries assessments.
457	

458 Acknowledgements

459	We sincerely wish to thank two anonymous reviewers, all members of the ISC shark Working
460	Group that made invaluable comments and suggestions. We also appreciate Ko Shiozaki who supported
461	to draw the clear map. We also thank Kasper Kristensen and the many contributors to the Template
462	Model Builder software. We sincerely appreciate the crews of the coastal and offshore longline fleet from
463	Kesennuma fishing port, Japan, for their full support in collecting samples from a wide range of the North
464	Pacific. Finally, we are extremely grateful for the great contributions of K. Ishida, T. Oyama, M. Onodera,
465	and S. Onodera who collected and measured the biological samples. This work was supported in part by a
466	grant-in-aid from the Japan Fisheries Agency.
467	
468	References
469	Akaike, H. 1973. Information theory as an extension of the maximum likelihood principle. In: 2nd
470	International Symposium on Information Theory. Edited by Petrov, B.N., and Csaki, F. Akademiai
471	Kiado, Budapest. pp. 267–281.
472	Bez, N. 2002. Global fish abundance estimation from regular sampling: the geostatistical transitive method.
473	Can. J. Fish. Aquat. Sci. 59 (12): 1921–1931. doi:10.1139/f02-155.
474	Bigelow, K.A., Boggs, C.H., and He, X. 1999. Environmental effects on swordfish and blue shark catch
475	rates in the US North Pacific longline fishery. Fish. Oceanogr. 8 (3): 178–198.
476	Bishop, S.D.H., Francis, M.P., Duffy, C., and Montgomery, J.C. 2006. Age, growth, maturity, longevity and
477	natural mortality of the shortfin mako shark (Isurus oxyrinchus) in New Zealand waters. Mar.
478	Freshwater Res. 57 (2): 143–154. doi:10.1071/MF05077.
479	Bonfil, R. 1994. Overview of world elasmobranch fisheries. FAO Fish. Tech. Pap. 341.
480	Bos, C.S., and Koopman, S.J. 2010. Models with time-varying mean and variance: A robust analysis of
481	U.S. industrial production. Tinbergen Institute Discusiion Paper, TI2010-017/4.

- 482 Brodziak, J., and Walsh, W.A. 2013. Model selection and multimodal inference for standardizing catch
- rates of bycatch species: a case study of oceanic whitetip shark in the Hawaii-based longline fishery.
- 484 Can. J. Fish. Aquat. Sci. **70** (12): 1723–1740. doi: 10.1139/cjfas-2013-0111.
- 485 Budrikaite, A. and Ducinskas, K. 2005. Modeling of geometric anisotropic spatial variation. Proceeding
- 486 of the 10th International Conference MMA2005&CMAM2, Trakai.
- 487 Clarke, S.C., Harley, S.J., Hoyle, S.D., and Rice, J.S. 2013. Population trends in Pacific oceanic sharks
- 488 and the utility of regulations on shark finning. Conserv. Biol. 27 (1): 197–209. doi:
- 489 10.1111/j.1523-1739.2012.01943.x.
- 490 Compagno, L.J.V. 2001. Sharks of the World. An annotated and illustrated catalogue of shark species
- 491 known to date. Vol. 2. Bullhead, mackerel and carpet sharks (*Hetero dontiformes, Lamniforms* and
- 492 *Orectolobiformes*). FAO Spes. Cat. Fish. Purp. 1 (2), Rome, FAO.
- 493 Carruthers, T.R., McAllister, M.K. and Ahrens, R.N.M. 2010. Simulating spatial dynamics to evaluate
- 494 methods of deriving abundance indices for tropical tunas. Can. J. Fish. Aquat. Sci. 67: 1409–1427.
- 495 Carruthers, T.R., Ahrens, R.N.M., Mcallister, M.K. and Walters, C.J. 2011. Integrating imputation and
- 496 standardization of catch rate data in the calculation of relative abundance indices. Fish. Res. 109: 157–
- 497 167.
- 498 Diggle, P., and Ribeiro, P. 2007. Model-Based Geostatics. Springer, New York.
- 499 Diggle, P.J., Menezes, R., and Su, T. 2010. Geostatistical inference under preferential sampling. J. R. Stat.
- 500 Soc. Ser. C Appl. Stat. **59** (2): 191–232. doi:10.1111/j.1467-9876.2009.00701.x.
- 501 Fournier, D.A., Skaug, H.J., Ancheta, J., Ianelli, J., Magnusson, A., Maunder, M.N., Nielsen, A., and Sibert, J.
- 502 2012. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized
- 503 complex nonlinear models. Optim. Methods Softw. **27** (2): 233–249. doi:10.1080/10556788.2011.597854.

- 504 Francis, R.I.C.C. 2011. Data weighting in statistical fisheries stock assessment models. Can. J. Fish. Aquat.
- 505 Sci. 68 (6): 1124–1138. doi:10.1139/f2011-025.
- 506 Greven, S., and Kneib, T. 2010. On the behaviour of marginal and conditional AIC in linear mixed models.
- 507 Biometrics. 97 (4): 773–789. doi:10.1093/biomet/asq042.
- 508 Hiraoka, Y., Kanaiwa, M., Ohshimo, S., Takahashi, N., Kai, M., and Yokawa, K. 2016. Trend in the
- 509 relative abundance of the blue shark Prionace glauca based on the activities of Japanese distant water
- and offshore longliners in the North Pacific. Fish. Sci. 82: 687-699.
- 511 Hoeting, J.A., Davis, R.A., Merton, A.A., and Thompson, A.E. 2006. Model selection for geostatistical
- 512 models. Ecol. Appl. **16** (1): 87–98. doi:10.1890/04-0576.
- 513 ISC, 2015. Indicator-based analysis of the status of shortfin mako shark in the north Pacific Ocean. Report
- 514 of the Shark Working Group. Kona, Hawaii. USA. Available from <u>http:/</u>
- 515 http://isc.fra.go.jp/pdf/ISC15/Annex%2012 SMA%20stock%20assessment%20report%20(2015)%203
- 516 <u>0Jul15_changes%20accepted.pdf</u> [accessed 18 January 2017]
- 517 Ishimura, G., and Bailey, M. 2013. The market value of freshness: observations from the swordfish and
- 518 blue shark longline fishery. Fish. Sci. **79** (3): 547–533. doi: 10.1007/s12562-013-0609-6.
- Jansen, T., Kristensen, K., Kainge, P., Durholtz, D., Strømme, T., Thygesen, U.H., Wilhelm, M.R.,
- 520 Kathena, J., Fairweather, T.P., Paulus, S., Degel, H., Lipinski, M.R., and Beyer, J.E. 2016. Migration,
- 521 distribution and population (stock) structure of shallow-water hake (Merluccius capensis) in the
- 522 Benguela Current Large Marine Ecosystem inferred using a geostatistical population model. Fish. Res.
- 523 **179**: 156–167. doi:10.1016/j.fishres.2016.02.026.
- 524 Kai, M., Shiozaki, K., Ohshimo, S, and Yokawa, K. 2015. Growth and spatiotemporal distribution of
- 525 juvenile shortfin mako, *Isurus oxyrinchus*, in the western and central North Pacific. Mar. Freshwater
- 526 Res. 66 (12), 1176–1190. doi: org/10.1071/MF14316.

- 527 Kristensen, K. 2014. TMB: General random effect model builder tool inspired by ADMB [online]. R
- 528 package version 1.6.2. Available from <u>https://cran.r-project.org/web/packages/TMB/index.html</u>
- 529 [accessed 18 January 2017]
- 530 Kristensen, K., Thygesen, U.H., Andersen, K.H., and Beyer, J.E. 2014. Estimating spatio-temporal
- 531 dynamics of size-structured populations. Can. J. Fish Aquat. Sci. 71 (2): 326–
- 532 336.doi:10.1139/cjfas-2013-0151.
- 533 Kristensen, K., Nielsen, A., Berg, C.W., Skaug, H., and Bell, B.M., 2016. TMB: Automatic
- 534 Differentiation and Laplace Approximation. J. Stat. Softw. **70** (5): 1–21.doi:10.18637/jss.v070.i05.
- 535 Lee, H.H., Piner, K.R., Methot Jr, R.D., and Maunder, M.N. 2014. Use of likelihood profiling over a
- 536 global scaling parameter to structure the population dynamics model: an example using blue marlin in
- 537 the Pacific Ocean. Fish. Res. **158**: 138–146.doi:10.1016/j.fishres.2013.12.017.
- 538 Lindgren, F., Rue, H., and Lindström, J. 2011. An explicit link between Gaussian fields and Gaussian
- 539 Markov random fields: The SPDE approach. J. R. Stat. Soc. Ser. C Appl. Stat. Methodol. 73 (4): 423–
- 540 498.doi: 10.1111/j.1467-9868.2011.00777.x.
- 541 Lo, N.C., Jacobson, L.D., and Squire, J.L. 1992. Indices of Relative Abundance from Fish Spotter Data
- based on Delta–Lognormal Models. Can. J. Fish Aquat. Sci. **49** (12): 2515–2526.doi:
- 543 10.1139/f92-278.
- 544 Maunder, M.N., and Punt, A.E. 2004. Standardizing catch and effort data: a review of recent approaches.
- 545 Fish. Res. **70** (2–3), 141–159.doi:10.1016/j.fishres.2004.08.002.
- 546 Mucientes, G., Queiroz, N., Sousa, L., Tarroso, P., and Sims, D.W. 2009. Sexual segregation of pelagic
- sharks and the potential threat from fisheries. Biol. Lett. **5** (2): 156–159.doi:10.1098/RSBL.2008.0761.
- 548 Nakano, H., and Nagasawa, K. 1996. Distribution of pelagic elasmobranchs caught by salmon research
- 549 gillnets in the North Pacific. Fish. Sci. **62** (6): 860–865.doi:10.2331/fishsci.62.860.

- 550 Nakano, H., Okazaki, M., and Okamoto, H. 1997. Analysis of catch depth by species for tuna longline
- 551 fishery based on catch by branch lines. Bull. Natl. Rese. Inst. Far. Seas Fish. 34: 43–62.
- 552 Nielsen, J.R., Kristensen, K., Lewy, P., and Bastardie, F. 2014. A Statistical Model for Estimation of Fish
- 553 Density Including Correlation in Size, Space, Time and between Species from Research Survey Data.
- 554 PLOS ONE **9**(6): e99151. doi:10.1371/journal.pone.0099151.
- 555 Nishida, T., and Chen, D.G. 2004. Incorporating spatial autocorrelation into the general linear model with
- an application to the yel-lowfin tuna (*Thunnus albacares*) longline CPUE data. Fish. Res. **70** (2–3):
- 557 265–274.doi:10.1016/j.fishres.2004.08.008.
- 558 Ohshimo, S., Fujinami, Y., Shiozaki, K., Mikihiko, K., Semba, Y., Katsumata, N., Ochi, D., Matsunaga,
- 559 H., Minami, H., Kiyota, M., and Yokawa, K. 2016. Distribution, body length, and abundance of blue
- shark and shortfin make offshore of northeastern Japan, as determined from observed pelagic longline
- 561 data, 2000-2014. Fish. Oceanogr. **25** (3): 259–276.doi:10.1111/fog.12149.
- 562 Petitgas, P. 1998. Biomass-dependent dynamics of fish spatial distributions characterized by geostatistical
- aggregation curves. ICES J. Mar. Sci. **55** (3): 443–453.doi:10.1006/jmsc.1997.0345.
- 564 Petitgas, P., Doray, M., Huret, M., Masse, J., and Woillez, M. 2014. Modelling the variability in fish
- 565 spatial distributions over time with empirical orthogonal functions: anchovy in the Bay of Biscay. ICES
- 566 J. Mar. Sci. **71** (9): 2379–2389.doi:10.1093/icesjms/fsu111.
- 567 Piner, K.R., Lee, H.H., Kimoto, A., Taylor, I.G., Kanaiwa, M., and Sun, C.L. 2013. Population dynamics
- and status of striped marlin (*Kajikia audax*) in the western and central northern Pacific Ocean. Mar.
- 569 Freshwater Res. **64** (2): 108–118.doi:10.1071/MF12302.
- 570 R Development Core Team. 2013. R: a language and environment for statistical computing. R
- 571 Foundation for Statistical Computing, Vienna, Austria.

572	Roa-Ureta, R., and E. Niklitschek. 2007. Biomass estimation from surveys with likelihood based
573	geostatistics. ICES J. Mar. Sci. 64 (9): 1723-1734.doi:10.1093/icesjms/fsm149.
574	Semba, Y., Nakano, H., and Aoki, I. 2009. Age and growth analysis of the shortfin mako, Isurus
575	oxyrinchus, in the western and central North Pacific Ocean. Environ. Biol. Fish. 84 (4): 377-391.
576	doi:10.1007/S10641-009-9447-X.
577	Semba, Y., Aoki, I., and Yokawa, K. 2011. Size at maturity and reproductive traits of shortfin mako,
578	Isurus oxyrinchus, in the western and central North Pacific. Mar. Freshwater Res. 62 (1): 20-29.
579	doi:10.1071/ MF10123.
580	Shelton, A.O., Thorson, J.T., Ward, E.J., and Feist, B.E. 2014. Spatial semiparametric models improve
581	estimates of species abundance and distribution. Can. J. Fish Aquat. Sci. 71 (11): 1655-1666.doi.
582	10.1139/cjfas-2013-0508.
583	Suzuki, Z., Warashina, Y., and Kishida, M. 1977. The comparison of catches by regular and deep tuna
584	longline gears in the western and central equatorial Pacific. Bull. Natl. Rese. Inst. Far. Seas Fish. 15,
585	51-89.
586	Thorson, J.T., and Taylor, I.G. 2014. A comparison of parametric, semi-parametric, and non-parametric
587	approaches to selectivity in age-structured assessment models. Fish. Res. 158: 74-83.
588	Thorson, J.T., Ianelli, J.N., Munch, S.B., Ono, K., and Spencer, P.D. 2015a. Spatial delay-difference
589	models for estimating spatiotemporal variation in juvenile production and population abundance. Can.
590	J. Fish. Aquat. Sci. 72 (12): 1897–1915. doi:10.1139/cjfas-2014-0543.
591	Thorson, J.T., Shelton, A.O., Ward, E.J., and Skaug, H. 2015b. Geostatistical delta-generalized linear
592	mixed models improve precision for estimated abundance indices for West Coast groundfishes. ICES
593	J. Mar. Sci. 72 (9): 1297–1310.doi 10.1093/icesjms/fsu243.

- 594 Thorson, J.T., Skaug, H., Kristensen, K., Shelton, A.O., Ward, E.J., Harms, J., and Benante, J. 2015c. The
- importance of spatial models for estimating the strength of density dependence. Ecology. 96 (5): 1202–
 1212.doi:10.1890/14-0739.1.
- 597 Thorson, J. T., Fonner, R., Haltuch, M., Ono, K., and Winker, H. 2016. Accounting for spatiotemporal
- 598 variation and fisher targeting when estimating abundance from multispecies fishery data. Can. J. Fish.
- 599 Aquat. Sci. **73:** 1–14. doi:10.1139/cjfas-2015-0598.
- 600 Thorson, J.T., and Kristensen, K. 2016. Implementing a generic method for bias correction in statistical
- models using random effects, with spatial and population dynamics examples. Fish. Res. **175**: 66–74.
- 602 doi:10.1016/j.fishres.2015.11.016.
- 603 Walker, T.I., 1988. Can shark resources be harvested sustainably? A question revisited with a review of
- 604 shark fisheries. Mar. Freshwater Res. **49** (7): 553–572.doi:10.1071/MF98017.
- Walters, C. 2003. Folly and fantasy in the analysis of spatial catch rate data. Can. J. Fish Aquat. Sci. 60 (12):
- 606 1433-1436.doi:10.1139/f03-152.
- 607 Walter, J.F., J.M. Hoenig, and M.C. Christman. 2014. Reducing bias and filling in spatial gaps in
- 608 fishery-dependent catch-per-unit-effort data by geostatistical prediction, I. Methodology and
- 609 simulation. N. Am. J. Fish. Manage. **34** (6): 1095–1107.doi:10.1080/02755947.2014.932865.
- 610 Ward, P., and Myers, R.A. 2005. Shifts in open-ocean fish communities coinciding with the commencement
- 611 of commercial fishing. Ecology. **86** (4): 835–847.doi:10.1890/03-0746.
- 612 Wilberg, M.J., Thorson, J.T., Linton, B.C., Berkson, J. 2010. Incorporating time-varying catchability into
- 613 population dynamic stock assessment models. Rev. Fish. Sci. **18** (1): 7–24.
- 614 Zuur, A.E., Ieno, E.N., Walker, N.J., Saveliev, A.A., and Smith, G. M. 2009. Zero-truncated and
- 615 zero-inflated models for count data. In Mixed effects models and extensions in ecology with R. Springer
- 616 Science + Business Media, LLC, New York, pp. 261–293.

- 618 Tables
- 619 Table 1. Summary of the model selection information from A) four analyses, including error distribution of
- 620 positive catch model (lognormal or gamma), random field (anisotropic or isotropic), the number of
- be parameters, the negative log-likelihood (NLL), the reduction in AIC (Δ AIC) from the best-fitting model,
- absolute value of the maximum gradient, marginal standard deviation for spatial variation and
- apatio-temporal and length variation; and B) eight analyses. , including the catch rate predictor of random
- 624 effect. "Null" denotes no random effects, "Station" denotes random effects of statistical station (latitude and
- longitude), "Length" denotes random effects of body length, and "Station:Length:Year" denotes random

626 effects of station, length and year.

627 A)

628

629 B)

Model	Catch rate predictors of random effect (RE)	Number of parameters	Deviance	Percent deviance (%)	ΔAIC	Maximum gradient	Marginal SD of spatial variation	Marginal SD of spatio- temporal and length variation
Model 1	Null	23	99919		11697	0.018		
Model 2	Station	27	98741	1.179	10527	0.019	0.59	
Model 3	Length	26	95099	3.689	6883	0.016		
Model 4	Station + Length	30	93718	1.453	5510	0.032	0.61	
Model 5	Station: Length: Year	29	88504	5.564	293	0.067		1.84
Model 6	Station + Station: Length: Year	30	88502	0.001	294	0.007	0.29	1.81
Model 7	Length + Station: Length: Year					0.145		
Model 8	Station + Length + Station: Length: Year	32	88205	0.337	0	0.017	0.20	1.22

631	Figure	Legends
-----	--------	---------

633	Fig. 1 Map of the	e operational are	eas of Japanese	commercial fish	neries (mean num	ber of hooks) and

- sampling areas of length data (length composition) in the western and central North Pacific. The map is
- drawn using the shallow-set fleet subset used for the analysis.

636

637	Fig. 2 Yearly changes	s in predicted	CPUE relative its average	e for shortfin mako for	(a) four	models with
-----	-----------------------	----------------	---------------------------	-------------------------	----------	-------------

- 638 two different error distributions with and without anisotropy, and (b) seven models with the explanatory
- 639 variables sequentially added to the null model. Please see an appendix D for the calculation method of the

640 quantity.

641

642 Fig. 3 Overall spatial distribution of predicted CPUE relative its average for shortfin mako (upper figure)

643 We also plot the nominal CPUE relative to its average (lower figure). Please see an appendix D for the

644 calculation method of the quantity.

645

646 Fig. 4	Yearly chang	ges in predicted	CPUE relative its average	e for shortfin mak	o (black solid	line with
------------	--------------	------------------	---------------------------	--------------------	----------------	-----------

- 647 filled circle). Grey solid line denotes the nominal CPUE relative to its average, shadow denotes the 95 %
- 648 confidence intervals, and the horizontal dotted line denotes mean value of relative values (1.0). Please see
- an appendix D for the calculation method of the quantity.

- Fig. 5 Length (Pre-caudal length) specific changes in predicted CPUE relative to its average for shortfin
- mako (black solid line with filled circle). Grey solid line denotes the nominal CPUE relative to its average,

653	shadow denotes the 95 % confidence intervals, and the horizontal dotted line denotes mean value of
654	relative values (1.0). Please see an appendix D for the calculation method of the quantity.
655	
656	Fig. 6 Overall spatial distribution of predicted CPUE relative its average for three growth stages of
657	shortfin mako:(a) Juvenile :(b) Immature :(c) Subadult and adult. We also plot the nominal CPUE relative
658	to its average for the three growth stages of shortfin mako (right figures). Please see an appendix D for the
659	calculation method of the quantity.
660	
661	Fig. 7 Yearly changes in predicted CPUE relative its average (black solid line with filled circle) for three
662	growth stages of shortfin mako :(a) Juvenile :(b) Immature :(c) Subadult and adult. Grey solid line
663	denotes the nominal CPUE relative to its average for the three growth stages of shortfin mako, shadow
664	denotes the 95 % confidence intervals, and the horizontal dotted line denotes mean value of relative
665	values (1.0). We also plot the number of hooks (x 1000), representing the yearly changes of available data
666	for shortfin mako (figure d). Please see an appendix D for the calculation method of the quantity.
667	
668	Fig. 8. Time (year) specific changes of the spatial distributions of log-scaled predicted CPUE for three
669	growth stages and all combined stages of shortfin mako :(a) Juvenile :(b) Immature :(c) Subadult and
670	adult :(d) All stages. Please see an appendix D for the calculation method of the quantity.
671	
672	Fig. 9 Length (Pre-caudal length) and time (year) specific changes in predicted CPUE relative its average
673	for shortfin mako. Black solid line denotes the average length specific distribution across all years,

- 674 shadow denotes the 95 % confidence intervals, and the horizontal dotted line denotes mean value of
- relative values (1.0). Please see an appendix D for the calculation method of the quantity.

91x40mm (300 x 300 DPI)

175x201mm (300 x 300 DPI)

304x365mm (300 x 300 DPI)

304x304mm (300 x 300 DPI)

304x261mm (300 x 300 DPI)

355x414mm (300 x 300 DPI)

304x261mm (300 x 300 DPI)

1 Appendices

2 Appendix A

3 A1. Basic statistical information about shortfin mako catch

4	The proportion of the catch number of mako shark caught by Japanese offshore and distant
5	water shallow-set longliner accounts for approximately 93% (111,318 in number /119,645) to total catch
6	by Japanese offshore and distant water longliner during 2006 and 2014 (if we defined the shallow-set
7	fishery has a gear 3-5 hooks per floats in an operation). Of there, the proportion of the catch number of
8	mako shark caught by Kessennuma boat accounts for approximately 94% (104,864/111,318) to total
9	shallow-set catch during 2006 and 2014. Total number of size sample collected by Kesennuma boat was
10	72,355 during 2006 and 2014.
11	
12	A2. Summary of data aggregation
13	(1) For logbook catch data, we aggregated the set-by-set data (i.e. one operation data including year,
14	quarter, latitude and longitude, number of hooks, catch number of shortfin mako and other species) by
15	station (i.e. latitude and longitude) and year-quarter. Set by set data was summed up with regards to
16	the catch number and number of hooks. There is no reduction in the total number of catch as well as
17	hooks in this aggregation.
18	(2) For size data, we aggregated the set-by-set data (i.e. one operation data including year, quarter,
19	latitude and longitude, body length of shortfin mako) by station, year-quarter and length bins. Set by
20	set data was summed up with regards to the total number of catch at each length-interval. There is no
21	reduction in the total number of size data.

22	(3) We combined the catch data with size data based on the same station and same year-quarter. If there
23	is either (1) no size data at the specific station and in a specific year-quarter, or (2) no catch data at the
24	specific station and in a specific year-quarter, then we do not include any data for that station and
25	year-quarter. We summarized the information about the data aggregation in Table A1 and the maps of
26	nominal CPUE before and after the data aggregation (Fig. A1). Note that the number of set by set data
27	after aggregation denotes the number of data aggregated by station and year-quarter.
28	
29	Appendix B
30	B1. Estimation methods of the random effects (Kristensen et.al. 2016)
31	Let $f(u, \omega)$ denote the negative joint log-likelihood of the data and the random effects. This
32	depends on the unknown random effects $u \in \mathbb{R}^n$ and parameters $\omega \in \mathbb{R}^m$, where \mathbb{R} is a real n - and m -
33	space. The TMB package implements maximum likelihood estimation and uncertainty calculations for u
34	and ω . The maximum likelihood estimate for ω maximizes
35	$L(\omega) = \int_{\mathbb{R}^n} \exp(-f(u,\omega)) du \tag{A1}$
36	w.r.t. ω . Note that the random effects u have been integrated out and the marginal likelihood $L(\omega)$ is the
37	likelihood of the data as a function of just the parameters. We use $\hat{u}(\omega)$ to denote the minimizer of $f(u, \omega)$
38	ω) with respect to <i>u</i> ; i.e.,
39	$\hat{u}(\omega) = \arg\min_{u} f(u, \omega)$ (A2)
40	We use $H(\omega)$ to denote the Hessian of $f(u, \omega)$ with respect to u and evaluated at $\hat{u}(\omega)$; i.e.,
41	$H_{i,j}(\omega) = \frac{\partial^2}{\partial \hat{u}_i(\omega) \partial \hat{u}_j(\omega)} f(\hat{u}(\omega), \omega) $ (A3)
42	The Laplace approximation for the marginal likelihood $L(\omega)$ is
43	$L^{*}(\omega) = \sqrt{2\pi^{n}} \det(H(\omega))^{-0.5} \exp(-f(u,\omega)) $ (A4) 2

44	We then use a gradient-based nonlinear minimizer to identify the values $\hat{\omega}$ of parameters ω that
45	maximizes this approximation to the marginal likelihood:
46	$\widehat{\omega} = \arg \max_{\omega} L^*(\omega) \tag{A5}$
47	This approximation is widely applicable including models ranging from non-linear mixed effects models
48	to complex space-time models.
49	
50	Appendix C
51	C1. Diagnostics plots of goodness-of-fits
52	The goodness of fits were examined using four types of residual plots obtained from positive
53	catch data: (1) standardized residuals versus the fitted values can assess whether model misspecification is
54	occurring: (2) square root of the absolute values of the standardized residuals versus the fitted values can
55	assess whether the variance changes as a function of the predicted value: (3) the observed versus the
56	predicted values can assess qualitatively whether the explanatory variables are indeed able to reduce the
57	variance in the data: (4) quantile and quantile plots can assess the normality. Overall, the model fit to the
58	data was not bad (Fig. A2). The residuals were slightly biased toward the negative directions.
59	Sqrt(Abs(Residuals)) had a tendency to increase as the predicted value was increased. The predicted
60	CPUEs were smaller than observed CPUEs. Q-Q plots indicated that the left ends of the plots were
61	largely deviated from the straight line.
62	We used only the positive catch data to plot the diagnostics because the binomial data with a
63	logistic regression is very complicated to treat the residual patterns. If the true value is 0, we always
64	overestimate the fitted value and residual should be negative. If the true value is 1, we always

65 underestimate the fitted value and residual should be positive. Then, we have two lines of the residual

- 66 plots across positive and negative lines.
- 67
- 68 Appendix D
- 69 Calculation method of each quantity

70 Annual abundance (i.e. CPUE which is defined as catch number over number of hooks) is

calculated as the sum of abundance for each station and length interval, averaged across quarter:

72
$$d(t) = \sum_{s=1}^{226} \sum_{l=1}^{13} d(s, t, q, l),$$
(A6)

73 where d(s, t, q, l) is defined in Eq. (1), d(t) is total abundance at year t. The overall year relative to its

average is

75
$$d^*(t) = d(t) / \left(\frac{1}{n_t} \sum d(t)\right).$$
 (A7)

76 Nominal CPUE for combined stations, length interval and quarter is calculated as follows:

77
$$u(t) = \sum_{s=1}^{226} \sum_{q=1}^{4} \sum_{l=1}^{13} c(s, t, q, l) / \sum_{s=1}^{226} \sum_{q=1}^{4} \sum_{l=1}^{13} f(s, t, q, l)$$
(A8)

where u(t) is nominal cpue at year t defined by a division of catch number c averaged over s, q, and l

divided by number of hooks f averaged over s, q, and l. The overall year relative to its average is

80
$$u^*(t) = u(t) / \left(\frac{1}{n_t} \sum u(t)\right).$$
 (A9)

81 The coefficient of variation (CV) for estimated CPUE for combined three growth stages in year t is

82 calculated as:

83
$$CV(d(t)) = \frac{SE(d(t))}{d(t)}$$
(A10)

84 where CV(d(t)) is the coefficient of variation of total abundance in year t and SE(d(t)) is the

standard error for annual abundance (as estimated using Template Model Builder).

Length specific changes in abundance are calculated as the sum of abundance for each station

87 and year, averaged across quarter:

88
$$d(l) = \sum_{s=1}^{226} \sum_{t=1}^{9} d(s, t, q, l),$$
(A11)

where d(s, t, q, l) is defined in Eq. (1), d(l) is total abundance at length-bin *l*. The overall length intervals relative to its average is

91
$$d^*(l) = d(l) / \left(\frac{1}{n_l} \sum d(l)\right).$$
 (A12)

92 Nominal CPUE for combined stations, overall year and quarter is calculated as follows:

93
$$u(l) = \sum_{s=1}^{226} \sum_{q=1}^{4} \sum_{t=1}^{9} c(s, t, q, l) / \sum_{s=1}^{226} \sum_{q=1}^{4} \sum_{t=1}^{9} f(s, t, q, l)$$
(A13)

94 where u(l) is nominal cpue at length interval l defined by a division of catch number c averaged over s, q,

- and t divided by number of hooks f averaged over s, q, and t. The overall length interval relative to its
- 96 average is

97
$$u^*(l) = u(l) / \left(\frac{1}{n_l} \sum u(l)\right).$$
 (A14)

98 The coefficient of variation (*CV*) for estimated CPUE at length interval *l* is calculated as:

99
$$CV(d(l)) = \frac{SE(d(l))}{d(l)}$$
(A15)

100 where CV(d(l)) is the coefficient of variation of total abundance at length-interval l and SE(d(l)) is

101 the standard error for annual abundance (as estimated using Template Model Builder).

102 In the following, we presented and interpreted maps of density that include the effect of fixed

103 effects and random effects. Here, the average spatial distribution of predicted catch rate for each year was

104 calculated as:

105
$$\bar{d}(s,t) = \sum_{l=1}^{13} d(s,t,q,l)$$
 (A16)

 $\mathbf{5}$

106 where d(s, t, q, l) is defined in Eq. (1), $\overline{d}(s, t)$ is the density at location s and time t summed over 107 length intervals l is 13, the sum of quarter q is omitted because q is a fixed effect with no interactions, and 108 where plot the density: $d_t^*(s) = \frac{d(s,t)}{\left(\frac{1}{n_s}\sum d(s,t)\right)}$ 109(A17) 110111 Appendix E 112The influence of the target changes 113 Swordfish catch ratios (i.e., CPUE) were ranked based on ten equal percentile categories (e.g., 0 114to <10 %, 10 to <20 %, etc.) for each year, and the ranks were used as target indicators (Hiraoka et al. 1152016). We used the catch number records for swordfish and blue shark from the same set-by-set logbook 116 data as used for the prediction of the CPUE for shortfin make. We evaluated the influence of the target 117changes through a comparison with the annual trends in the CPUE using the best-fitting model with and 118 without target indicator. For example, a set with the highest swordfish CPUE within certain years would 119 be categorized as rank 10, indicating that blue shark was relatively under-targeted in that set. 120121Appendix references 122Hiraoka, Y., Kanaiwa, M., Ohshimo, S., Takahashi, N., Kai, M., and Yokawa, K. 2016. Trend in the 123relative abundance of the blue shark Prionace glauca based on the activities of Japanese distant water 124and offshore longliners in the North Pacific. Fish. Sci. 82: 687-699. 125Kristensen, K. 2014. TMB: General random effect model builder tool inspired by ADMB [online]. R 126package version 1.6.2. Available from https://cran.r-project.org/web/packages/TMB/index.html 127[accessed 18 January 2017]

129 Appendix tables

130 Table A1 Summary of data aggregation by A) year and B) quarter.

131 A)

Year		Catch	Catch	Number of	Number of	Number of	Number of	Positive	Positive	Number of	Number of
		number of	umber of number of		size data	set by set	set by set	catch ratio	catch ratio	hooks	hooks (after)
		mako	mako	(before)	(after)	data	data	of set by	of set by	(before)	
		shark	shark			(before)	(after)	set data	set data		
		(before)	(after)					(before)	(after)		
	2006	13,180	10,299	7,800	7648	5123	3200	0.57	0.53	18,583,512	15,319,327
	2007	15,139	14,460	13,130	12702	5823	4022	0.58	0.50	21,148,480	18,876,303
	2008	12,532	12,080	10,571	10113	5312	3610	0.61	0.52	19,185,566	17,139,978
	2009	15,751	14,802	8,008	7936	4582	3290	0.65	0.49	16,220,017	15,345,066
	2010	13,202	11,907	6,282	6238	4181	2702	0.64	0.48	15,388,103	13,785,927
	2011	9,208	8,398	4,777	4705	2356	2145	0.73	0.44	8,766,168	7,958,559
	2012	11,202	10,833	6,918	6841	2900	2473	0.66	0.51	10,506,429	9,710,781
	2013	8,547	8,257	5,420	5310	3192	2363	0.65	0.48	10,866,447	9,909,735
	2014	12,557	12,292	9,449	9389	3072	2231	0.75	0.57	10,216,910	9,838,298
B)							1				

132

133 B)

Quarter	Catch	Catch	Number of	Number of	Number of	Number of	Positive	Positive	Number of	Number of
	number of	number of	size data	size data	set by set	set by set	catch ratio	catch ratio	hooks	hooks
	mako	mako	(before)	(after)	data	data	of set by	of set by	(before)	(after)
	shark	shark			(before)	(after)	set data	set data		
	(before)	(after)					(before)	(after)		
1	33,729	32,561	21,908	21,605	10,785	5,633	0.69	0.54	37,990,354	36,575,575
2	2 30,343	26,183	16,598	16,084	9,191	8,753	0.64	0.44	33049087	29,311,644
3	3 20,075	19,053	14,399	14,158	6,222	5,442	0.69	0.49	22511714	20,889,069
	27,171	25,531	19,450	19,035	10,343	6,208	0.53	0.56	37330477	31,107,685

135

134

137 Table A2. List of all parameters and the estimates for the best-fitting model.

No	Parameter name	Symbol	Туре	Estimates
	1 Distance of correlation (Spatial random effect)	κ	Fixed	0.27
	2 Northings anisotropy	h_1	Fixed	1.46
	3 Anisotropic correlation	h_2	Fixed	0.98
	4 Parameter governing pointwise variance (Spatial random effect)	n .	Fixed	1.43
	5 Parameter governing pointwise variance (Length random effect)	ne	Fixed	0.30
	6 Parameter governing pointwise variance (Spatio-temporal and length random effect)	η θ	Fixed	0.23
	7 Correlation parameter of length bins	Ψ	Fixed	0.17
	8 Parameter governing autocorrelation (Length random effect)	P -	Fixed	0.16
	9 Parameter governing autocorrelation (spatio-temporal and length random effect)	ρ _θ	Fixed	0.85
10-1	18 Intercept for year	do	Fixed	Not shown
19-2	21 Temporal variance (quarter effect) ^a	ô	Fixed	Not shown
2	22 Scale parameter of zero catch ratio	<i>z</i> ₁	Fixed	0.74
2	23 Scale parameter of zero catch ratio	Z 0	Fixed	2.73
<mark>24-</mark> 3	32 Log-standard deviation for catch rates for year	σ	Fixed	Not shown
3	33 Spatial residuals	2	Random	Not shown
3	34 Length residuals	τ	Random	Not shown
3	35 Spatio-temporal and length residuals	θ	Random	Not shown

139 a: Offset of density in quarter 2-4 from density in quarter 1

- 141 Table A3. Summary of yearly changes in CPUE predicted by spatio-temporal model for three ("Juvenile", "Immature", and "Subadult and adult")
- 142 and a combined ("All") growth stages along with the corresponding estimates of the coefficient of variation (CVs), and yearly changes in the nominal
- 143 CPUE and fishing effort (number of hooks x 1millions). The values are predicted using the best fitting model and scaled by average CPUE.

Year	Predicted				Nominal				CV				Effort
	All	Juvenile	Immature	Adult	All	Juvenile	Immature	Adult	All	Juvenile	Immature	Adult	All
2006	0.79	1.42	0.84	0.67	0.74	0.91	0.75	0.70	0.10	0.14	0.10	0.10	0.10
2007	0.73	0.99	0.75	0.69	0.84	0.95	0.88	0.74	0.08	0.12	0.08	0.09	0.08
2008	0.66	0.81	0.70	0.59	0.77	0.72	0.80	0.71	0.08	0.12	0.08	0.10	0.08
2009	1.04	1.20	1.10	0.93	1.05	1.09	1.10	0.93	0.09	0.15	0.09	0.10	0.10
2010	1.01	0.86	1.01	1.03	0.95	0.85	0.99	0.85	0.10	0.15	0.10	0.12	0.11
2011	1.02	0.65	1.00	1.08	1.16	0.90	1.08	1.36	0.12	0.21	0.12	0.12	0.12
2012	1.16	0.49	1.09	1.32	1.22	0.43	1.20	1.39	0.11	0.17	0.10	0.12	0.11
2013	1.07	0.62	1.02	1.18	0.91	0.49	0.87	1.08	0.18	0.22	0.17	0.19	0.18
2014	1.51	1.96	1.49	1.51	1.36	2.66	1.33	1.22	0.17	0.20	0.16	0.19	0.17

144

146	Appendix Figure Legends
147	
148	Fig. A1 Maps of log-scaled nominal CPUE (catch/number of hooks x1000) by station before and
149	after the data aggregation.
150	
151	Fig. A2 Diagnostic plots of goodness-of-fit for the most parsimonious model selected by AIC.
152	
153	Fig. A3 Yearly changes in predicted CPUE relative its average for shortfin mako (black solid line
154	with filled circle) with target effect (solid line with filled circle) and without target effect (solid line
155	with filled triangle). Target effect (Hiraoka et al., 2016) is defined as a ranking of swordfish catch
156	ratio (i.e., CPUE for each set) based on ten equal percentile categories (e.g., 0 to <10 %, 10 to <20
157	%, etc.) for each year. Grey solid line denotes the nominal CPUE relative to its average, and the
158	horizontal dotted line denotes mean value of relative values (1.0).
159	

203x162mm (300 x 300 DPI)

254x211mm (300 x 300 DPI)

