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Abstract 29 

 30 

Random X-chromosome inactivation (XCI) is a hallmark of female mammalian somatic cells. This 31 

epigenetic mechanism, mediated by the long non-coding RNA Xist, occurs in the epiblast and is stably 32 

maintained to ensure proper dosage compensation of X-linked genes during life. However, this silencing is 33 

lost during primordial germ cell (PGC) development. Using a combination of single-cell allele-specific 34 

RNA sequencing and low-input chromatin profiling in developing in vivo PGC, we provide unprecedented 35 

detailed maps of gene reactivation. We demonstrated that PGC still carry a fully silent X chromosome on 36 

embryonic day (E) 9.5, despite the loss of Xist expression. X-linked genes are then gradually reactivated 37 

outside the Xist first-bound regions. At E12.5, a significant part of the inactive X chromosome (Xi) still 38 

resists reactivation, carrying an epigenetic memory of its silencing. Late-reactivated genes are enriched in 39 

repressive chromatin marks, including DNA methylation and H3K27me3 marks. Our results define the 40 

timing of reactivation of the silent X chromosome a key event in female PGC reprogramming with direct 41 

implications for reproduction. 42 

 43 

 44 

Introduction 45 

 46 

In mammals, while proper commitment and homeostasis of somatic lineages are central to individual 47 

survival, correct establishment of the germline is crucial for functional gamete and species survival. In 48 

mice, specification of germ cell lineage is initiated during embryonic post-implantation development at the 49 

onset of gastrulation. Approximately 30-40 PGC become specified and are found at the base of the allantois 50 

bud at E7.25 1,2. After E8.5, PGC undergo migration and proliferation, and reach the genital ridges between 51 

E10 and E11. Throughout this period, germ cell proliferation and colonization continue until the PGC enters 52 

meiotic prophase at E13.5 in the female embryos, a process that occurs only after birth in males 3. 53 

Establishment of the germline determines the production of oocytes and spermatozoa, and therefore their 54 

competency to accomplish fertilization and transmit genetic and epigenetic information to the next 55 

generation 4. PGC differentiation is accompanied by repression of the somatic program, expression of 56 

germline-specific genes, and extensive genome-wide epigenetic reprogramming including DNA 57 

demethylation, loss of genomic imprints, and redistribution of histone marks 1,5. Epigenetic reprogramming 58 

occurs when PGCs proliferate and migrate to colonize the future gonads. During the upstream development 59 

of gonadal sex determination, PGC epigenetic reprogramming displays striking differences between XX 60 

females and XY males, with reactivation of the inactive X chromosome 6–9. This leads to an excess of X-61 

linked gene products, with the X:Autosome ratio exceeding 1 in female PGCs compared to males 10,11. 62 
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Excess X-linked genes could promote sexual dimorphism and meiosis progression through the direct or 63 

indirect involvement of some X-linked genes in the process of sex-specific gonadal formation and Xi 64 

reactivation itself 8,12. 65 

 66 

Differences in sex chromosome content between males and females lead to gene dosage imbalance. This is 67 

compensated in mammals by transcriptional silencing of one of the two X chromosomes in female somatic 68 

cells 13,14. This epigenetic mechanism, called X-chromosome inactivation, represents an important paradigm 69 

for chromosome-wide epigenetic regulation. Long non-coding RNA Xist plays a crucial role in the initiation 70 

of XCI 15–17. Its absence in early female embryos leads to lethality owing to both impaired dosage 71 

compensation and extra-embryonic tissue development 16,17. Once expressed from the future Xi, Xist coats 72 

in cis the most accessible regions, in 3D spatial proximity, the Xist ‘entry sites’, before spreading along 73 

chromosome 18–20. Transposons, particularly LINE1 elements, have been proposed to facilitate this 74 

heterochromatinization process 21,22. Xist then triggers the recruitment of specific factors involved in gene 75 

silencing, which in turn induces the removal of active chromatin marks and recruitment of repressive 76 

histone marks, such as H3K27me3, H3K9me2, and H2AK119ub 23. Finally, DNA methylation is recruited 77 

to the promoters of inactivated genes to further lock the silent state of these genes and maintain them over 78 

hundreds of cell divisions 24. Studies on the kinetics of XCI have shown that different genes followed 79 

different speeds of silencing in the pre-implantation 16 and post-implantation mouse embryos 25, and during 80 

in vitro differentiation of mouse embryonic stem cells (mES) 26,27, except for a small subset of genes that 81 

resist silencing ( escapee, ~7 % in the mouse). Early silent genes seem to be more prone to lie inside Xist 82 

‘entry sites’ and close to the X-inactivation centre (Xic) 16 from which Xist is transcribed, in gene-rich 83 

regions, pre-bound by Polycomb 23 and close to LINE1 elements 27. 84 

 85 

Although XCI has been extensively studied over the past 60 years, much less is known about how Xi 86 

reactivation occurs and whether it mirrors XCI key events. Upon development, Xi reactivation occurs after 87 

imprinted XCI in the inner cell mass (ICM) of the blastocyst 28,29 (a rodent-specific event) and in PGC 6,7 88 

after random XCI. It is also observed in vitro during female induced pluripotent stem cell derivation (iPSC) 89 

30,31. Based on a combination of immunofluorescence, RNA-FISH, and RT-PCR in the germline, early PGC 90 

carry an inactive X chromosome enriched in H3K27me37,9,32, with silent X-linked genes 6. Reactivation is 91 

initiated by the transcriptional extinction of Xist RNA (from E7.5, prior to and upon PGC migration), loss 92 

of repressive H3K27me3 chromatin marks (from E9.5, during PGC migration and proliferation), and re-93 

expression of silenced X-linked genes (from E10.5, when PGC start to colonize the future gonads) 6,7,32,33. 94 

Xist repression has been linked to pluripotency factors such as Nanog and Prdm14 in pluripotent mES 34, 95 

ICM 29,35 and germline 9. 96 
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However, studies based on single-cell RNA sequencing (scRNA-seq) in post-implantation embryos have 97 

shown progressive random XCI depending on lineage 25,36. Some epiblast cells can still carry two active X 98 

chromosomes at the time of PGC specification. A recent study on Xi reactivation in in vitro PGC-like cells 99 

suggested that Xi could only be moderately silenced in early PGC before full reactivation 8. This study was 100 

based on in vitro XCI in Epiblast-like cells differentiated from mES followed by Xi reactivation in induced 101 

PGC-like cells.  102 

Despite this knowledge, the events underlying X-linked gene reactivation in the germline remain unclear, 103 

particularly at the level of the entire chromosome. The extent of XCI in early in vivo PGC and the kinetics 104 

of gene reactivation are still unknown. To address these questions, we explored the precise kinetics of X-105 

linked gene expression and Xi chromatin change. We combined interspecific mouse crosses and scRNA-106 

seq, DNA methylation assay using Whole Genome Bisulfite (WGBS), and H3K27me3 histone mark 107 

profiling using low-input allele-specific CUT&RUN. We investigated the transcriptional changes from 108 

E8.5 to E12.5 PGC. We showed that X-linked genes are sequentially activated, as previously described for 109 

the ICM of the blastocyst29 but with different dynamics and requirements. In PGCs, we observed 110 

reactivation dependency on Xist entry sites, DNA methylation levels, H3K27me3 enrichment, and genomic 111 

location. This study provides important insights into the transcriptional, allelic, and chromatin dynamics of 112 

Xi reactivation in germline cells. Our novel results emphasize the importance of studying epigenetic 113 

reprogramming of the inactive X chromosome in the unique context of the germline, which is the most 114 

relevant for developmental syndromes and human reproductive medicine. 115 

 116 

 117 
Results 118 

 119 

Transcriptional analysis of in vivo PGC and soma cells by scRNA-seq 120 

To address the X-chromosome reactivation kinetics in PGC, at the chromosome-wide scale, we produced 121 

high-quality, high-coverage scRNA-seq for female and male PGC, as well as surrounding female somatic 122 

cells, as a control for the maintenance of X-chromosome inactivation. F1 interspecific embryos were 123 

obtained by mating Mus Musculus domesticus (129) inbred and Mus Musculus castaneus (Cast) inbred 124 

mice, and collected every day between E8.5 and E12.5 (Figure 1A). These sub-species have evolved for 125 

more than 3 million years and carry an important number of well-characterized single nucleotide 126 

polymorphisms (SNP) (mean of ~1 SNP / 650 bp on the X chromosome between 129 and Cast, Mouse 127 

Genomes project) 37,38. To visualize PGC in our embryos, we utilized Green Fluorescent Protein (GFP) 128 

transgene, in a 129 genetic background under the control of Stella or Oct4 promoter. Stella gene (also 129 

known as Dppa3) is expressed early during PGC development, at the time of emergence 39. We used it for 130 

E8.5 embryos. After E8.5, we took advantage of the Oct4-GFP transgenic mice 40. Oct4 also known as 131 
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Pou5f1, encodes a pluripotent transcription factor present in PGC, but not in surrounding somatic cells. 132 

From E8.5 to E10.5, PGC cells were collected with the assistance of fluorescent active cell sorting based 133 

on GFP expression. From E11.5, soma and PGC cells were collected after gonad dissection, based on their 134 

size, and confirmed based on the presence of GFP under a microscope. Each single cell was then manually 135 

picked, and poly adenylated mRNA was amplified 42. We produced high-quality scRNA-seq libraries from 136 

154 samples. Since we were interested in allelic expression, we decided to use a scRNA-seq method 41 137 

allowing high-depth of high-throughput sequencing for each single cell (Supplemental Table 1). Only 138 

single cells that passed the quality controls (see Methods) were used for downstream analysis (n=137 139 

libraries). We used Principal Component Analysis (PCA) to associate single cells based on their lineage 140 

(PGC versus soma, Figure 1B). The cells were first associated based on their lineage, followed by their 141 

embryonic stage. Next, we performed a correlation analysis based on the expression status of pluripotency, 142 

soma, and Y-linked genes (Figures 1B and C; genes listed in Figure 1C). We classified the cells according 143 

to their developmental stage and pluripotency/soma factor status. This clearly supports a strong repression 144 

of the somatic program in PGC and confirmed the expression of well-known factors in PGC such as Stella, 145 

Blimp1, Oct4, Nanog, and Dazl 1,43. The weight of these known factors in segregating the soma and PGC 146 

lineages is shown in Extended Figure 1A. The length of the arrows is proportional to the implication of 147 

the factor in PCA association. Without surprise, markers of soma point towards somatic cells and germline 148 

towards PGC. With a closer look it is important to note that late PGC genes preferentially point towards 149 

E12.5 PGC. We then asked the best 30 predictor genes of PCA clustering (Extended Figure 1B). Some 150 

well-known factors were found to push towards PGC fate, such as Oct4, Tfap2c, and DND1 1,44. However, 151 

other genes with interesting roles have also been identified, such as Zing Finger Protein Zfp985. The ZFP 152 

family is important for protecting DNA methylation at imprinting loci and transposons 45. Recently, Zfp982 153 

has been associated with the stemness state of mES through its potential control of Nanog and Stella 46. 154 

Epithelial splicing regulatory protein 1, Esrp1, induces oocyte defects and female infertility if deleted from 155 

E15 47. Our dataset could reveal novel PGC markers and are important candidates for PGC biology.  156 

 157 

We then studied the sex of our single-cell samples to focus on sex specificities, X-chromosome reactivation, 158 

and transcriptional changes during female PGC development. After clustering PGC and soma cells based 159 

on the expression of well-known markers and confirmation by clustering analysis (Figures 1C and D), we 160 

sexed all single cells based on Xist (in XX females) and Y-linked gene (in XY male) expression, allowing 161 

attribution to each single cell towards a lineage and sex (Figure 2A, Supplemental Table 1). Sex was also 162 

confirmed by the absence of SNPs from the X chromosomes in XY cells. By serendipity, an XO female 163 

embryo was found at E12.5, and was used in the analysis (n= 3 PGC and 1 soma cells sequenced). We first 164 

studied the differentially expressed genes (DEG) in migratory and colonizing female PGC by comparing 165 
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E9.5 versus E10.5, E11.5 versus E10.5 and E12.5 versus E11.5 (Extended Figures 1C, 1D and 1E). 166 

Strikingly, very few DEG were found in migratory PGC (E10.5 versus E9.5). This is in accordance with a 167 

previously published large scRNA-seq dataset of mouse male and female PGC 43. From E11.5, there was a 168 

strong increase in DEG in female PGC, with expected upregulation of PGC genes such as Dazl and 169 

Stella/Dppa3. In accordance with previous reports, there was significant gene repression and upregulation 170 

at E12.5, compared to E11.5 43,48. Most DEG from the X-chromosome were upregulated, which is consistent 171 

with X-chromosome reactivation occurring in female PGC (Extended Figure 1E). 172 

Furthermore, soma and PGC cells strongly clustered on PCA by lineage then developmental stage (1st axis, 173 

Figure 1B). We then plotted male and female cells on a PCA for each developmental stage (Extended 174 

Figure 2A-D). Clustering by sex was confirmed from E12.5, based on gene expression (PCA, 1 000 most 175 

differentially expressed genes) in post-migratory E12.5 PGC, at the onset of sex gonadal differentiation 176 

(Extended Figure 2D). This was expected based on a previous large-scale scRNA-seq 43 and supported the 177 

quality of our database for further analysis.  178 

 179 

X-chromosome reactivation initiates progressively upon PGC development  180 

To study X-chromosome reactivation, we analysed scRNA-seq in an allele-specific manner to determine 181 

the parental origin of the transcripts. SNPs from F1 hybrid embryos were used to map informative reads to 182 

either 129 or Cast genomes (see Methods). Each gene with informative SNP and expressed more than 2 183 

Reads Per Retro-Transcribed length per million mapped reads (RPRT) were provided an allelic expression 184 

ratio (reads from Cast divided by total informative reads). The parental origin of Xi was then determined 185 

in each single cell based on the allelic ratio of all informative X-linked genes and the Xa allelic ratio 186 

calculated as reads mapped on active X (Xa) divided by total reads, in following analysis (Supplemental 187 

Table 1, see Methods). On the 94 female scRNA-seq, 64 cells carried an active X chromosome of Cast 188 

origin (68 %) and 30 cells of 129 origin (32 %). Despite random choice of Xi, we observed a strongly 189 

skewed silencing towards the 129 chromosome. This confirmed the X-chromosome controlling element 190 

(Xce) effect in F1 hybrid female mice. Indeed, it has been well documented that an F1 hybrid background 191 

could lead to skewed XCI depending on their Xce strength (Xcea<Xceb<Xcec<Xced<Xcee with the strongest 192 

Xce allele being the most resistant to silencing) 49. Using 129 and Cast strains associated with Xcea and 193 

Xcec respectively, we confirmed that the 129 chromosome was preferentially chosen to be silent in the 194 

expected proportions 50. 195 

 196 

We then studied allelic expression of autosomal and X-linked genes during PGC development (Figure 2B). 197 

Autosomal genes were biallelically expressed (0.2< allelic ratio <0.8), with parity between 129 and Cast 198 

reads, in both males and females E9.5-E12.5 PGC. On the other hand, X-linked genes were strictly 199 
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expressed from the Xa (allelic ratio > 0.8) in E9.5 female PGC, except for a few genes, presumably the 200 

escapees. Distribution of the X-linked gene allelic ratios was very similar in both female and male PGC, 201 

highlighting complete XCI in E9.5 PGC. From E10.5, X-chromosome reactivation initiated in female PGC 202 

(ratio<0.8) and progressed upon PGC development.  203 

Because PGC could be heterogeneous in terms of developmental timing, even inside the same embryo, we 204 

decided to order the female PGC cells by pseudotime ordering (Figure 2C). We used the 1st principal 205 

component of our PCA (Figures 1B and 2A) to order female PGC by pseudotime ordering. Despite a few 206 

lagging cells, mainly at E11.5 and E12.5, most of the cells at the same developmental stage were clustered 207 

together, without a clear distinction of sex (Figure 2C and Extended Figure 2E). We then studied the 208 

percentage of reactivated X-linked genes in each female PGC (Figure 2D). We confirmed that Xi 209 

reactivation was progressive, from fully silent E9.5 PGC to highly reactivated E12.5 PGC, following PGC 210 

development (Extended Figure 2E).  211 

Since the loss of Xist enrichment on Xi is the earliest known event during reactivation in the germline 212 

(based on IF/RNA-FISH) 6,10, Xist expression levels were extracted in our scRNA-seq (Extended Figure 213 

2F). We confirmed that Xist is not expressed in most PGC compared to female somatic cells, which restrains 214 

Xist expression and inactivates the X chromosome. In migratory E9.5 female PGC, X-chromosome 215 

reactivation has been initiated, despite the fact that most X-linked genes subject to XCI are still silenced.  216 

 217 

Finally, to explore which pathways could drive Xi reactivation in the germline, we studied the correlation 218 

and anti-correlation between genome-wide gene expression and the percentage of reactivated genes (allelic 219 

ratio < 0.8) per female single cells (PGC and soma). Because X-chromosome reactivation occurs 220 

concomitantly to PGC development, we found that the best 2 correlated genes were germ cell-specific genes 221 

Ddx4/Vasa (R=0.78, q < 10-12) and Dazl (R=0.70, q < 10-7) 1. Gene ontology analysis of the top correlated 222 

genes (p < 0.001) revealed that chromatin modifiers involved in DNA methylation, gene silencing, and 223 

DNA modifications were overrepresented (Extended Figure 3A). This suggested that they may play a role 224 

in both PGC and Xi reprogramming. 225 

 226 

Different genes reactivate at different kinetics along the inactive X chromosome  227 

Next, we investigated the kinetics of X-linked gene reactivation along the entire X chromosome. Heat maps 228 

of X-linked gene activity were generated for E9.5 to E12.5 female PGC (Figure 3). We focused on well-229 

expressed genes to avoid confounding effects due to PCR bias and molecular loss in scRNA-seq method. 230 

Polymorphic genes expressed at RPRT>2 in at least 3 developmental stages were included in the heatmap 231 

and ordered by genomic position (Figure 3 left). E9.5 PGC displayed 92 % (164 out of 179) of 232 

monoallelically expressed genes (allelic ratio ≥ 0.8) and 8 % of biallelically expressed genes (0.2 < allelic 233 
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ratio < 0.8), 8 of which are well-known escapees, such as Kdm6a, Kdm5c, Ddx3x, Eif2s3x, Utp14a, Zrsr2, 234 

1810030O07Rik, Pqbp1 51. Interestingly, the proportion of biallelically expressed genes increased through 235 

the development of female PGC to reach 59 % (112 out of 189) at E12.5 PGC. This indicated the strong 236 

reactivation of X-linked genes during PGC development. However, an important portion of the X-linked 237 

genes was silenced at E12.5.  238 

We classified the genes into different classes with respect to the timing of reactivation (Figure 4A and 239 

Method, Figure 3 right). At E9.5, all genes were silenced, except for the escapee class (n=8 out of 198 240 

genes). Early genes (n=29 out of 198) were reactivated from E10.5, intermediate genes (n=55 out of 198 241 

genes) from E11.5, and late genes (19 out of 198) from E12.5. At E12.5, 76 out of 198 genes were still 242 

silenced (monoallelically expressed from the Xa) and belonged to the very late-reactivated class.  243 

Differences in reactivation kinetics were not explained by different expression levels (Figure 4B). Early 244 

and escapee genes tended to be more highly expressed in E10.5 and E11.5, compared to still-silent genes. 245 

This could be explained by the fact that the Xi allele was also transcribed for early reactivated and escapee 246 

genes compared to the other classes of genes. Consistently, at E12.5, very late reactivated genes tended to 247 

be less expressed than those in the other classes. 248 

A closer examination of the reactivation heatmap, ordered by genomic position, showed several regions of 249 

reactivation along the entire X chromosome. Because close genomic proximity to escapees could favour 250 

early reactivation in mouse iPSC 31, we tested the distance of our different reactivation class genes to the 251 

closest escapee (Extended Figure 3B). No link was detected between the differential reactivation kinetics 252 

and the distance from escapees in our in vivo female PGC. We then tested whether distance to Xist locus 253 

could be a significant parameter for reactivation kinetics (Extended Figure 3C). We found a strong bias 254 

for very late-reactivated genes to be localised closer to the Xist genomic locus compared to intermediate 255 

(p=0.02, KW test) and early (p=0.004, KW test) reactivated genes. Escapee were found further to the Xist 256 

locus (p=0.0045, KW test). We concluded that there was a strong correlation between close proximity to 257 

Xist locus and longer germline silencing.  258 

 259 

Context matters for the kinetics of X-linked gene reactivation 260 

We aimed to test the consistency of the reactivation kinetics of X-linked genes in different developmental 261 

contexts (ICM vs. PGC). We compared the classes of reactivation that belong to common X-linked genes 262 

during imprinted Xi reactivation in ICM and random Xi reactivation in PGC (Figure 4C) 29. Few 263 

similarities were found, except for escapees in PGC, who also escaped imprinted XCI. We then compared 264 

the reactivation classes in PGC to a recent study on PGC-like cells (PGCLC) (Figure 4D) 8. The in vitro 265 

PGCLC model recapitulates early PGC specification, including Xi reactivation in the female cells. 266 

However, very few X-linked genes exhibited similar kinetics. In vitro, the cells underwent partial XCI; 267 
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consequently, X-linked genes could be more prone to early reactivation. Late and very late reactivated 268 

genes in PGCLC could be genes that were properly silenced in vitro before undergoing reactivation. Thus, 269 

these genes had similar reactivation kinetics in our PGC in vivo. These data led us to hypothesize that late 270 

and very late reactivated genes in PGCLC, similar to PGC, could have been the first genes to be inactivated. 271 

 272 

Late-reactivated genes lay into Xist entry sites 273 

To test the correlation between early XCI and late X reactivation, we compared the kinetics of reactivation 274 

in PGC to silencing in differentiating mES cells (Figure 4E) 26. We found that the early silenced genes 275 

belonged to the very late reactivation class in PGC. Being an early silent gene can influence the speed of 276 

reactivation a few days later. 277 

Because the genes that resisted reactivation at E12.5, are closer to Xist locus (Extended Figure 3C) and 278 

could be the first silenced genes during random XCI (Figure 4E), this prompted us to question the 279 

relationship between X-linked gene reactivation and Xist entry sites. Xist entry sites are genomic regions of 280 

the chromosome that are the first bound by Xist RNA upon initiation of XCI18,20. It is believed that Xist 281 

exploits the 3D conformation of the chromosome to first bind the regions in 3D spatial proximity to its 282 

transcription site and then initiate silencing before spreading across the entire chromosome 20,52. 283 

Furthermore, we have previously shown that the genes lying inside these 3D accessible regions were more 284 

prone to early silencing in vivo 16. (Figure 4F). Here, we found that X-linked genes located within the Xist 285 

entry regions (Transcription Start Site TSS inside the predicted regions) showed more resistance to early 286 

reactivation than other genes. Genes outside the Xist entry sites showed the earliest reactivation and 287 

strongest allelic expression from Xi upon PGC development. Thus, the genes inside the Xist entry sites may 288 

correspond to genes that are more resistant to reactivation, carrying a stronger epigenetic memory of their 289 

silencing.in vivo. 290 

 291 

Resistance to reactivation could be partially explained by enrichment in chromatin repressive marks 292 

Very late-reactivated genes appeared to correlate with the first silenced regions of the Xi. Because repeated 293 

sequences of the genome, mainly LINE-1 elements, have been proposed to help silence propagation and 294 

facultative heterochromatinization of the Xi, we tested the enrichment of transposons in and outside Xist 295 

entry sites (Figure 5A). We confirmed that the X chromosome is highly enriched in LINE-1 compared to 296 

control autosomal regions. However, we did not observe any significant enrichment of repeats inside Xist 297 

entry sites compared with the rest of the X chromosome, except for a slight enrichment of short interspersed 298 

nuclear elements (SINEs). 299 

 300 
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Different chromatin environments could explain the differential kinetics of reactivation of X-linked genes 301 

in the PGC, as previously demonstrated in the ICM of blastocysts 29. Both repressive histone marks, such 302 

as H3K27me3 and DNA methylation, are enriched on the Xi upon random XCI 14. We studied DNA 303 

methylation by whole-genome bisulfite sequencing (WGBS) in female E6.5 epiblasts, when XCI takes 304 

place, and in publicly available datasets of female E10.5 53 and E12.5 54 PGC (Figure 5B). However, 305 

because XCI is random, the population of PGC was heterogeneous in terms of parental origin of the Xi (i.e. 306 

50 % of the cells silence the paternal X chromosome and 50 % the maternal chromosome), and cell 307 

population-based assays on mosaic female embryos are not informative for deciphering between Xa and 308 

Xi. Thus, we considered for the following analysis that a significant enrichment of DNA methylation at X-309 

linked gene promoters had a higher probability of coming from the Xi rather than the Xa. Very late 310 

reactivated genes showed slight enrichment in DNA methylation at their TSS compared to early-reactivated 311 

genes at E6.5. From E10.5, the DNA methylation erasure was nearly complete, and differences seemed to 312 

be lost (Figure 5B). Although very late reactivated genes were initially more enriched in DNA methylation 313 

than the early reactivated ones, it is not clear why these genes still resist reactivation at E12.5, when DNA 314 

demethylation is complete. 315 

 316 

We then decided to study the repressive histone mark H3K27me3, which is enriched on the inactive X 317 

chromosome and confers resistance to early reactivation of some X-linked genes in the ICM 29. To 318 

overcome the mosaicism in the PGC population and decipher between Xa and Xi, we used triple transgenic 319 

female mice (Xist flox/flox: Zp3-Cre; Oct4(ΔPE)eGFP, on a C57Bl6/J genetic background) crossed with Cast 320 

males (Figure 5C). This allowed us to collect polymorphic female embryos and sort pure PGC populations 321 

based on GFP (under the promoter control of the pluripotency factor OCT4) with non-random X 322 

inactivation. The Xist deletion occurred in the maternal germline and allowed the transmission of a XistKO 323 

B6 allele, which cannot be inactivated; Xi being always the Cast allele. Low-input allele-specific 324 

CUT&RUN against H3K27me3 marks was performed on sorted GFP+ female PGC at E11.5 and E12.5 325 

(Figure 5C). Statistically enriched broad domains of H3K27me3 were identified on X chromosomes 326 

(Figure 5D). We found a higher number of peaks at E11.5 on the X chromosome than at E12.5, in which 327 

most of the peaks were conserved from E11.5. The reads were then mapped to the parental genomes to 328 

determine the parental origin of the reads. As expected, most peaks were found on the inactive X 329 

chromosome at both E11.5 and E12.5 (Figure 5D and Extended Figure 4). We then intersected H3K27m3 330 

enrichment with reactivation classes. Enrichment in K27me3 was mainly found at E11.5, (20 % of the late-331 

reactivated and 45 % of very late-reactivated genes). At E12.5, H3K27me3 enrichment was lost in late 332 

genes when they were transcriptionally reactivated (Figure 5E). The enrichment level is also more 333 

important in very late reactivated genes, with most of the signal coming from the inactive Cast chromosome 334 
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(Figures 5F-G). In contrast, early-reactivated genes were depleted in H3K27me3, in accordance with their 335 

biallelic expression status. Tracks showing global and allele-specific H3K27me3 enrichment were 336 

produced for the early reactivated gene Med14, late Dlg3 and Pja1 genes, and very late Med12 (Figure 337 

5H). H3K27me3 enrichment was not detected at Med14 gene location. Both Dlg3 and Pja1 were 338 

statistically enriched at E11.5, but not at E12.5, once they were reactivated. Finally, Med12 gene was 339 

strongly enriched at both E11.5 and E12.5, and showed no reactivation at E12.5, based on scRNA-seq. We 340 

observed that some late reactivated genes could carry an epigenetic memory of their silencing (H3K27me3), 341 

which was lost concomitantly to transcriptional reactivation. 342 

 343 

 344 

Discussion 345 

 346 

In this study, we performed a comprehensive allele-specific single-cell transcriptomic analysis of migratory 347 

and colonizing female PGC, combined with low-input epigenomics. We demonstrated that female early 348 

PGC carry a fully inactive X chromosome, which undergoes progressive reactivation in parallel with PGC 349 

development. Although it was previously established that the inactive X chromosome experiences 350 

transcriptional reactivation in PGC, our study provides the first detailed map of X-chromosome activities 351 

in vivo. We showed that different genes followed different kinetics of reactivation along the chromosome, 352 

with early versus late reactivated genes. We provide evidence for the involvement of genomic location, 3D 353 

spatial proximity to the Xist locus, and H3K27me3 chromatin modification in resistance to early 354 

reactivation. Together, these investigations open a way for a better understanding of the in vivo 355 

requirements for female epigenetic reprogramming in general, stem cell biology, and reproduction. 356 

 357 

X-chromosome reactivation occurs during the reprogramming of female primordial germ cells. 358 

Consequently, this leads to an excess of X-linked gene products in female PGCs compared to males 10. In 359 

mice, this happens transiently at the onset of sex-specific gonadal differentiation (E9.5-<E15.5) in the 360 

female germline and could be crucial for normal gonadal development and meiosis, as well as for sex-361 

specific reprogramming. This could promote sexual dimorphism. Patients with sex-chromosome 362 

aneuploidy, such as Turner 45,XO, and Klinefelter 47, XXY syndromes, often present infertility and 363 

hypogonadism. Maternally inherited sex-chromosome aneuploidy could arise from the presence of a non-364 

reactivated X, potentially detrimental to homologous chromosome pairing and segregation in meiosis 12. 365 

Our transcriptomic analysis of XX female, XO female, and XY male PGC highlighted differentially 366 

expressed genes, which could be involved in germline formation and/or sex-specific differences. The X 367 

chromosome is enriched in factors required for oogenesis (e.g. Fmr1, Zfx) and chromatin modifications and 368 
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transcription (e.g., histone demethylases Kdm6a, Kdm5a, mediator complex Med14). Importantly, we 369 

showed in this study that all these factors are either not subject to XCI or are early-reactivated in female 370 

PGC. Med14 codes for a co-unit of Mediator complex, involved in transcription regulation, and is prone to 371 

early reactivation in both mouse iPS 31 and human breast cells depleted for XIST 55. Smc1a gene has recently 372 

been shown to be involved in the remodelling and reactivation of Xi in mouse iPSC 56. Kif4 knock-down in 373 

oocytes is detrimental to meiosis 57. Zfx is a well-known dose sensitive gene. Its absence in mouse leads to 374 

infertility owing to the reduced number de germ cells 58. Together, this raises the importance of studying 375 

these genes with dosage imbalance in PGC. An appropriate dosage of X-linked genes, whose functions are 376 

linked to chromatin processes, transcription, and gametogenesis, could be important for female 377 

gametogenesis and X-chromosome reactivation. 378 

 379 

Our detailed mapping of X-linked gene reactivation kinetics highlights differential behaviours along the 380 

entire X chromosome. The differential kinetics of reactivation are dependent on the developmental context 381 

11,29,31. Understanding the resistance to early reactivation and the underlying mechanism is important for 382 

understanding epigenetic reprogramming on the X- and genome-wide levels. Surprisingly, we showed that 383 

40 % of the Xi remained silent at E12.5. These genes lay into regions in close 3D proximity to Xist locus 384 

(Xist entry sites) and could be the first genes to be silenced upon XCI. We believe that these first-silenced 385 

genes could be the first targets of Xist because of their 3D accessibly52. They would become less accessible 386 

to the transcriptional machinery and are more enriched in repressive marks, carrying an epigenetic memory 387 

of their silencing. In support of this hypothesis, our results indicated that the latest reactivated genes at 388 

E12.5 are still enriched in H3K27me3 on their silent allele. These repressive marks are lost concomitantly 389 

with gene reactivation.  390 

In conclusion, in PGC, we observed a reactivation dependency on Xist RNA loss, DNA methylation level, 391 

enrichment in transposable elements, and the proximity of X-linked genes to the first regions coated by Xist 392 

RNA. Together, these investigations open a way for a better understanding of the in vivo requirements for 393 

female epigenetic reprogramming in general, stem cell biology, and reproduction. 394 

 395 

 396 

Methods 397 

 398 

Mouse husbandry 399 

The care and use of animals are strictly applying European and National Regulation for the Protection of 400 

Vertebrate Animals used for Experimental and other Scientific Purposes (Directive 2010/63/EU and French 401 

decree R.214-103). All husbandry and experiments involving mouse scRNA-seq were authorised by the 402 
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UK Home Office Project Licenses PPL80/2637 and PE596D1FE and were carried out in a Home Office 403 

designated facility (Welcome Trust Cancer Research Gurdon Institute). Chromatin experiments were 404 

authorized by the French ethics committee number 36 under agreement F3417216 and carried out in the 405 

pathogen-free Animal Care Facility of IGMM (facility licence #G34-172-16). Researchers carrying out 406 

regulated procedures on living mice held a personal licence from either the UK (C.L., M.B., and M.A.S.) 407 

or France (C.R., M.B., K.C., and D.B.).  408 

Mice were housed under a 12h light/12h dark cycle at 22 ± 2 °C ambient temperature, with free access to 409 

food and water. All embryos were derived from natural mating. Noon on the day of observation of the 410 

vaginal plugs was scored as embryonic day (E) 0.5. Embryos were harvested every 24 h between E8.5 and 411 

E12.5. Collected embryos were included in the analyses only if they showed normal morphology according 412 

to their developmental stages. No statistical method was used to determine the sample size.  413 

Male and female hybrid embryos were obtained by breeding Mus musculus domesticus 129S1/SvImJ Stella-414 

eGFP transgenic line39 (at E8.5) or Mus musculus domesticus 129S1/SvImJ GOF-△PE-18 transgenic line40 415 

(from E9.5 onwards) with Mus musculus castaneus (CAST) (Figure 1A). Xist -/+ Zp3-CRE; Oct4-eGFP 416 

female embryos (Figure 5C) were obtained by mating Mus musculus domesticus C57Bl6/J Xistflox/flox; Zp3-417 

CRE; Oct4-eGFP females17,59,60 with Mus Musculus Castaneus males.  418 

 419 

Sexing of the embryos 420 

The sex of the embryos was characterized based on the morphology of the gonads from E11.5. Before 421 

E11.5, sex was characterized in single-cell RNA-seq datasets by studying the expression of Xist and Y-422 

linked genes, as well as the presence or absence of polymorphisms (SNPs) on the X chromosome. For the 423 

WGBS, and CUT&RUN experiments, the sex of the embryos was determined by PCR using genomic DNA 424 

and Ube1 primers (Ube1-Forward TGGATGGTGTGGCCAATG; Ube1-Reverse 425 

CACCTGCACGTTGCCCTT). 426 

 427 

Collection of PGC 428 

After dissection of embryos at the location of the PGC, according to embryonic stage, and sexing of the 429 

embryos, samples were resuspended in 200 µL of 0.25 % trypsin and incubated at 37 °C for 3 min. Trypsin 430 

was inactivated with serum and a single-cell solution was obtained by vigorous up-and-down. For scRNA-431 

seq experiments from E10.5, cells were manually picked based on their GFP and size and washed in PBS-432 

acetylated BSA (Figure 1A). For the other stages and CUT&RUN experiments, cells were collected by 433 

fluorescence-associated cell sorting (FACS ARIA© and S3e Cell Sorter Bio-Rad©) and processed quickly 434 

for scRNA-seq or low-input CUT&RUN. 435 

 436 
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Single cell RNA sequencing and bioinformatic analysis 437 

Single PGC were washed thrice with PBS/acetylated BSA (Sigma) before being manually transferred 438 

within the minimum amount of liquid into PCR tubes. We either directly prepared the cDNA amplifications 439 

or kept the single cells at − 80 °C (less than 2 months) for future preparation. Poly(A)+ mRNA extracted 440 

from each single cell was reverse-transcribed from 3’-UTRs and amplified according to a previously 441 

described protocol42,61. Care was taken to process only embryos and PGC of the highest quality based on 442 

morphology and amplification yield. A total of 140 single cells were processed and quality control (QC) 443 

was performed as previously described in 16. 444 

Single-cell libraries were prepared from 137 samples that passed QC, according to the manufacturer's 445 

protocol (Illumina). Sequencing to produce single-end 50-bp reads was then performed on an Illumina 446 

HiSeq 4000 instrument (Supplementary Table 1). 447 

Quality controls, filtering of raw data, mapping, and SNP calling have been described previously 8, 9. 448 

Briefly, the mouse mm10 genome was downloaded from Sanger database. To study allele-specific gene 449 

expression, reads were processed according to Borensztein et al16. SNPs between the 129 and Cast strains 450 

were extracted from the VCF file and used to reconstruct the Cast genome. After the removal of the common 451 

exonic SNPs between Xist and Tsix, 20,220,776 SNPs were retained. The number of paternal and maternal 452 

reads were counted at each SNP position. The threshold used to call a gene informative was five reads 453 

mapped per single SNP, with a minimum of eight reads mapped on SNPs per gene, to minimize disparity 454 

with low-polymorphic genes. The allele-specific origin of the transcripts (allelic ratio) was calculated as 455 

the total number of reads mapped to the Cast genome divided by the total number of reads for each gene: 456 

allelic ratio = Cast reads/(Cast + 129) reads. For X-linked gene, we modified the allelic ratio to: allelic ratio 457 

= Xa reads/(Xa + Xi) reads. In the case of a 129 Xi, the allelic ratio became 1-[Cast reads/(Cast+129) reads]. 458 

Genes were thus classified into two categories: inactivated genes: allelic-ratio value ≤0.20 or ≥0.80, and 459 

biallelically expressed genes: allelic-ratio value >0.20 or <0.80. 460 

 461 

Estimation of gene expression levels. Given that our RNA reverse transcription allowed sequencing only 462 

up to an average of 3 kb from the 3′ UTR, half of the expressed genes were only partially covered (less than 463 

50% of the gene size on average). To estimate transcript abundance, read counts were normalized based on 464 

the amplification size of each transcript (RPRT) rather than the size of each gene (RPKM) (see details in 465 

Borensztein et al.42). 466 

 467 

Principal component analysis, hierarchical clustering, and differentially expressed genes in volcano plots. 468 

Only genes with an RPRT value >1 in at least 25% of the single cells of at least one developmental stage 469 

(with a minimum of two cells) were retained for downstream analysis, as previously described in 16. With 470 
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the Benjamini–Hochberg correction, genes with an adjusted P value lower than α = 0.05 were called as 471 

differentially expressed. 472 

 473 

Heatmap generation for X-chromosome allelic gene expression. For allelic ratio heatmaps, data from 474 

informative genes were analysed at each developmental stage only if the gene was expressed (RPRT >2) in 475 

at least 25% of the single blastomeres (with a minimum of two cells) (Figure 3). To follow the kinetics of 476 

expression, we focused only on genes expressed in at least three different stages. The mean allelic ratio of 477 

each gene is represented for the different stages of the female PGC.  478 

 479 

Global gene expression correlation with X-chromosome reactivation. Correlation and anti-correlation 480 

between gene expression levels (autosomes and X chromosomes) and the percentage of X-linked gene 481 

reactivation (allelic ratio <0.8 for X-linked genes) were measured using Pearson’s correlation and 482 

Benjamini–Hochberg correction. Gene ontology analysis was performed for the top-correlated genes (q-483 

value <0.05). Genes with RPRT < 2 were considered to be unexpressed (RPRT = 0 and allelic ratio = NA). 484 

 485 

Definition of X-linked gene reactivation classes. We automatically assigned X-linked genes to the 486 

reactivation classes. 487 

- Early reactivation: expressed on both chromosomes at stage E10.5. Allelic ratio >= 0.8 or NA at E9.5; 488 

allelic ratio < 0.8 at E10.5; allelic ratio < 0.8 at E11.5; allelic ratio < 0.8 or NA at E12.5. 489 

- Intermediate reactivation: expressed on both chromosomes at stage E11.5. Allelic ratio >= 0.8 or NA 490 

at E9.5; allelic ratio >= 0.8 or NA at E10.5; allelic ratio < 0.8 at E11.5; allelic ratio < 0.8 or NA at 491 

E12.5. 492 

- Late reactivation: expressed on both chromosomes at stage E12.5. Allelic ratio >= 0.8 or NA at E10.5; 493 

allelic ratio >= 0.8 at E11.5; allelic ratio < 0.8 at E12.5. 494 

- Very Late reactivation: silenced at stage E12.5. Allelic ratio >= 0.8 at E10.5 Allelic ratio >= 0.8 at 495 

E11.5 and E12.5 OR allelic ratio < 0.8 at E11.5 and >= 0.8 at E12.5. 496 

- Escapees: always biallelic. Allelic ratio < 0.8 at all stages (Figure 4A). 497 

 498 

Low-input CUT&RUN 499 

After PGC were collected, the cells were directly pelleted at 4 °C for 5 min. The CUT&RUN protocol was 500 

modified from Skene et al64,65 and Dura et al66 to accommodate a low number of PGC (5 000- 15 000 per 501 

sample, Supplementary Table 1). Briefly, cells were split according to the number of required antibody 502 

profiles, and Nuclear Extraction Buffer (20 mM HEPES-KOH, 10 mM KCl, 0.5 mM spermidine, 0.1 % 503 

Triton X-100, 20 % Glycerol, Complete EDTA-free protease inhibitor cocktail) was gently added to the 504 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 26, 2023. ; https://doi.org/10.1101/2023.04.25.532252doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.25.532252
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

cell solution and incubated on ice for 5 min. Cells and concanavalin A beads were incubated for 10 min at 505 

room temperature (RT) on a rotating wheel. Cells were then collected on magnets, resuspended in Blocking 506 

Buffer (20 mM HEPES-KOH, 150 mM NaCl, 0.5 mM spermidine, 0.1 % BSA), 2 mM EDTA, and 1× 507 

Complete EDTA-free protease inhibitor cocktail), and incubated at RT for 5 min. Cells were then washed 508 

and incubated with H3K27me3 antibody (1:200 dilution, Cell signalling 36B11#9733, control with IgG 509 

rabbit Sigma) for 2h30 at 4 °C on a rotating wheel and then washed twice. Samples were then incubated 510 

with 1:400 Protein A-MNase fusion protein (gift from the Dominique Helmlinger lab, CRBM France) for 511 

1 h at 4 °C followed by two washes. Cells were then resuspended in 150 µL Wash Buffer and cooled in an 512 

ice-water bath for 5 min before the addition of a final concentration of 100 mM CaCl2. Targeted digestion 513 

was performed for 30 min on ice. The samples were then incubated for 20 min at 37 °C to release the cleaved 514 

chromatin fragments. After centrifugation at 16,000 × g for 5 min, supernatants were transferred to new 515 

low-binding tubes. Following the addition of 20 % SDS and 20 mg ml−1 Proteinase K, the samples were 516 

incubated 30 min at 70 °C. DNA was purified using phenol/chloroform, followed by chloroform extraction 517 

and precipitation with 20 mg ml−1 glycogen and three volumes of 100 % ethanol at 20 °C. The DNA pellet 518 

was washed with 85% ethanol, centrifuged, and resuspended in low Tris-EDTA. 519 

Library preparation was performed according to manufacturer’s instructions (NEBNext® Ultra™ II DNA 520 

Library Prep Kit for Illumina) using the following modified library amplification program: 98 °C for 30 s 521 

(98 °C for 10 s, 65 °C for 15 s) × 15 cycles, 65 °C for 5 min), hold at 4 °C. Average library size and quality 522 

control were performed using a Fragment Analyzer (High Sensitivity NGS kit) and qPCR (Roche Light 523 

Cycler 480). CUT&RUN libraries were sequenced on a NovaSeq 6000 (Illumina) from Biocampus, MGX 524 

platform, using a paired-end 150-bp run. E11.5, and E12.5 H3K27me3 CUT&RUN were performed on one 525 

replicate of five and two pooled female embryos, respectively. 526 

 527 

Allele-specific CUT&RUN bioinformatic analysis 528 

FastQC (v0.11.9) and MultiQC (v1.13)67 were used to control CUT&RUN data quality. UMIs were used 529 

to confirm the homogeneous yield of library amplification and sequencing for each sample. Paired-end 530 

reads with at least one undefined UMI were discarded using Cutadapt v4.168 and seqkit v2.369. The reads 531 

were then trimmed using Trim Galore(v0.6.616) 532 

(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/70 ; options “--length 20 –illumina –533 

2colour 20”). Trimmed reads were mapped with Bowtie2 (v2.4.2)71 (options “--end-to-end –very-sensitive 534 

–reorder”) to the mm10 reference genome, modified as followed: autosomal, sexual and mitochondrial 535 

chromosomes are kept, and 20 668 274 SNPs positions (0.76% of genome size) related to Mus musculus 536 

Castaneus strain are N-masked using SNPsplit (v0.6)72 537 

(https://ftp.ebi.ac.uk/pub/databases/mousegenomes/REL-1505-538 
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SNPs_Indels/strain_specific_vcfs/CAST_EiJ.mgp.v5.snps.dbSNP142.vcf). SAMtools (v1.11)73 was used 539 

to sort and convert the data formats. PCR duplicates were removed using GATK MarkDuplicates, and reads 540 

were unmapped with or without primary alignment discarded (SAMtools options “-F 0x04 -F 0x100 -F 541 

0x800”). The coverage for each developmental stage was calculated from the bam file using the deepTools 542 

bamCoverage tool (v3.5.1, normalization by scale factor, bin=10 nt)74. 543 

Peak calling of H3K27me3 histone marks was performed for E11.5 and E12.5 female samples using 544 

immunoglobulin G (IgG) as input for each stage (E11.5 IgG from male PGC, E12.5 IgG from female PGC) 545 

with MACS2 (v2.2.7.1, options “-f BAMPE –broad –broad-cutoff 0.1”)75. 546 

Allele-specific reads (i.e. reads from B6: Xa and Cast: Xi) were sorted using SNPsplit. The d-score 547 

parameter (reads Cast / reads B6 + reads Cast]) was calculated using featureCounts from the Rsubread R 548 

package(v2.12.3)76. H3K27me3 enrichment heatmaps show the log2 fold change in the coverage difference 549 

between the H3K27me3 mark and the IgG control for each developmental stage, normalized by the 550 

sequencing depth using deepTools bamCompare (bin= 10 nt). computeMatrix and plotHeatmap. 551 

 552 

Whole Genome Bisulfite sequencing of female Epiblast  553 

C57Bl6/J Epiblasts were manually dissected from extra-embryonic tissues of E6.5 embryos, followed by 554 

sex determination by PCR on the extra-embryonic tissue (see section sexing of the embryos). Whole-555 

Genome Bisulfite sequencing libraries from 2 E6.5 female replicates were prepared as described by 556 

Smallwood et al77. The WGBS was analysed as described previously78. Briefly, reads generated in this study 557 

or recovered from the available datasets were treated as follows: the first eight base pairs of the reads were 558 

trimmed using the FASTX-Toolkit v0.0.13 (hannonlab.cshl.edu/fastx_toolkit/index.html). Adapter 559 

sequences were removed with Cutadapt v1.3 (code.google.com/p/cutadapt/)68 and reads shorter than 16 bp 560 

were discarded. The cleaned sequences were aligned to the mouse reference genome (mm10) using Bismark 561 

v0.12.5 70 with Bowtie2-2.1.0 71 and the default parameters. Only the reads that mapped uniquely to the 562 

genome were conserved. Sequencing statistics can be found in the Figure Legend and/or the main text. 563 

Methylation calls were extracted after duplicate removal. Only CG dinucleotides covered by a minimum of 564 

ten reads were conserved for the remainder of the analysis.  565 

 566 

DNA methylation and transposon data analysis 567 

DNA methylation data at E10.5 and E12.5, were downloaded from DRA00060753 and GSE7697179 568 

respectively. The raw data were cleaned using Trim Galore v0.4.470. The cleaned reads were aligned to the 569 

mouse reference genome assembly (GRCm38/mm10) using Bismark v0.18.280 with Bowtie2-2.2.971 570 

allowing for one mismatch in the seed alignment. Only reads that mapped uniquely to the genome were 571 
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retained, and methylation calls were extracted after duplicate removal, considering only CpG dinucleotides 572 

covered by a minimum of five reads. 573 

For the control regions of transposon enrichment, a set of 25 random regions (number of Xist entry sites), 574 

with the same length as the median Xist entry sites) was bootstrapped 1 000 times either genome-wide or 575 

on the X chromosome, using the R package regioneR (v1.10.0, Gel B, Diez-Villanueva A, Serra E, 576 

Buschbeck M, Peinado MA, Malinverni R (2016). “regioneR: an R/Bioconductor package for the 577 

association analysis of genomic regions based on permutation tests.” Bioinformatics, 32(2), 289-291). The 578 

number of retrotransposons overlapping Xist entry sites and random regions was calculated and normalized 579 

to a 10 kb window. DNA methylation levels were estimated using a window of -1 kb to +100 bp from the 580 

Transcriptional Start Site (TSS) for each gene. In all the cases, a permutation test was performed using the 581 

RegioneR package. 582 

 583 

Statistics. 584 

Statistical significance was evaluated using Kruskal–Wallis followed by Dunn’s correction and t-tests. P 585 

values are provided in the figure legends and/or the main text.  586 

 587 

Data availability 588 

All sequencing data will be deposited in GEO and made publicly available after publication of this article 589 

in a peer-reviewed scientific journal. 590 
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Figure Legends 788 

 789 

Figure 1 790 

Single-cell RNA sequencing of polymorphic primordial germ cells during embryonic development. 791 

(A) Schematic illustration of single-cell transcriptomic experiments including mouse breeding (129 × cast), 792 

harvested embryonic stages, and single-cell collection. At E8.5, PGC were sorted according to the 793 

expression of Stella-GFP. Stella gene, also known as Dppa3, is expressed in early PGC. From E9.5, Oct4-794 

GFP (GOF-△PE-18 line)40 marker was used to differentiate between PGC and soma. PGC, primordial germ 795 

cells; FACS, fluorescence-activated cell sorting. (B) Principal component analysis (PCA) of single PGC 796 

and soma based on the 1 000 most variable genes in the transcriptomic datasets. The different stages are 797 

denoted by different colours. The rounds represent PGC, and triangles represent GFP-negative somatic cells 798 

in the proximity of the PGC. The number of cells analysed per stage and further details of the scRNA-seq 799 

samples are shown in Supplementary Table 1. (C) Hierarchical clustering and Pearson’s distance of scRNA-800 

seq samples based on germline, soma, and sex-specific gene expression variation using Pearson’s 801 

correlation. Cells were clustered first by lineage (PGC and soma), then by stage (E8.5–E12.5), and then by 802 

sex for the E11.5 and E12.5 stages. n = 137 single-cell samples. (D) Expression levels of 26 known genes 803 

expressed in developing PGC or soma, and sex-specific genes (Xist and Y-linked genes) in the 137 single-804 

cell samples were used to classify cells according to their lineage, as shown. The cells were ordered 805 

according to hierarchical clustering in C. PGC primordial germ cells. 806 

 807 

Figure 2 808 

Progression of X-chromosome reactivation in developing PGC. (A) Principal component analysis 809 

(PCA) based on scRNA-seq data from PGC and soma between E8.5-E12.5. X-chromosome composition 810 

of each single cell is represented on the PCA, such as the XY male, XX female, and XO female cells. The 811 

XO cells originate from a single embryo and were found by serendipity. PCA is based on the 1 000 most 812 

variable genes, as described in Figure 1B. The details of each cell are listed in Supplementary Table 1. 813 

(B) Allele-specific expression ratios for genes on autosomes and X chromosomes in female and male single 814 

PGC from E9.5 to E12.5. The allelic ratio represents the number of reads mapped to Cast genome, divided 815 

by the total number of 129 and Cast reads. For X-linked genes, we measured the allelic ratio as the parental 816 

genome from which the Xi is originated, divided by the total number of 129 and Cast reads mapped for 817 

each gene (Xa counts / total Xa + Xi counts). A gene was considered biallelically expressed when 0.2< 818 

allelic ratio <0.8. Box plots represent medians (centre lines) with lower and upper quartiles (box limits). 819 

Whiskers represent 1.5× the interquartile range. Outliers are represented by dots. The number of cells 820 

analysed per stage, and the parental origin of the Xi, are shown in Supplementary Table 1. (C) and (D) 821 
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Pseudotime representation of scRNA-seq data, based on the first principal component for female PGC 822 

between E9.5 and E12.5. In (D), the percentage of reactivated X-linked genes per single cell is provided by 823 

a colour gradient as shown in the key. A gene is called reactivated if its allelic ratio is <0.8, which represents 824 

an expression from the Xi of at least 20 %  825 

 826 

Figure 3 827 

Kinetics of reactivation of X-linked genes over the entire X chromosome in developing PGC during 828 

reversal of random XCI. The mean of the allele-specific expression ratios, per embryonic stage, for each 829 

informative and expressed X-linked gene in female PGC are represented as heatmaps from E9.5 to E12.5, 830 

with strict monoallelic Xa expression (ratio >0.8) in red and strict monoallelic Xi expression (ratio <0.2) in 831 

blue. Color gradients is used in between these two values, as indicated in the key. Genes are ordered by 832 

genomic position (left) and reactivation kinetics class (right). Xist expression was always below RPRT < 2 833 

and its genomic location has been added to the heatmap for information (green arrow). n = 198 informative 834 

X-linked genes, with a RPRT expression >2, expressed in at least 3 out of 4 developmental stages. White 835 

box, data not available (below threshold). 836 

 837 

Figure 4 838 

Differential timing of X-linked gene reactivation is associated with timing of silencing and 839 

chromosomal location in regards to Xist early sites. (A) X-linked genes are clustered based on their 840 

reactivation kinetics as early (expressed from the Xi at E10.5; allelic ratio <0.8 at E10.5), intermediate 841 

(expressed from the Xi from E11.5), late (expressed from the Xi from E12.5), very late (not reactivated at 842 

E12.5), and escapee (not undergoing XCI). The allelic ratio of each gene represents the fraction of Xa 843 

expression, with the number of reads mapped on the Xa genome divided by the total number of reads 844 

mapped. This is shown for stages E9.5 to E12.5 for all female PGC. n = 207 X-linked genes. Box plots are 845 

as in Figure 2B. Further information is provided in Methods. (B) Expression level of X-linked genes in the 846 

different reactivation-timing classes in female PGC (mean of each single gene). Expression of each gene 847 

represents the total number of reads mapped, normalized by the covered gene length and is represented at 848 

E9.5, E10.5, E11.5 and E12.5, as a function of the reactivation classes. Further information is provided in 849 

Methods. n = 207 X-linked genes. Box plots are as in Figure 2B. Comparison of reactivation classes 850 

between the inner cell mass of the blastocyst29 (C) and the in vitro PGC-like cell system8 (D). € Silencing 851 

classes of informative X-linked genes in mouse embryonic stem cells (mESC) compared with their 852 

reactivation classes in PGC26. (F) Xist ‘entry’ sites are regions of the X chromosome showing early 853 

accumulation of Xist RNA upon initiation of X-chromosome inactivation, and thought to be the closest to 854 

Xist locus in 3D spatial proximity. Allelic expression of X-linked genes classified on the basis of their 855 
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relative position to Xist entry sites (as identified during XCI induction in ESC18): inside (TSS located inside 856 

a Xist entry site), next to (TSS located less than 100 kb away from an entry site) and outside (over 100 kb 857 

from an entry site). p=0.05 for E11.5 by Kruskall-Wallis test followed by Dunn’s correction. n = 207 X-858 

linked genes. Box plots are as in Figure 2B. The numbers of cells analysed per stage is shown in 859 

Supplementary Table 1.   860 

 861 

Figure 5  862 

Contribution of repressive chromatin marks to resistance to early reactivation. (A) Number of total 863 

transposons, LINEs, and SINES, overlapping with Xist entry sites, control regions of the X chromosome 864 

and control regions of autosomes. Set of control regions have been generated randomly 1000 times (see 865 

section Methods). A t-test was performed to compare number of repeats in Xist entry sites compared to 866 

controls.ass. (B) Whole-Genome Bisulfte of E6.5 female epiblast cells compared to public datasets of 867 

female PGC at E10.5 (DRA000607 in DDBJ database)53 and E12.5 (GSE76971 in GEO database)54. DNA 868 

methylation level were estimated using a window of -1kb to +100bp to the TSS for each gene. (C) 869 

Schematic illustration of the mouse breeding between C57Bl6/J Xist flox/flox; Zp3-Cre; Oct4-eGFP females 870 

and Castaneus males in order to obtain female polymorphic embryos, with non-random XCI and fluorescent 871 

PGC. PGC were isolated by FACS with the Oct4-eGFP reporter at E11.5 and E12.5. Following PGC 872 

sorting, low-input CUT&RUN was completed for H3K27me3 marks (see Methods). (D) Distribution of 873 

H3K27me3 CUT&RUN peaks in E11.5 and E12.5 female PGC. The Venn diagram shows H3K27me3 874 

broad domain overlapping in X chromosomes between E11.5 and E12.5 female PGC (left), and between 875 

the active (B6, Xa) and inactive (Cast, Xi) chromosomes, right. (E) Percentage of early (n=29), intermediate 876 

(n=55), late (n=20), very late (n=70), and escapee (n=8) X-linked genes significantly enriched in 877 

H3K27me3 repressive marks in both E11.5 and E12.5 female PGC (at least one H3K27me3 broad domain 878 

per gene). (F) H3K27me3 enrichment (fold change compared to IgG and normalized by library size and 879 

peak length) in the different X-linked gene reactivation classes. Kruskall Wallis test followed by Dunn’s 880 

post hoc test was performed to compare all classes. Each point represents a gene, in red the mean +/- sem. 881 

E11.5: p-value < 0,0001, early and intermediate versus very late and E12.5: p-value = 0,0020 intermediate 882 

versus very late. (G) enrichment (fold change compared to IgG and normalized by library size and peak 883 

length) weighted by the d-score (allelic ratio, see Methods) at E11.5 (p-value = 0,0004, early and 884 

intermediate versus very late), E12.5 (p-value = 0,0038, intermediate versus very late). Statistical test 885 

(mean, SEM). Each point represents a gene, in red the mean +/- sem. E11.5: p-value < 0,0001, early and 886 

intermediate versus very late and E12.5: p-value = 0,0020 intermediate versus very late. (H). Integrative 887 

Genomics Viewer plot of representative genes from early, late and very late reactivation classes. Tracks 888 

depict global and allele-specific H3K27me3 enrichment for Med14 early reactivated gene, Dlg3 and Pja1 889 
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late reactivated genes and Med12 very late reactivated gene. Global enrichment tracks are in dark blue and 890 

allele-specific tracks are overlaid with global enrichment tracks (Cast Xi reads in light blue; B6 Xa reads 891 

in red). Dark blue boxes and highlighted grey area are significant H3K27me3 broad domains. Location is 892 

given in mm10, with gene isoforms extracted from Integrative Genome viewer and UCSC. 893 

 894 

Extended Figure 1 Differential gene expression upon female PGC development and key markers of 895 

soma and PGC 896 

(A). Principal Component Analysis (PCA) based on 26 known markers of PGC or soma (Figure 1C and 897 

D). (B) PCA of the 30 most differentially expressed genes (DEGs) that contributed to lineage segregation. 898 

(C-D) Volcano plots represent differentially expressed genes (DEG) between the two developmental stages 899 

of female PGC. A few transcriptional changes have been observed in migratory PGC. Changes arise once 900 

PGC colonize the gonads. Some examples of DEG are highlighted. Red dots represent upregulated genes, 901 

and green dots represent downregulated genes.  X-linked genes are shown in orange. They showed a 902 

statistically greater enrichment in upregulated genes at E12.5, compared to E11.5, owing to X reactivation.  903 

 904 

Extended Figure 2 Clustering of PGC by sex. 905 

(A-D) PCA per developmental stage with sample names, lineage soma versus PGC, and sex information. 906 

Cells were clustered by lineage. From E11.5, the cells clustered by sex. (E) Pseudotime representation of 907 

the scRNA-seq data based on the first principal component for XX females (pink), XO females (red), and 908 

XY males (blue). (F) Level of Xist expression and degree of reactivation in each single cell. Each dot 909 

represents a single cell. Most female soma exhibit high Xist expression and a low number of biallelically 910 

expressed genes. Genes with RPRT expression < 2 were considered to be unexpressed.  911 

 912 

Extended Figure 3 Contribution to kinetics of X-chromosome reactivation 913 

(A) Representation of the Gene ontology analysis of Biological process performed on the best correlated 914 

genes with X-linked gene reactivation (p-value <0.001). Correlation and anti-correlation between gene 915 

expression levels (autosomes and X chromosomes) and the percentage of X-linked gene reactivation (allelic 916 

ratio >0.2 for X-linked genes) were measured using Pearson’s correlation and the Benjamini–Hochberg 917 

correction. The 20 best enrichment classes (based on fold enrichment) were represented by their p-values. 918 

 (B) Distance to escapee loci. Distribution of genomic distances to escapees (Mb) for different X-linked 919 

gene reactivation classes. Transcription Start Site (TSS) of each gene was used to measure the distance 920 

from the closest escaping gene. Non-significant by Kruskal-Wallis test. Boxplots represent the medians 921 

with lower and upper quartiles. (C) Distance to Xist genomic locus. Distribution of genomic distances to 922 

the Xist locus (Mb) for different X-linked gene reactivation classes. The Transcription Start Site (TSS) of 923 
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each gene was used to measure the distance from the Xist locus. Very late reactivated genes were 924 

significantly closer to the Xist locus than early reactivated (p=0.0041), intermediate-reactivated (p=0.0201), 925 

and escapee (p=0.0045) genes, according to the Kruskal-Wallis test. Boxplots represent the medians with 926 

lower and upper quartiles.  927 

 928 

Extended Figure 4  929 

H3K27me3 enrichment by low-input CUT&RUN in E11.5 and E12.5 female PGC. Profile plots and their 930 

corresponding heat maps around the transcription start sites (TSS) and transcription end sites (TES) of X-931 

linked genes for H3K27me3 repressive histone marks. Enrichment was extracted for the E11.5 and E12.5 932 

CUT&RUN experiments within a region spanning ± 1 kb around TSS and TES. The blue-to-red gradient 933 

indicates low to high enrichment in the corresponding regions ranked by reactivation classes. 934 

 935 

Supplementary Table 1 936 

Summary of sequenced data including information of scRNA-seq and CUT&RUN datasets.  937 

 938 

 939 
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EXTENDED FIGURE 3
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EXTENDED FIGURE 4
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