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Abstract 
 

Agent-based models are widely used for the 

simulation of systems from several domains (biology, 

economics, meteorology, etc).  In biology agent-based 

models are very useful for predicting the social 

behaviour of systems; in particular they seem well 

adapted to model the behaviour of a cell population.  

In this paper an agent-based model, developed to 

study normal human keratinocytes (tissue cells), will 

be investigated.  This kind of model exhibits 

probabilistic behaviour and the validation of 

simulation results is often done with a qualitative 

analysis by the experts (biologists).  The main 

objective of this paper is to propose new variables and 

metrics that allow the comparison and a possible 

quantitative validation using numerical results from 

simulations.  

 

 

1. Introduction 
 

An agent-based computational model has been 

developed based on biological rules that govern the 

self-organization of normal human keratinocytes 

(NHK) [1]. This is the result of the combination of in 

vitro and in virtuo models used to explore the 

behaviour of NHK. The model helps to predict the 

dynamic multicellular morphogenesis of NHK and of 

a keratinocyte cell line (HaCat cells) under varying 

extracellular Ca++ concentrations. The model enables 

in virtuo exploration of the relative importance of 

biological rules and was used to test hypotheses in 

virtuo which were subsequently examined in vitro. 

The agent-based model used in this work is 

composed of two parts: the agents, in this case the 

cells, and the environment, here being the culture dish 

in which the cells reside, along with the global 

concentration level of calcium. 

Each cell is modelled as a non-deformable sphere 

of 20µm in diameter.  Cells are capable of migration, 

proliferation and differentiation.  The culture is 

modelled as a flat, square surface with “walls” and the 

dimensions are user-defined.  For the purposes of the 

experiments, the basement was 500µm in each 

dimension with a wall height of 100µm.  The 

exogenous calcium level was set to 1.3mM 

(physiological calcium level) but the model can be 

used for different calcium levels (i.e., 0.1mM for the 

study of the system with a low calcium level). 

        
 

                        
 

Figure 1. Snapshots of simulations of the agent-based 

model 

 

Results obtained from the model include the type of 

cell (stem, transit-amplifying (TA), committed or 

corneocyte) and their location.  Each cell then 

performs specific rules associated with the cell cycle.  

Following this, cells decide whether to change to 

another cell type based on the differentiation rules in 

the model.  Cells then execute their migration rules, 

k = 0 iterations k = 400  iterations 

k = 1000 iterations 
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and finally execute physical rules.  All rules are 

executed in the context of the agent’s own internal 

state and the states of the other cells around it.   

The computational model allows the user to access 

several variables associated with each cell in the dish 

(position, type, number of intercellular bonds, etc) for 

each iteration k.  Mean cell cycle time and migration 

rate are scaled so that each time step in the model 

represents approximately 30 min in real time. For the 

purpose of this paper, the dynamical response of the 

spatial location of each cell was the main variable. 

When a simulation is performed, the first 

observations that are available to the user are that 

individual cells can move in any direction from time k 

to time k+1 (Figure 2).   

     
 

 Figure 2.  Possible scenarios for iteration k+1 

 

This kind of reaction generates a stochastic 

behaviour for the whole cell population.   

The analysis of the development of spatial 

distribution in stochastic processes where both type 

and position of the objects is involved has not been 

extensively developed in the literature. This kind of 

study is an important and necessary procedure for the 

validation of these models.  The spatiotemporal 

analysis is particularly relevant to the understanding 

of the development of properly structured and 

functional tissue in multi-cellular organisms. 

Figure 2 shows that the same migration behaviour 

could be considered as different for several 

experiments if a classic spatial analysis (i.e. 

discretizing the dish with a 2D square grid) is used to 

study the spatial distribution of cells.  A cell can 

migrate to any case around its original location, thus, 

if a square grid is used, an occupied case in a given 

experiment could be empty in another experiment. 

Because of this effect, a circular approach, based on 

concentric circles around the centre of the dish (x = 

250, y = 250) will be introduced. In this particular 

analysis 12 circles with a radius variation of 30µm 

were employed (Figure 3). 

 

 
(a) 

 
(b) 

Figure 3. (a) Initial location of cells; (b) circular grid 

 

Once the grid is defined, the objective is to calculate 

several variables associated with the spatial behaviour 

of the cell population.  The calculation of these 

variables is made in each ring of the circular grid. 

 

2. Defining quantitative variables for 

comparison 
 

The first variable to be calculated is the number of 

cells in each ring of the grid. This will give 

information about the spatial distribution of the cells.  

Two variables were selected to evaluate the migration 

of cells: positive migration and negative migration.  

Positive migration is the number of cells entering the 

ring and negative migration represents the number of 

cells leaving the ring.  Finally the mitosis is calculated 

as the number of cells in the ring because of the 

division of cells.  These effects will be discussed in 

more detail in the following sections. 

 

2.1 Comparing the spatial distribution of cells 

 
The spatial distribution can be evaluated as the 

variation of the total number of cells in each ring. 

With that objective in mind a vector with n rows (n = 

number of radii used in the circular grid) is built for 

each iteration k: 
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2.2 Comparing Migration 

 
The criterion to evaluate the migration of cells is 

observing the number of cells that move from ring “j” 

to ring “i”.  This behaviour can be achieved by filling 

Iteration k+1 

or or 

Iteration k 



a square matrix where each row and column 

corresponds to each ring. 
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    The element (i, j) of the Migk matrix for each 

iteration corresponds to the number of cells that 

migrate from ring “i” to ring “j”. Obviously the 

element (i, i) is the number of cells that remain in the 

ring “i”.  In general, there will be a transfer of cells 

from/to ring “i” to/from ring “i+1” and “i-1”, which 

means that a tridiagonal matrix is obtained at each 

iteration. 

 
Figure 4. Circular grid: evaluating Migration and 

Mitosis 

    To calculate the total number of cells at time “k” in 

ring “i”, a simple equation based on migration (from 

and to ring “i”) and mitosis can be used. 
i

kC = i

kC 1−
i

kMin 1−+ i

kMout 1−− i

kMit 1−+  (3) 

    Where i

kC  is the total number of cells in ring “i” at 

time k, i

kC 1−  is the total number of cells in ring “i” at 

time k-1, i

kMin 1−  is the number of cells that migrated 

from other rings to ring “i”,  i

kMout 1−  is the number of 

cells that migrated from ring “i” to other rings and 
i

kMit 1−
 is the number of new cells in ring “i” because 

of mitosis. 

    To compare migration the terms i

kMin  and i

kMout  

for each ring “i” can be evaluated.  These terms are 

useful for calculating the “migratory” flow of cells; the 

objective is to evaluate the variation of the number of 

cells in ring “i” ( i

kC ) because of i

kMin and i

kMout .  To 

illustrate this effect assume that the total number of 

cells in ring “i” varies only because of the migration of 

cells from other rings,  
i

kC = i

kC 1−
i

kMin 1−+    (4) 

    Alternatively the total number of cells varies only 

because of the migration of cells from ring “i” to other 

rings, 
i

kC = i

kC 1−
i

kMout 1−−   (5) 

    Equations (4) and (5) can be used to compare the 

migration in each ring. The positive migration in ring 

“i” ( i

kPM ) can then be defined as: 

i

kPM = i

kPM 1−
i

kMin 1−+   (6) 

and the negative migration i

kNM 1− as:  

 i

kNM = i

kNM 1−
i

kMout 1−−   (7) 

    The term i

kMin 1− corresponds to the sum of the 

elements (i-1, i) and (i-1,i) of matrix i

kMig 1−  (equation 

8) and i

kMout 1−
 corresponds to the sum of elements (i, 

i+1) and (i,i-1) of matrix i

kMig 1−  (equation 9). 

),1(),1(1 iiMigiiMigMin kk

i

k −++=−  (8) 

)1,()1,(1 −++=− iiMigiiMigMout kk

i

k
 (9) 

 

2.3 Comparing Mitosis 

 
    The same circular grid can also be used to evaluate 

the mitosis of cells in the dish (Figure 3b).  Equation 

(3) can be used to calculate the term associated with 

mitosis ( i

kMit 1− ): 

i

kMit 1− = i

kC
i

kC 1−− i

kMin 1−− i

kMout 1−+          (10) 

This will yield a vector for each iteration, thus if there 

are “n” radii, Mitk will have n components: 
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    Using a similar reasoning, a method to compare 

mitosis in each ring can be developed.  This can be 

used to evaluate how the number of cells in ring “i” 

(
i

k
C ) increase because of mitosis occurring at time 

“k”. Assuming that the total number of cells in ring 

“i” varies only because of mitosis in this ring, gives 
i

kC = i

kC 1−
i

kMit 1−+    (12) 

Defining i

kRMit 1−  as the Mitosis rate in ring “i”, 

i

kRMit 1− = i

kC 1−
i

kMit 1−+   (13) 

produces a variable which can be used to compare 

mitosis in different simulations. 

 

2.4 Using statistics to compare results 
 

i

k
Min 1−

 

i

k
Mout 1−  



As a first approach, the main objective of this paper is 

to propose accessible techniques to allow a 

quantitative comparison between the results from two 

(or several) simulations of the agent-based model. The 

purpose is to try to extend these methods for the 

validation of results of the agent-based model with 

experimental results obtained from the in vitro model.   

Results from two simulations using the same 

parameters and initial conditions can be compared 

using classical statistical techniques, i.e., linear 

regressions, etc.  Future work could include the use of 

specialized tools for the statistical analysis of circular 

data [2,3]. 

With the variables proposed in this paper a dynamical 

evolution in time is obtained for the different radii of 

the grid, thus classical statistics can be used to 

compare this dynamical response from two 

simulations.  The method to calculate the variables 

and a statistical analysis to compare simulation results 

are illustrated in the following example. 

 

3. Example 
 

In this example a comparison between the dynamical 

responses of two simulations is shown.  In this case 

both simulations use the same initial positions of cells 

and parameters (calcium levels, etc).  Simulations are 

generated using physiological calcium level (1.3 mM) 

and 8 initial cells in the dish with different spatial 

locations (Figure 3a). 

The spatial distribution, mitosis and migration are 

compared using the techniques proposed in sections 

above. 

 

3.1 Spatial distribution 

 
The vectors associated with the spatial distribution of 

cells from these two simulations (NCell) will be 

obtained.  The main idea is to find this vector for each 

iteration observing if the number of cells in each ring 

is similar in both simulations.  For example, when the 

NCell vector is calculated for iteration 1000, the 

following results are obtained: 

NCell1000  

(Simulation 1) 

NCell1000  

(Simulation 2) 

     11 

    40 

    57 

    74 

    93 

   110 

   137 

   144 

   122 

    59 

    24 

     7 

    8 

    25 

    38 

    64 

   101 

   123 

   133 

   147 

   123 

    50 

    20 

     7 

To compare these vectors a linear regression can be 

applied, observing the number of cells in each ring.   

A regression factor (R) equal to 0.98 and a constant of 

the linear model (B; Y = BX) equal to 0.94 are 

obtained for this iteration.  

  
(a) (b) 

Figure 5. Spatial distribution: (a) Correlation factor, 

R; (b) Linear coefficient, B 

Calculating the NCell vector for each iteration and the 

linear correlation between the elements of both 

simulations, the obtained values of R and B are very 

close to 1. Figures 5 shows the temporal evolution of R 

and B.  

 

3.2 Migration 

 
The migration of cells is evaluated using the circular 

grid of Figure 3b. Calculating the migration matrix at 

iteration 1000, the following results are obtained: 
Mig1000 (Simulation 1) 

10    2     0     0     0     0     0     0     0     0     0     0 

0    25     1    0     0     0     0     0     0     0     0     0 

0     1    40    0     0     0     0     0     0     0     0     0 

0     0     2    57    6     0     0     0     0     0     0     0 

0     0     0     1    83    4     0     0     0     0     0     0 

0     0     0     0     4   108   8     0     0     0     0     0 

0     0     0     0     0     5   135   4     0     0     0     0 

0     0     0     0     0     0     6   132   6     0     0     0 

0     0     0     0     0     0     0     3   119   3     0     0 

0     0     0     0     0     0     0     0     5    48    1     0 

0     0     0     0     0     0     0     0     0     1    23    0 

0     0     0     0     0     0     0     0     0     0     0     6 

Mig1000 (Simulation 2) 

Iterations Iterations 

R B 



10    0     0     0     0     0     0     0     0     0     0     0 

1    31    0     0     0     0     0     0     0     0     0     0 

0     0    42    6     0     0     0     0     0     0     0     0 

0     0     2    59     3    0     0     0     0     0     0     0 

0     0     0     4    83  10     0     0     0     0     0     0 

0     0     0     0     3   102   1     0     0     0     0     0 

0     0     0     0     0     5   126   3     0     0     0     0 

0     0     0     0     0     0     3   131   3     0     0     0 

0     0     0     0     0     0     0     3   111   2     0     0 

0     0     0     0     0     0     0     0     2    35    2     0 

0     0     0     0     0     0     0     0     0     1    17    1 

0     0     0     0     0     0     0     0     0     0     1     4 

As mentioned before, the elements on the diagonal of 

matrices Migk are the number of cells that remain 

(from iteration k-1) in each ring.  Thus, the evaluation 

of the positive migration is made by taking the 

elements of Migk in position (i+1, i) and (i-1, i) and 

the evaluation of the negative migration is made by 

taking the elements of Migk in position (i, i-1) and (i, 

i+1).   

),1(),1(1 iiMigiiMigMin kk

i

k −++=−        (8) 

)1,()1,(1 −++=− iiMigiiMigMout kk

i

k
   (9) 

For example, drawing the temporal evolution of the 

positive and the negative migration for rings 5 and 8 

Figures 6 and 7 are obtained respectively. 

 
(a) 

 
(b) 

Figure 6. (a) Positive migration for ring 5; (b) 

Negative migration for ring 5 

 

 
(a) 

 
(b) 

Figure 7. (a) Positive migration for ring 8; (b) 

Negative migration for ring 8 

Figures 6 and 7 show that the dynamical response of 

the positive and negative migration for both 

simulations are very similar. The same procedure can 

be applied for all rings and a similar behaviour will be 

obtained. 

Tables 1 and 2 show the results of R and B of a linear 

regression between the results of both simulations: 

 

Table 1. Linear regression for Positive migration 
Ring Correlation Factor, R Linear Factor, B (Y = BX) 

1 0.9897 0.7092 

2 0.9977 1.0022 

3 0.9963 1.1100 

4 0.9961 1.0967 

5 0.9961 1.0371 

6 0.9998 0.9932 

7 0.9988 1.0091 

8 0.9995 1.1061 

9 0.9990 1.2252 

10 0.9974 1.2326 

11 0.9984 1.0757 

12 0.9867 0.7637 

 

Table 2. Linear regression for Negative migration 
Ring Correlation Factor, R Linear Factor, B (Y = BX) 

1 0.9880 0.6248 

2 0.9980 0.9864 

3 0.9938 1.0393 

4 0.9972 1.1836 

5 0.9990 0.9935 

6 0.9995 0.9687 

7 0.9994 1.0292 

8 0.9997 1.0768 

9 0.9996 1.2635 

10 0.9994 1.1855 

11 0.9966 1.1348 

12 0.9935 1.5598 

 

3.3 Mitosis 

 
In this case, the evaluation of mitosis in each ring is 

made using the circular grid of Figure 3b and equation 

(13). 
i

kRMit 1− = i

kC 1−
i

kMit 1−+   (13) 

With this equation the mitosis rate for both 

simulations is obtained. Figure 8 shows an example of 

the evolution of mitosis in time for ring 5 and ring 8. 

Similar results are obtained for the other radii.  Table 

3 shows the values of the linear correlation (R and B) 

between migration results of both simulations. 

 

 
(a) 

 
(b) 

Figure 8. (a) Mitosis rate in ring 5; (b) Mitosis rate in 

ring 8 

 

Table 3. Linear regression for Mitosis 
Ring Correlation Factor, R Linear Factor, B (Y = BX) 

1 0.9915 0.8282 

2 0.9969 0.92969 

3 0.9984 0.8656 

Iterations Iterations 

Iterations Iterations 

Iterations Iterations 



4 0.9991 1.1706 

5 0.9992 0.96496 

6 0.9997 1.0133 

7 0.9998 1.06 

8 0.98894 0.99933 

9 0.99962 1.1045 

10 0.9971 1.0419 

11 0.99441 1.1697 

12 0.92399 3.0375 

 

4. Monte Carlo Simulations 
 

Because of the probabilistic behaviour of the agent-

based model used to simulate the behaviour of NHK, 

there is a possibility of obtaining different responses 

for two simulations (using the same set of parameters). 

A good method which allows the evaluation of the 

behaviour of a random process is Monte Carlo 

Simulations. 

Monte Carlo (MC) methods are statistical simulation 

methods, using random numbers to give approximate 

solutions to mathematical problems. Developed by 

Neumann [4], Ulam [5] and Metropolis [6] during 

World War Two, this method has been used to model 

a large variety of problems, from the estimation of pi 

[8] to immune system simulation [9,10].   

In the particular case of this work MC simulations are 

used to observe the behaviour of the agent-based 

model. The procedure consisted of running 100 

simulations of the model. For each simulation a set of 

random positions (x, y) with a normal distribution 

were generated. After each simulation a dynamic 

response of the variables defined to evaluate the 

spatial behaviour of cells (number of cells, positive 

and negative migration and mitosis) was obtained. 

Finally the results of the 100 simulation were analysed 

using statistical tools. 

 
Figure 9. Block diagram for the MC simulations 

 

4.1 Analyzing the Monte Carlo Simulation 

Results 
 

Classical statistics can be used to interpret the results 

of Monte Carlo simulations.  The main idea is to 

calculate some statistical variables for the evaluation 

and testing of the model.  In this paper, classical tools 

have been selected to evaluate the dynamic simulation 

results.  The main objective of this statistical analysis 

is to determine whether similar behaviours are 

obtained for several simulations under similar 

conditions and parameter values. 

In this case, the mean value, standard deviation and 

confidence intervals were calculated for each iteration.  

After these calculations a “mean” dynamical response 

is obtained for each variable with additional 

information about the temporal evolution of the 

confidence intervals. 

Additionally to evaluate the probability of obtaining 

similar final values of the simulations a probability 

density function (pdf) was calculated at each radius. 

Figures 10 and 11 show the simulation results, the 

mean value and the confidence intervals for several 

radii in the grid. Figure 12 shows the normal pdf for 

the final values of number of cells, negative migration, 

positive migration and mitosis. 

These results show similar behaviours for several 

simulations using similar conditions.  The confidence 

intervals were consistent with the dynamical 

behaviour of the cell population: a more random 

behaviour is obtained in small areas (i.e., the centre 

and the corner of the dish), thus larger confident 

intervals are obtained for these radii. However, the 

obtained normal pdf’s indicate that the results from 

simulations had the highest probability to be near the 

mean values. 

Ring in the grid MC Simulation Results 

 
R = 3 

 

x1, …, xn y1, …, yn 

 

Agent-based Model 

Number of Cell 

Negative Migration Positive Migration 

Initial Spatial location 

Mitosis 

Number of cells Negative Migration 

Mitosis Positive Migration 



 
R = 5 

 

 
R = 8 

 

 
R = 11 

 
Figure 10. MC Simulation results 

 

5. Conclusions 
 

This work is a first approach for the spatiotemporal 

analysis of an agent-based model of NHK.  This 

analysis represents an important contribution for the 

study of the spatial distribution in stochastic processes 

where both type and position of the objects is involved. 

This kind of study is an important and necessary 

procedure for the validation of these models.  A good 

method for the spatiotemporal analysis is particularly 

relevant to the understanding of the development of 

properly structured and functional tissue in multi-

cellular organisms. 

The new variables defined in this paper allow more 

spatiotemporal information to be obtained from the 

computational model of NHK; these variables 

represent useful measurements in quantitative 

comparisons.  

The methods developed, allow a quantitative 

comparison of two simulations with respect to the 

spatial distribution of cells, how the cells move in the 

dish (migration) and the reproduction of cells 

(mitosis) using classical statistics methods. 

The spatial distribution has been compared by 

building a vector for each iteration with the number of 

cells in each ring of the grid.  Thus, a linear 

regression can be calculated and a temporal evolution 

of the correlation factors can be obtained. 

Migration has been compared by observing how cells 

move from one ring to another.  In this case, the 

“positive” and the “negative” migration can be 

compared in each ring for the total simulation time. 

Mitosis is compared using a method very similar to 

the migration method and simulations can be 

compared using a “Mitosis rate”. 

In this work the behaviour of cells was analysed using 

the same calcium level (physiological calcium level).  

However, the calcium level is a parameter which can 

have a large influence on the behaviour of the cell 

population [11].  Future research will include similar 

spatiotemporal analysis concerning the variation of 

this parameter and the influence on the dynamical 

response of the agent-based model. 

    Algorithms are being formulated in Matlab [12] for 

application in the analysis and comparison of data 

from different models and/or different experiments.  

The results obtained from this work are encouraging 

and it is expected that they will be useful in comparing 

experimental results from an accurate cell tracking 

system which is currently under development as part 

of the Epitheliome project [13]. 

 

 

 

Ring in the grid 
Mean value and Confidence 

Limits 
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R = 11 

 
Figure 11. Mean values and Confidence Intervals 

obtained for the MC simulations 
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Ring in the grid Final Values (Normal pdf) 
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R = 5 

 

 
R = 8 
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Figure 12. Normal pdf of the final values of the MC 

simulations 
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