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Resource managers and agencies involved with planning for future federal land needs are
required to complete an assessment of and forecast for future land use every ten years.
Predicting mining activities on federal lands is difficult as current regulations do not require
disclosure of exploration results. In these cases, historic mining claims may serve as a useful
proxy for determining where mining-related activities may occur. We assess the utility of
using a space–time cube (STC) and associated analyses to evaluate and characterize mining
claim activities around the McDermitt Caldera in northern Nevada and southern Oregon.
The most significant advantage of arranging the mining claim data into a STC is the ability to
visualize and compare the data, which allows scientists to better understand patterns and
results. Additional analyses of the STC (i.e., Trend, Emerging Hot Spot, Hot Spot, and
Cluster and Outlier Analyses) provide extra insights into the data and may aid in predicting
future mining claim activities.

KEY WORDS: Spatiotemporal, Land management, GIS, Space–time cube, Emerging Hot Spot
Analysis, Hot Spot Analysis, Mining geology, McDermitt Caldera.

INTRODUCTION

Resource managers use scientific data from dif-
ferent disciplines when evaluating federal lands for
mining, oil and gas exploration and development,
recreation, livestock grazing, conservation, and other
uses. For example, in the USA, the Forest and Ran-
geland Renewable Resources Planning Act of 1974
and the National Forest Management Act of 1976
were enacted to ensure a systematic, interdisciplinary
approach to managing Forest Service lands, specifi-
cally renewable resources, mining, recreation needs,
and their economic effects on local communities.

These pieces of legislation require a renewed forecast
for potential land assessment every 10 years (http://
www.nrs.fs.fed.us/fia/topics/rpa/). One big challenge
for scientists is to synthesize, integrate, and present
meaningful information to resource managers in a
form they will understand and use.

Understanding past and future trends inmineral-
related activity is complicated because; for example,
the US regulations (e.g., the Securities Act of 1993,
the Securities and Exchange Act of 1934, Regulation
S-K, Sarbanes–Oxley Act, and Industry Guide 7) do
not require the disclosure of exploration results on
federally managed lands. The US Securities and Ex-
change Commission provides guidance for reporting
mineral reserves for companies listed on US stock
exchanges but does not require the disclosure of the
results of exploration activities (Securities and Ex-
change Commission 2016). In contrast, exploration
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and mining companies listed on the Canadian stock
exchanges have more stringent requirements for re-
ports that support mineral resource and reserve
statements (http://www.osc.gov.on.ca/en/15019.htm)
although they do not have to provide exploration data
that were not used in the estimation of mineral
inventory. Privately held companies conducting
exploration on federally managed lands are under no
obligation to report any information.

Given lack of transparency, determining cur-
rent and future direction of mining activities or
interest, in the USA or elsewhere, is difficult. A
useful proxy or surrogate for understanding or pre-
dicting future mineral-related activities is to use
public records, which show when and where some-
one or a company was willing to allocate time and
resources to take a land position. In the USA, the
General Mining Act of 1872 allows its citizens the
opportunity to explore for, discover, and purchase
valuable mineral deposits on federal lands that are
open for mining (Pruitt 1990; Maley 1992; Rohling
2011). These deposits include most metallic, certain
nonmetallic, and industrial minerals. A mining claim
is a selected parcel of federal land for which some-
one or a company has asserted a right of possession
under the General Mining Law (BLM 2012). Since
1979, the Federal Land Policy and Management Act
(FLPMA), or more specifically 90 Stat 2769l 43 USC
1744, requires all holders of an unpatented mining
claim to register it with the Bureau of Land Man-
agement (BLM) in addition to their local county
office. Failure to register (i.e., file a claim and have it
accepted) with the BLM results in loss of the claim
(Pruitt 1990; Maley 1992). This information is
maintained in the BLM�s Legacy Rehost System
(LR2000) and is available to the public (http://www.
blm.gov/lr2000/). This database provides over
30 years of spatial information on minerals explo
ration activity.

It is challenging to visualize and analyze data-
sets with spatiotemporal (i.e., both time and space
information) without adequate and proper tools. In
1970, Torsten Hagerstrand, a Swedish geographer,
revolutionized the way we look at spatiotemporal
data by displaying such data as a three-dimensional
(3D) space–time cube (STC) with the spatial data
plotted on the x- and y-axes and the temporal data
plotted on the z-axis (Kristensson et al. 2009; Bach
et al. 2014). Prior to the 1990s and the integration of
the personal computer and software that would al-
low digital rendering of spatiotemporal data, re-
searchers created the complex graphics manually,

consuming significant time and effort (Kraak and
Koussoulakou 2005). With the increase in comput-
ing power and sophisticated programming, spa-
tiotemporal data can be easily rendered in 3D and
manipulated and queried in real time. Numerous
researchers have used this visualization technique to
display and analyze various types of datasets,
including movement data for both animals and hu-
mans (e.g., Niyogi and Adelson 1994; Demšar and
Virrantaus 2010; Ding et al. 2016), eye-tracking data
(e.g., Li et al. 2010; Popelka and Voženı́lek 2013),
and crime data in different cities and neighborhoods
(e.g., Nakaya and Yano 2010). Esri�s recent (2016)
release of ArcPro is equipped with STC functional-
ity and additional analysis tools in the Space Time
Pattern Mining toolbox [i.e., Trend, Emerging Hot
Spot Analysis (EHSA), Hot Spot Analysis (HSA),
and Cluster and Outlier Analysis (COA)], which
enable users to conduct statistical analyses on STC
data, allowing them to assess trends or changes in
the data through time.

This paper explores how to distill 30 years of
mining claim data on federal land into products that
will give managers insights to types of minerals
activity that can be anticipated in the reasonably
foreseeable future. As a proof of concept of the
utility of using a STC in assessing trends in large
datasets, we present several STC analyses and dis-
cuss whether they are able to consistently identify
and predict future trends in mining claim data. For
this test, we chose to use a subset of lode mining
claim data around the McDermitt Caldera, an area
with multiple commodities (i.e., uranium, gallium,
mercury, and lithium) and numerous episodes of
exploration and production in a concentrated geo-
graphic area.

BACKGROUND

McDermitt Caldera Geology

The McDermitt Caldera is an approximately 40
by 20 km volcanic collapse structure in northern
Nevada and southern Oregon within the Great Ba-
sin physiographic province. It is ringed by, and lies
within, the Montana Mountains, the Trout Creek
Mountains, and the Double H Mountains (Fig. 1).
Previous researchers (Rytuba 1976; Rytuba and
Glanzman 1978; Rytuba et al. 1979; Rytuba and
McKee 1984; Childs 2007) hypothesize that four
tuffaceous eruptive events with intermittent rhyolitic
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lava flows occurred from �16.1 to 15 Ma, leaving
thick deposits of tuff in and around a series of nested
and collapsed calderas (i.e., the Older Washburn,
the Calavera, the Jordan Meadow, and the Long

Ridge calderas) that together, constitute the larger
McDermitt Caldera. The tuff deposits conformably
overlie mafic volcanic rocks of the Orevada View
volcanic series, which is correlative with the Steens

Figure 1. McDermitt Caldera and the most notable mines in the area. Areas with significant lithium concentrations are
highlighted in brown (Henry et al. 2016).
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Basalt in Oregon (Castor and Henry 2000; Coble
and Mahood 2016). Evidence for multiple eruptions
and caldera collapse events include the occurrence
of multiple vitrophyres and cooling units as well as
erosive paleotopography between tuff units and
water-reworked air fall tuffs (Rytuba and McKee
1984).

Although previous researchers proposed a
resurgent system composed of four tephra eruptions
that contributed to the collapse and formation of
nested calderas (Rytuba 1976; Rytuba and Glanz-
man 1978; Rytuba et al. 1979; Rytuba and McKee
1984; Childs 2007), recent research based on
40Ar/39Ar dating found no evidence for multiple
eruption events, but rather proposed that the caldera
formed from a single eruption responsible for its
collapse around 16.35 Ma (Henry et al. 2016). Al-
though the history of caldera formation has been
debated for many years (Castor and Henry 2000), it
does not affect the analysis presented in this paper
and will not be addressed further. The topographi-

cally low collapsed structure, however, likely pro-
vided a setting for ponding of tuffaceous material,
which became a source of lithium-hosted, tuffa-
ceous–lacustrine sediments (Fig. 1) (Rytuba 1976;
Glanzman et al. 1978; Rytuba and Glanzman 1978;
Henry et al. 2016).

Circa 14 Ma, near-surface hypabyssal rhyolite
intrusions were emplaced providing shallow heat
and hydrothermal fluids that served to concentrate
minerals from previously erupted rhyolitic, dacitic,
and tuffaceous country rock (Rytuba et al. 1979;
Rytuba and McKee 1984). Accordingly, mercury,
lithium, uranium, and gallium occurrences are found
in the area. Rytuba and Glanzman (1978) proposed
three unique factors that contributed to deposition
of highly concentrated metals in this location: (1) the
occurrence of volcanic activity in a relatively re-
stricted area, which contributed to a shallow heat
source and allowed for near-surface hydrothermal
systems to form; (2) earlier deposited rhyolites had
high concentrations of uranium, mercury, and li-

Figure 2. Historic commodity prices for mercury, lithium, and uranium from 1976 to 2010 (blue line) and price altered for inflation to 2016
values (red line). Note, years 1976, 1979, and 1993 correspond to legislation changes (i.e., the Federal Land Policy and Management Act of
1976, the 1979 deadline to registered claims with the Federal Government, and the Omnibus Budget Reconciliation Act of 1993).
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thium—with mercury concentrations as much as two
orders of magnitude and lithium as much as one
order of magnitude higher than average rhyo-
lites—providing material for later concentration
through hydrothermal fluids; and (3) the deposition
of tuffaceous deposits into a closed basin. These
three factors provided stability, isolation, and an
ideal environment for concentration of key mineral
resources.

Mineral Commodities, Exploration, and Mines

Although the McDermitt Caldera area hosts
numerous deposits of mineral commodities, only
gallium, uranium, mercury, and lithium are present
in high enough concentrations such that they have
been of great interest. The majority of mining claims
at McDermitt Caldera, however, were staked for
uranium, mercury, and lithium.

Uranium and mercury deposits in the northern
portion of the caldera are localized along ring faults
and are typically associated with potassium feldspar
alteration zones. The faults are thought to have
served as conduits for hydrothermal systems that
acted to concentrate metals. In the cases of the
Bretz, McDermitt, Cordero, Cottonwood, and
Opalite mines (Fig. 1), hydrothermal fluids altered
and replaced lake sediments with mercury and low
concentrations of uranium (Rytuba et al. 1979;
Ainsworth 2004). The Cordero Mine (at the north-
eastern portion of the McDermitt Caldera) was one
of the most important mercury mines and produced
over 115,000 flasks of mercury before it closed in
1970 (Willden 1964; Rytuba 1976). The nearby
McDermitt open-pit mine, produced over 400,000
flasks of mercury before closing in 1989 due to a
mercury price crash after the US government di-
vested its strategic reserves (Fig. 2) (Schlottmann
1987; Castor et al. 1996; Castor and Ferdock 2004;
Childs 2007). Since 1992, mercury has not been
produced as a primary commodity in the USA
(USGS 2016).

The presence and abundance of uranium was
also of historical interest around McDermitt Caldera
(USGS 1946; Castor et al. 1996). The Moonlight
Mine, along the western margin of the caldera
(Fig. 1), hosts appreciable amounts of uranium
associated with fault breccias and breccias linked to
rhyolitic dikes that were feeders for the late-
stage rhyolitic domes (Rytuba and Glanzman 1978;

Rytuba et al. 1979; Castor and Henry 2000). During
the late 1970s and early 1980s, uranium became an
important commodity (Fig. 2) as a result of the
1970s energy crisis and peak oil. By the late 1970s,
interested parties staked all public land thought to
have potential for uranium around the caldera
(Castor and Ferdock 2004). Although low concen-
trations of uranium exist in other portions of the
caldera, uranium has only been produced from the
Moonlight Mine in the southwest.

Lithium is found in tuffaceous, lacustrine sedi-
ments that were altered to zeolites and potassium
feldspar (Rytuba 1976; Glanzman et al. 1978; Ry-
tuba and McKee 1984; Crocker and Lien 1987). The
lacustrine sediments are alteration products of
ponded tuff deposits and tuffaceous lithic fragments
transported into the caldera by erosion of the sur-
rounding rocks. Lacustrine deposits are present in
low-lying areas along the edges of the caldera in an
arc extending from the northeast to the southwest.
In the northern and western parts of the caldera,
lithium occurs in the clay mineral hectorite (Glanz-
man et al. 1978; Henry et al. 2016).

Gallium is associated with argillic alteration
zones proximal to hot-spring mercury deposits at the
Cordero and nearby McDermitt Mine. Because
gallium is primarily produced as a byproduct in the
process of refining bauxite to aluminum and is
therefore plentiful, the price of gallium has generally
remained at constant levels since the early 1980s
(Rytuba et al. 2003; USGS 2010). For a brief period
in 2000, however, with a nearly eightfold increase in
gallium prices, there was renewed interest in
exploration for the commodity which resulted in 17
additional claims staked near the Cordero Mine
(Tingley and LaPointe 2002). As a result of this
activity, a mineral inventory was defined: Measured
and indicated resources are 1,000,000 short tons of
rock at 47.7 ppm gallium with an additional inferred
resource of 6,600,000 tons at 43.7 ppm gallium
(Muntean et al. 2016). The decline in prices between
2001 and 2002 resulted in diminished interest in
gallium (USGS 2002; Childs 2007).

DATA

Existing summaries of mining claim data were
used for the McDermitt Caldera study. Causey
(2011) and Dicken and San Juan (2016) extracted
mining claim data from BLM�s LR2000 database
and summarized the number of mining claims for
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each meridian, township, range, and section
(MTRS) of the Public Land Survey System. Causey�s
(2011) compilation encompassed the period from
1976 to 2010; Dicken and San Juan (2016) summa-
rize active claims early in 2016. For the purposes of
the analysis using a geographic information system
(GIS), the centroid of each MTRS was obtained and
the mining claim data were associated with the
corresponding centroids (Fig. 1). We restricted our
analysis to the number of active lode mining claims
per MTRS.

As input for analysis, the lode claim data from
Causey (2011) were formatted into five columns:
MTRS, latitude, longitude, year, and number of ac-
tive lode mining claims. The dataset was converted
into a shape file and imported into ArcGIS Pro for
analysis and testing. Numbers of active lode mining
claims per section were reported as rational numbers
representing whole or parts of a claim because a
claim can fall into more than one mile square section
(�1.6 km2). A single lode claim is a rectangle that
cannot exceed 1500 feet (457.2 m) in length and 600
feet (182.88 m) in width (Pruitt 1990). If the claims
are neatly organized, about 30 claims will fit in a
section. However, the number of claims in a section
can be much higher because claims may be smaller
than the maximum allowed. The formatted
McDermitt dataset is provided here as Electronic
Supplementary Material.

A regulation enacted in 1993 significantly af-
fects the number of registered claims [Subtitle B of
Title X of the Omnibus Budget Reconciliation Act
(OBRA) of 1993]. It states that the holder of an
unpatented mining claim must pay a yearly claim
maintenance fee of $100/claim in lieu of assessment
work (Public Law 103-66 August 10, 1993, 107
STAT.403). Before this act was passed, miners could
waive the maintenance fee and instead complete
assessment work or improvements equaling the
maintenance fee amount. The number of registered
claims dropped significantly after this new regulation
was enacted (Fig. 3). Parties willing to pay the $100
maintenance fee per claim only maintained claims
on the western edge of the caldera and areas around
active mines in the north and east immediately fol-
lowing the 1993 change in legislation.

METHODS

With so many claims registered over the 34-year
period according to the Causey (2011) dataset,

finding efficient ways to manage, visualize, and de-
scribe the data is paramount. Creating a STC is a
useful first step to arranging the data into manage-
able bins. This makes it more efficient to visualize
and summarize the data per year. In addition, it is
possible to detect trends and possibly predict future
activities by arranging and assessing the data by
performing analyses on the STC using Trend (to
detect monotonically increasing or decreasing trends
through time), HSA (to detect statistically signifi-
cant positive or negative cluster), EHSA (similar to
HSA but can group the data into 16 predefined
categories), or COA (to distinguish between per-
fectly dispersed, randomly dispersed, or perfectly
clustered data distributions).

Space–Time Cube

The STC was initiated by binning the data into
a series of stacked cubes. Easting and northing bins
are created either based on a priori-determined size
or automatically by the software, which then
aggregates data into the bins. Bin sizes for the STC
used in these analyses were 1 mile by 1 mile (1.6 km
by 1.6 km) (allowing aggregation of data only to
nearest MTRS neighbors) by 1 year. Bins that con-
tain the same UTM data are assigned the same
location ID and bins that cover the same time period
are assigned the same time step ID (Esri 2016). A
series of bins that contain the same x and y data and
cover the entire time range are referred to as a bin
time series. The STC analyses and accompanying
displays most useful for our purposes were Trend,
EHSA, HSA, and COA.

Trend

Trend analysis, a 2-D representation of the
STC, uses the Mann–Kendall trend test to detect
patterns (Esri 2016). The Mann–Kendall test is a
nonparametric, rank correlation assessment to
determine whether there is a monotonic upward or
downward trend. At its most basic, it determines
whether the value of one variable (e.g., number of
mining claims for a STC bin in our case) increases or
decreases in relation to another variable (e.g., time
in our case). To perform this analysis, the values are
arranged in order (a bin time series based on Esri�s
nomenclature) and then each later value (e.g., XT3)
is compared to all earlier values (e.g., XT2, XT1). For
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example given [XT1, XT2, …, XTn�1, XTn], XT2–XT1

would produce a value. If the value is positive (i.e.,
XT2>XT1) an indicator value of +1 is assigned to the
pair. If the value is negative (i.e., XT2<XT1), an
indicator value of -1 is assigned to the pair, and if the
values are equal (i.e., XT2 = XT1), an indicator value
of 0 is assigned to the pair. By summing indicator
values for all pair combinations, a trend can be de-
tected (Gilbert 1987; Kendall and Gibbons 1990).
The null hypothesis (H0) for this test is that there is
no trend and that the sum of all indicator values of a
bin time series should produce an answer of zero
(the expected result for a random process). How-
ever, a positive sum indicates an increasing trend
with time, whereas a negative sum indicates a
decreasing trend with time. To determine to what
extent a trend is statistically significant or the pro-
duct of random chance, a z-score and accompanying
probability (p value) are calculated. A positive z-
score indicates an increasing trend, a negative z-
score indicates a decreasing trend, and a low p value
(low probability that the pattern is the result of
random processes) indicates the trend is statistically
significant and that one can reject the null hypoth-
esis for the alternate hypothesis (Ha), meaning the
pattern is not random (Gilbert 1987; Kendall and
Gibbons 1990).

Emerging Hot Spot and Hot Spot Analyses

The EHSA and HSA tools use the Getis–Ord
Gi* statistic to determine whether there are statis-
tically significant positive or negative valued clusters
in the data. The Gi* statistic assumes a null
hypothesis (H0) that all data come from the same
distribution and the alternative hypothesis (Ha) is
that statistically significant values higher or lower
than the global mean would come from a different
distribution. The statistic calculates a mean for a
particular location (bin) by averaging the value in
that location with values from all adjacent neigh-
bors. It then compares this mean to the global mean
of the dataset. The result is a z-score, where a pos-
itive score means higher values than the global
average (hot spot), a negative score means lower
values than the global average (cold spot), and a
score of zero indicates that values at that location
are equivalent to the global values. In addition to a
z-score, an accompanying p value is calculated
indicating the intensity or level of statistical signifi-
cance for the z-score, and if low enough, allows us to
reject the null hypothesis and to accept an alternate
hypothesis (Ha). The algorithm calculates z-scores
and p values for each bin and produces a map of hot
and cold spots (Getis and Ord 1992; Esri 2016). The

Figure 3. Total number of active lode claims registered with the Bureau of Land Management per year from 1976 to 2010
and 2016. Years highlighted in gray correspond to the maps in Figure 4. Additionally, years 1976, 1979, and 1993 correspond
to legislation changes (i.e., the Federal Land Policy and Management Act of 1976, the 1979 deadline to register claims with
the Federal Government, and the Omnibus Budget Reconciliation Act of 1993).
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key difference between the EHSA and HSA is that
the EHSA also uses the Mann–Kendall trend test
(discussed above) using the z-scores and associated
p values to determine changes in hot spots over time
(increasing or decreasing). The results are then cat-
egorized into 16 possible pattern types (Table 1).
Not all 16 possible categories will be necessary to
summarize the data for each analysis and so only the
categories that fit the defined criteria are shown.

Cluster and Outlier Analysis

The COA is a valuable tool that determines
where there are clusters, not whether there are
clusters. This tool identifies statistically significant
hot spots, cold spots, and spatial outliers. Unlike the
EHSA and HSA tools, the COA tool uses the An-
selin Local Moran�s I-statistic to determine rela-
tionships between data (Esri 2016). Anselin�s Local
Moran I-statistic measures the similarity of particu-
lar points to surrounding points. Values for the
statistic range from �1, negative spatial correlation
(perfectly dispersed), to +1, positive spatial corre-
lation (perfectly clustered), and a value of zero
indicates a random spatial pattern. The statistic is a
test of local autocorrelation, determining whether
there is a relationship between location and value. It
is calculated by dividing the deviation from the
mean at a given location by the variance of the data
and then multiplying that quotient by the weighted
sum of the deviation from the mean at other
neighboring locations. It is given by:

Ii ¼
xi � �X

S2x

X

n�1

j¼1;j 6¼i

xi;j xj � �X
� �

where xi is an attribute for feature i, �X is the average
of the attribute, xi,j is the weight between features i

and neighboring features j, and S2x is the variance
(Anselin 1995; Getis and Ord 1996). The xi,j is a
function of the distance to neighboring data points.
The magnitude of xi,j is commonly the inverse of the
distance between points.

Once an I-statistic is obtained, it is converted
into a z-score (by subtracting the mean and divid-
ing by the standard deviation) and a pseudo-p va-
lue, which is useful for hypothesis testing or making
comparisons among datasets. The calculation of a
pseudo-p value is preferred as a means of reducing
Type I errors (an incorrect rejection of a true null
hypothesis or a false positive) over use of the more
conservative Sidak or Bonferroni corrections, which
may produce Type II errors (failure to reject the
null hypothesis when it is false, a false negative)
(Anselin 1995). The pseudo-p value is calculated by
comparing the I-statistic for a given location to a
reference distribution. The reference distribution is
created by iteratively shuffling all remaining data
randomly into new spatial distributions (maps) and
calculating an I-statistic for each map. The I-
statistics for all iterations are combined to form the
empirically based reference distribution. The loca-
tion-specific I-statistic is then compared to the
reference distribution, and a pseudo-p value is
calculated. For the I-statistic, a positive z-score and
a low p value is a significant positive autocorrela-
tion (clustering) and a negative z-score with a low
p value is a significant negative autocorrelation
(dispersion or checkerboard pattern). A p value
greater than 0.05 indicates there is no statistical
significance and is therefore classified as spatially
random despite the sign of the z-scores. After
running the statistics on the dataset, the COA tool
outputs four categories or clusters of High High
(high values surrounded by high values), Low Low
(low values surrounded by low values), and two
outlier clusters, which are High Low (high values

Table 1. Esri�s EHSA pattern types

Categories with increasing values Categories with decreasing values Other

Consecutive Hot Spot Consecutive Cold Spot Not Emerging
Persistent Hot Spot Persistent Cold Spot No Pattern Detected
Intensifying Hot Spot Intensifying Cold Spot No Trend Detected
Sporadic Hot Spot Sporadic Cold Spot
Oscillating Hot Spot Oscillating Cold Spot
New Hot Spot New Cold Spot
Historical Hot Spot Historical Cold Spot
Diminishing Hot Spot Diminishing Cold Spot

Pattern types are grouped in terms of categories with increasing or decreasing values. All designations under the other category are the
same in nature (Esri 2016)
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surrounded by low values) and Low High (low
values surrounded by high values).

The HSA and the COA tools include an option
to use the False Discovery Rate (FDR) Correction.
Although Anselin (1995) and Getis and Ord (1996)
discuss using a Sidak, Bonferroni, or pseudo-p value
to reduce Type I errors in spatial autocorrelation
tasks, Caldas de Castro and Singer�s (2006) evalua-
tion of the FDR demonstrates that the FDR is
mathematically appropriate for reducing errors,
correctly identifies meaningful clusters, and is less
conservative than the Bonferroni multiple compar-
ison procedure method. The FDR controls for the
number of Type I errors by limiting the number
allowed. By setting an a, the proportion of false
discovery rates to total discovery rates, to a low
value (0.05 or 5%), it ensures that fewer Type I er-
rors will occur. The FDR is calculated by ranking
from lowest to highest the p values of all measures
that were found to reject the null hypothesis. Each p

value is numbered from one to m and then com-
pared to the equationQ = (i/m) a where i is the rank
number of a p value, m is the total number of p

values that rejected the null hypothesis, and a is the
percentage of ‘‘allowable’’ false positives. Tradi-
tionally, this value has been 0.05. It is then a sys-
tematic process of comparing each p value to its
corresponding Q value. The last p value that is less
than its corresponding Q value is the maximum p

allowed. For all p values higher in the ranking, it is
unacceptable to reject the null hypothesis (Benjamin
and Hochberg 1995; Maxwell and Delaney 2004;
Caldas de Castro and Singer 2006).

To test how well the EHSA, HSA, COA, and
Trend tools detect change patterns in the data, the
analyses were conducted at various levels of granu-
larity. For each analysis, an ArcGIS Definition
Query was conducted on the original data so that a
STC could be created for the full dataset, a halved
dataset, and a trisected dataset. The full dataset in-
cludes mining claim data from the entire 34-year
period. The halved dataset was constructed by
splitting the data into a 17-year period (1976–1993)
and 16-year period (1994–2010). This division of the
data coincides with the 1993 OBRA legislation, such
that the earlier and later halves of the data pertain to
periods, respectively, before and after the enactment
of that legislation. The trisected dataset was con-
structed by splitting the data into two 11-year anal-
yses and a 10-year analysis (1976–1987, 1988–1999,
and 2000–2010), roughly corresponding to federal
land assessment timing requirements. The STC tool

requires a minimum of 10 time step measures to
function and, consequently, cubes spanning less time
were not created. In total, six STCs were constructed
and analyzed using EHSA, HSA, COA, and Trend
tools.

RESULTS AND DISCUSSION

Space–Time Cube: Mining Claim Data and Trends

1976–2010 and 2016

The results of aggregating the lode mining claim
data into a STC revealed that in 1976 and 1977, the
majority of the sections around the McDermitt
Caldera had federally registered mining claims near
active and historic mines (i.e., the Opalite, Bretz,
and Cordero Mines as well as the McDermitt open
pit) and along the west side of the caldera, an area
with known and appreciable uranium deposits
(Fig. 4a). In 1978, the number of active lode claims
increased dramatically from 1601 to more than 9700
across the entire caldera. An additional 1828 claims
were registered in 1979, making it the year with the
highest number of claims ever registered around the
caldera (Figs. 3 and 4b). This sudden increase in
claims registered in 1978 and 1979 was most likely a
result of the FLPMA act of 1976, which stated that
all claims were required to be registered with the
BLM by October 1979. Few changes in the number
registered of mining claims occurred in 1980 (Fig. 3).

In 1981, the number of claims decreased in the
southeast corner of the caldera rim, and in 1982, the
number of claims decreased in the center and the
northwest corner of the caldera. The year 1983 saw
an increase in claims registered along the south rim
of the caldera as well as a block to the north of the
caldera. There were few changes in the numbers of
claims in 1984 and 1985. In 1986, the claims that had
been registered in 1983 in the south and north were
almost completely abandoned and additional claims
were registered in the west. From 1987 to 1992, the
number of claims generally decreased in number and
location (i.e., there were fewer claims registered for
each section and for less sections) (Fig. 3).

In 1993, a final drastic decrease in number of
claims occurred from 1321 to 310 (Figs. 3 and 4Gc).
This decrease was most likely the result of the
OBRA act, which stated that each claim required a
$100 maintenance fee. Although claims were
decreasing in the area since 1988, this was the last,
large negative change. As expected, the only claims
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registered were again around mines (e.g., the Cor-
dero, Bretz, Moonlight, and Opalite mines to name a
few). The number of claims then either decreased
slightly or stayed the same during the rest of the
1990s (Fig. 3).

During the early 2000s, there were modest and
gradual increases in the number of claims registered
but it was not until 2005 that the significantly large
changes occurred with a 34-fold increase in the
number of registered claims (Figs. 3 and 4d). Claims
were registered in the entire west, south, and most of
the southeast rim of the caldera, and more than 60
claims were registered in many sections, most likely
the result of an increase in commodity price for
uranium (Fig. 2).

From 2007 to 2010, another change occurred
and many claims in the southeast were abandoned,
and for the first time, claims were staked in the
center of the caldera (Fig. 4e). The center of the
caldera is an area of known lithium concentration

and the staking of claims in this location was prob-
ably the result of an increase in interest in lithium
driven by the development of smart phones and
electric and hybrid vehicles that require lithium
batteries (USGS 2010).

In 2016, the majority of mining claims were
located along the western and southern edge of the
caldera (Fig. 4). Some sections, near the Moonlight
Mine, contained as many as 82 active lode mining
claims. There were additional active lode mining
claims registered around known mines (i.e., the
Bretz, the Opalite, and the Cordero mines). The
majority of the caldera�s sections (79%), contained
zero active lode mining claims in 2016.

Trend

The trend analysis on the STC containing the
full dataset resulted in an upward trend in the

Figure 4. Total number and location of active lode mining claims registered with the BLM per section for years 1976, 1979, 1993, 2005,
2010, and 2016. Cooler colors represent less number of claims registered and warmer colors represent higher number of claims registered.
Note the 2016 data are arranged by MTRS and have not been processed and subsequently resampled like the other data.
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number of mining claims registered in the center of
the caldera, with a large area at the 99% confidence
level (p value<0.01) (Fig. 5a). The significant up-
ward trend in the center of the caldera was a result
of the increase in mining claims registered in the
center of the caldera since 2005. This upward trend
is surrounded by either No Significant Trend or
downward trend designations scattered discontinu-
ously around it. The northern portion of the caldera,
north of the Nevada–Oregon border, is almost en-
tirely designated as a Down Trend at the 99% sig-
nificance level in the number of claims registered.
The remaining 30% of the caldera is designated as
No Significant Trend; most likely the result of spo-
radic increases and decreases in registered mining
claims that occurred through time (e.g., an increase
in one year, followed by a decrease the next, would
produce a zero for the statistics, resulting in a No
Significant Trend designation).

By looking at the trend patterns from 1976–
1993 to 1994–2010, it is possible to observe addi-
tional patterns that help in our interpretation of the
1976–2010 trend data and capture and characterize
the impact of decreasing commodity prices through
the 1980s and the enactment of the OBRA legisla-
tion in 1993. The 1976–1993 trend data shows pre-
dominantly decreasing or downward trends around
the periphery of the caldera (Fig. 5b). Some upward
trends do exist on the west and southwest rim but,
for the most part, the majority of locations show a
decrease in claims registered during this time period.
Conversely, the trend pattern for the 1994–2010 time
period shows, for the most part, only an increase in
the south, west, and center of the caldera with al-
most all areas designated at the 99% confidence le-
vel (Fig. 5c). The remaining areas are mostly
designated as Not Significant. This decreasing trend
observed in the first half of the dataset followed by

Figure 5. Trend analysis results showing the change in number of active lode claims per section for (a) the full dataset (1976–2010), (b, c)
the halved datasets (1976–1993 and 1994–2010), and (d–f) the trisected datasets (1976–1987, 1988–1999, and 2000–2010). Cooler colors
represent a decreasing trend and warmer colors represent an increasing trend.
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the increasing trend observed in the second half of
the dataset mirrors the decrease in commodity
pricing of uranium and mercury (Fig. 2), both
important commodities in the history of the caldera.
These trends most likely led to the No Significant
Trend designation that resulted when running the
trend analysis on the full dataset described above.

Splitting the full dataset in half and computing
trend analyses on each half provided more infor-
mation than the full dataset. By splitting the mining
claim data into roughly 10-year blocks (1976–1987,
1988–1999, and 2000–2010) it was possible to eval-
uate trends at the scale of prescribed federal land
assessments. The trend analysis results for 1976–
1987 shows that the majority of the caldera (83%)
has no significant trends (Fig. 5d). The significant
trends show mostly an increase in registered mining
claims in the west and northeast corner, near areas
that, at the time, contained active mines (i.e., Cor-
dero, Bretz, Opalite, and McDermitt open-pit
mines). These same areas are designated with
decreasing trends during the 1988–1999 period
(Fig. 5e). Like both the 1976–2010 and the 1994–
2010 datasets (Fig. 5a and c), the 2000–2010 dataset
shows almost an entirely upward trend in the center
and southern areas with the most statistically sig-
nificant increase (at the 99% confidence level) being
in the west (Fig. 5f).

Although different patterns emerged in each
of the datasets, there were numerous similarities
among the dataset patterns. The most consistent
pattern was the upward trend in the center and
southwest areas of the crater toward the latter part
of the time period (i.e., 1994–2010, and 2000–2010).
Another consistent pattern was the decrease or
downward trend north of the Nevada–Oregon
border. As the data were parsed into smaller
timeframes, a greater number of MTRS were
designated as no statistical trend (i.e., 187 locations
for 1976–2010; 244 locations for 1976–1993; 367
locations for 1994–2010; and 511, 463, and 380 for
1976–1987, 1988–1999, and 2000–2010, respec-
tively). We surmise that these no statistic trend
designations occur in areas that have had sustained
periods of time with zero mining claims registered
(the early 1990s to the early 2000s). Additionally,
this lack of significance might be an indication that
the Mann–Kendall Trend test is unable to detect
changes in this dataset either because too few
samples (four is required for the statistic) or due to
data changing sporadically rather than monotoni-
cally.

When comparing the results of the Trend
analyses to the 2016 data in an effort to find a tool to
predict future interest, it becomes apparent that the
analyses on the full dataset and the halved dataset
do a poor job of isolating or highlighting the areas
that have claims in 2016. The results for the trisected
dataset, however, consistently display activity in the
areas that have claims in the 2016 data. All periods
of the trisected data display a trend change along the
western edge of the caldera, near the Moonlight
Mine, as well as around the Cordero, Bretz, and
McDermitt mines, all areas with consistent mining
activity. If similar assumptions as Raines et al.
(2002)—who used a cellular automata in an attempt
to forecast future mining activities—are used and
commodity prices are assumed to not change dras-
tically from their recent past, no new legislation will
be introduced affecting mining interests, and areas
where historic mining activities occurred will likely
host future exploration and development activities;
then, the trisected data provides an indicator for
where future mining interests will focus. The 2016
data confirm these results.

In general, the results from the full dataset give
a general summary of where robust increases or
decreases in mining claims registered through time.
The halved dataset, provides a more detailed picture
of past mining claim activities, capturing the gradual
decrease in mining claims throughout the caldera
during the early 1990s, followed by an increase in the
western, southern, and central portions of the cal-
dera during the late 1990s and early 2000s. Both of
these analyses do a poor job at isolating and pre-
dicting future claim locations. Only the trisected
datasets displayed trend changes in areas that had
consistent activity throughout our data timeframe.
Assuming that areas that historically hosted mining
activities will most likely be sites for future interest
(the locations with highest mineral potential), the
results of the trend analyses of the trisected datasets
serve as a good indicator of future claim activity.

Emerging Hot Spot Analysis

An EHSA was performed for each STC. As for
the trend analyses, a separate EHSA was conducted
on the full dataset, the halved dataset, and the tri-
sected dataset. The number of resulting categories
ranged from two for the 1988–1999 dataset to more
than ten for both the 1994–2010 and the 2000–2010
datasets. Like the trend analysis, each EHSA cap-
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tured and summarized the data differently. The
EHSA for the full dataset (1976–2010) led to five
categories (Fig. 6a), namely Intensifying Cold Spot,
Oscillating Hot Spot, Oscillating Cold Spot, Spo-
radic Cold Spot, and Not Emerging. Note that the
designation Not Emerging includes the No Pattern
Detected and No Trend Detected categories; all are
reserved for data that do not fall into any of the 16
predefined categories (for a complete description of
each EHSA designation see Esri (2016)). The
Intensifying Cold Spot category requires that more
than 90% of the data were categorized as a statisti-
cally significant cold spot (lower values than the
global average), a decrease in values through time,
and that the last time step be a cold spot. Both the
Oscillating Hot Spot and the Oscillating Cold Spot
categories require the final time step to be statisti-
cally significant in its sign (hot or cold), to have been
a statistically significant designation opposite its sign
at some point, and that less than 90% of the time be

statistically significant for its own sign historically.
The Sporadic Cold Spot is referred to as an ‘‘on-
again then off-again’’ category (Esri 2016). This
designation requires less than 90% of the data be
categorized as a statistically significant cold spot and
that there was not a hot spot designation at the
location during any time period.

Although the results describe five categories,
only three of the categories make up 99% of the
map designations. Most of the western, southern,
and central areas are designated as Oscillating Hot
Spot and are surrounded by Not Emerging desig-
nations. In the eastern and northern portions of the
caldera these Not Emerging designations are sur-
rounded by Oscillating Cold Spots (Fig. 6a). The
Oscillating Hot Spot areas align almost exactly with
the locations of upward trends computed by the
trend analysis on the 1994–2010 and the 2000–2010
datasets (Fig. 5c and f). The areas designated as
Oscillating Cold Spots tend to align with the down-

Figure 6. EHSA results for (a) the full dataset (1976–2010), (b, c) the halved datasets (1976–1993 and 1994–2010), and (d–f) the trisected
datasets (1976–1987, 1988–1999, and 2000–2010) for number of active lode mining claims per section.
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ward trend computed by the trend analysis on the
1976–2010 and the 1976–1993 datasets (Fig. 5a and
b).

Like the Trend analysis, the EHSA for the
halved dataset shows more details and tends to
preserve general patterns of the two STCs better
than the EHSA for the full dataset. The EHSA for
the 1976–1993 period displays a general decrease in
claims registered by way of multiple cooling-cate-
gory designations such as New Cold Spot, Intensi-
fying Cold Spot, Persistent Cold Spot, Oscillating
Cold Spot, and Sporadic Cold Spot, throughout the
caldera (Fig. 6b). The only non-cooling category was
Not Emerging seen mostly on the western side of the
caldera. The majority of the area is classified as
Oscillating Cold Spot. The EHSA for the second
portion of the halved data (1994–2010) is mostly
covered by warming categories (i.e., Consecutive
Hot Spot, New Hot Spot, Oscillating Hot Spot, and
Sporadic Hot Spot), which was expected based on
the previously discussed trend and STC data
(Fig. 6c). Cooling categories (i.e., Consecutive Cold
Spot, Diminishing Cold Spot, Intensifying Cold
Spot, Oscillating Cold Spot, Persisting Cold Spot,
and Sporadic Cold Spot) occur north of the Nevada–
Oregon border in the northern portion of the Cal-
dera and in the southeast.

As with the trend analysis, the data was trisected
and an EHSA was conducted on each third. This
division of the data is preferred over the full and
halved datasets as the first third and final third of the
data contain the most categories and visually appear
to capture more of the variability in the STC data.
The middle third, however, has only two categories,
which are Not Emerging and Sporadic Hot Spot
(Fig. 6e). The Not Emerging categories likely re-
sulted because most of the caldera had zero claims
registered, and areas that did have claims registered
were decreasing in numbers, especially after the
OBRA was enacted in 1993 (Figs. 3 and 4). The
Sporadic Hot Spot designation in the middle third of
the dataset is around the Bretz Mine, an area in
which most claims were abandoned around 1993,
when the US divested its strategic mercury reserves
(Schlottmann 1987; Castor et al. 1996; Castor and
Ferdock 2004; Childs 2007), and then later in 1997
when more mining claims (on average 2.5) were
registered. Recall that to meet the Sporadic Hot Spot
criteria, less than 90% of the duration of the dataset
must be a statistically significant hot spot with no
time steps meeting the criteria of a statistically sig-
nificant cold spot.

The EHSA results for the first and third trisects
differ from those of the middle trisect in regard to
the number and distribution of categories. The first
trisect of the dataset contains 10 categories including
Not Emerging (Fig. 6d). The western and north-
eastern rim of the caldera displays warming patterns
(i.e., Consecutive Hot Spot, New Hot Spot, Sporadic
Hot Spot, and Oscillating Hot Spot) and the south-
ern, central, and far northeastern areas are mostly
designated with Oscillating Cold Spot. The distri-
bution of the diverging pattern types (increasing or
decreasing in nature) for the 1976–1987 time period
may reflect working mines around the caldera, areas
that had active development occurring at the time
(Fig. 6d). In contrast, areas that were subject to
exploration and not containing working mines would
be expected to show sporadic increases and de-
creases. For all mines except the Ruja Mine, nearby
EHSA categories were increasing or warming in
nature (possibly because active development was
occurring), whereas all other areas featured
decreasing or cooling categories (possibly the result
of failed exploration programs). The EHSA from
the third trisect (2000–2010) (Fig. 6f) contains 11
categories including Not Emerging and produced
patterns that were consistent with the trend analysis
on the third trisect (Fig. 5f) of the data and for the
EHSA and trend analysis on the second half dataset
(Figs. 5c and 6c): a pattern of increasing, or warming
categories in the south, west, and center and a de-
crease in the north.

When comparing the EHSA results to the 2016
data, the full dataset seems to capture future
potential in areas that are designated as Oscillating
Hot Spot. In addition, the second half of the halved
dataset, the first trisect, and the third trisect capture
the future patterns with the Consecutive Hot Spot,
New Hot Spot, Sporadic Hot Spot, and Oscillating
Hot Spot designation with the Consecutive and
Oscillating designations approximating the 2016
pattern the most closely. Again, this confirms our
assumption that locations with historic exploration
and development will most likely yield future
exploration and development.

Hot Spot Analysis

When evaluating the trend analysis results,
splitting the data in half captured large historic
changes (e.g., gradual decrease in claims registered
during the 1980s and then an increase in claims in
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the early 2000s) and splitting the data into thirds
approximated the 2016 patterns the most closely.
When evaluating the EHSA, the second half of the
halved dataset and the first and third trisects
approximated the 2016 mining claim pattern the
most closely. The HSA is a direct byproduct of the
EHSA. Consequently, the z-scores and accompa-
nying p value are the basis for evaluating statistical
significance for both the EHSA and for the HSA;
nevertheless, because the EHSA also requires the
data to conform to 16 criteria, patterns between the
two can be quite different.

The results of the HSA for the full dataset
(1976–2010) show a Down Trend at the 99% confi-
dence level north of the Nevada–Oregon border and
in the northeast corner of the caldera, surrounded by
No Significant Trend in the center of the caldera,
and an additional Down Trend at the 99% confi-

dence level in the southwest (Fig. 7a). Recall that
conversely the EHSA results for the full dataset
indicated an Oscillating Hot Spot for most of the
west, southwest, and center of the caldera (Fig. 6a).
These two results, at first, may appear contrary to
one another, but based on the definition for the
Oscillating Hot Spot (i.e., statistically significant hot
spot for the final time step, a history of a statistically
significant cold spot at some time, an less than 90%
of the time steps have been a statistically significant
hot spot)—both results are possible. In addition to
the EHSA displaying categories associated with
increasing claims, the trend data also showed an
upward trend for the center of the caldera (Fig. 5a),
and the STC data indicate a notable increase in
claims registered in the center of the caldera
(Fig. 4e). These changes were not reflected in the
HSA, which demonstrate differences between sta-

Figure 7. HSA results showing significant changes in number of active lode claims per section for (a) the full dataset (1976–2010), (b, c) the
halved datasets (1976–1993 and 1994–2010), and (d–f) the trisected datasets (1976–1987, 1988–1999, and 2000–2010). Cooler colors rep-
resent cold spots and warmer colors represent hot spots.

333Spatiotemporal Analysis of Changes in Lode Mining Claims



tistical tools and the utility of including and com-
paring various analyses rather than anchoring on
one type of analysis.

In some ways, the HSA might be a more useful
tool than the trend analysis and the EHSA to cap-
ture and categorize past claim activity. Remember
that the trend test uses the Mann–Kendall statistic, a
test of monotonically increasing or decreasing data.
For data that have variable, temporal changes,
Trend analysis may not be the most suitable. The
EHSA has value in that it can quickly categorize
data based on specific criteria, but some of these
criteria might instill misconceptions about increasing
or decreasing data over time in circumstances in
which only the most recent time period saw an in-
crease. The HSA uses the Getis–Ord Gi* statistic
and combines data from neighbors both spatially
and temporally before comparing the values to glo-
bal values. In this way, it could capture subtle
changes better than the other two statistics. It ap-

pears, as previously discussed, that this analysis
works best on data that are split into smaller gran-
ules. Splitting the data into halves seems to preserve
more variability than computing the analysis on the
full dataset, which features downward trends around
the rim of the caldera in the north, east, and south
and a small area categorizes by upward trends in the
west for the first half of the data, and upward trends
prevalent in the center, south and west with a small
section categorized by downward trends in the
northeast for the latter half of the dataset (Fig. 7b
and c).

Breaking the data into thirds, like in the EHSA
analyses, provides more information about the data
than when using the full and halved datasets. The
first trisect features an area with an Up Trend on the
west side of the caldera and a Down Trend in the
northeast (Fig. 7d). The remaining areas are pri-
marily designated as No Significant Trend. The
middle trisect features decreasing number of claims

Figure 8. COA results on number of active lode claims per section for (a) the full dataset (1976–2010), (b, c) the halved datasets (1976–
1993 and 1994–2010), and (d–f) the trisected datasets (1976–1987, 1988–1999, and 2000–2010).
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around the periphery of the caldera with No Sig-
nificant Trend in the center, southeast, and north-
east-most corner (Fig. 7e). The third trisect
primarily features only Up Trends in the west, south,
center, and areas surrounding the Cordero and
McDermitt Mines, with almost all other areas des-
ignated as No Significant Trend (Fig. 7f).

When comparing the HSA results to the 2016
data only the second half of the halved dataset and
the third trisect approximate the 2016 patterns with
some degrees of similarity and only if the data were
limited to the Up Trend at the 99% confidence level.
Although the HSA patterns seem similar to the
Trend data and capture a lot of variability in the
claim data, they do not effectively predict the 2016
data and therefore are not recommended tool for
predicting future interest.

Cluster and Local Outlier Analysis

The COA tool uses the STC as the input to
perform the Local Moran�s I-statistic calculation.
The result is an additional STC in which each bin
contains a z-score, p value, I value, and cluster type.
This display of data, for our purposes, was difficult to
work with. Unlike the STC for the mining claims
that could be queried to render only a single year,
the cluster STC does not have the ability to display
only a single time slice. In an effort to simplify the
display to a 2D representation of the data, the Local
Outlier Analysis tool was invoked. This tool uses the
same Local Moran�s I equation; however, time val-
ues are also used as neighbors. The results, in gen-
eral, were disappointing. For the most part, all maps
were dominated by the designation Multiple Types,
which results from multiple cluster-type designation
(i.e., High High, Low Low, High Low, and Low
High) throughout time (Fig. 8a–f). The prevalence
of the designation Multiple Types did little to illu-
minate trends or clusters in the full and halved da-
tasets. The High High designations on the trisected
data, however, approximated the 2016 pattern very
closely.

To determine where statistically significant
clusters exist, we recommend using the COA tool to
analyze data from previous analyses. Performing the
cluster analysis on the EHSA results with the Input
Field being Category Type provided patterns that
were consistent with the other analyses. Addition-
ally, performing the analysis on the HSA with a
Definition Query in place, limiting p values to less

than or equal to 0.10 (the 90% confidence level) and
using z-scores for the Input Field provided patterns
that appeared to capture the data trends (e.g., an
increase in claims in the west, south, and center for
later years and a decrease in claims during early
years).

CONCLUSIONS

The ability to visualize data in a space–time
cube (STC) and to rotate, pan, zoom, adjust trans-
parency, and query input in real time provides re-
searchers with new methods and opportunities to
interrogate their data. Additionally, the various
statistical analyses that can be completed with STC
datasets can reveal useful insights into increasing or
decreasing trends or used to categorize the data. In
some cases the results from STC analyses may be
used as a predictor of future interests. In an effort to
evaluate the utility of STC, we analyzed mining
claim data from the McDermitt Caldera in northern
Nevada and southern Oregon.

In general, the Trend, EHSA (Emerging Hot
Spot Analysis), and HSA (Hot Spot Analysis) ade-
quately detected the major trends in the data. The
results of the trend analyses revealed that the full
dataset captured big-picture trends and the halved
datasets revealed more detail, such as the over-
whelming decrease in mining claims registered for
the majority of the caldera in the early years and a
drastic increase in mining claims during the later
years. Trisecting the data and using the trend anal-
yses proved useful for approximating and therefore
predicting future mining activities. Unlike the trend
analysis, the EHSA was most useful when the data
were trisected. By parsing the data into thirds, more
categories were included for the first and third tri-
sects, preserving the variability in the data and
capturing areas that would continue to hold mining
interest. The HSA was useful in capturing historic
trends, but a poor predictor of future mining claim
activity. Finally, the Cluster and Outlier Analysis
(COA) tool provided little information about past or
future trends in the mining claim data.

To optimize use of the Space Time Pattern
Mining toolbox, we recommend experts in the field
review the STC data and analyses in an exploratory
data analysis approach by first examining each time
step of the STC, developing an appreciation for
where trends in the data are increasing, decreasing,
or remaining the same, enabling the general char-

335Spatiotemporal Analysis of Changes in Lode Mining Claims



acteristics of the raw data through time, to be
understood and summarized. Next, parse the data
into varying granularities and conduct different
analyses to determine the ideal dataset size for each
statistic. In most cases, using a combination of por-
tioned datasets may be the ideal method for evalu-
ating data, presenting results, and predicting future
claim interest. We recommend using the Trend and
EHSA for activities involving future prediction.
These analyses can capture data with consistent
activity in data and therefore are able to highlight
and isolate these areas. With the assumption that
areas that had historic activity are likely to be areas
that have future activity, these two tools can provide
useful insight.

The STC and associated analyses are a useful
way to quickly interrogate spatiotemporal mining
claims data and develop conclusions about the
number of mining claims registered, where they
were increasing, decreasing, or staying the same, the
nature of the change (e.g., sporadic, reversing, or
monotonic), and where future mining activity was
likely to occur. We recommend these tools be inte-
grated in federal, state, and local GIS analyses in the
future in an effort to better characterize current and
future land use needs. With the ease of displaying
and creating such data and results, we anticipate an
increase in the number and types of applications in
which these tools will be included in the future.
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Demšar, U., & Virrantaus, K. (2010). Space–time density of tra-
jectories: Exploring spatio-temporal patterns in movement
data. International Journal of Geographical Information Sci-
ence, 24(10), 1527–1542. doi:10.1080/13658816.2010.511223.

Dicken, C. L., & San Juan, C. A. (2016). Bureau of land man-
agement�s land and mineral legacy rehost system (LR2000)
mineral use cases for the sagebrush mineral-resource assess-
ment, Idaho, Montana, Nevada, Oregon, Utah, and Wyom-
ing. In U. S. G. Survey (Ed.). U.S. Geological Survey data
release.

Ding, L., Krisp, J. M., Meng, L., Xiao, G., & Keler, A. (2016).
Visual exploration of multivariate movement events in
space–time cube. In AGILE 2016. agile-online.org.

Esri. (2016). An overview of the space time pattern mining toolbox.
http://pro.arcgis.com/en/pro-app/tool-reference/space-time-
pattern-mining/an-overview-of-the-space-time-pattern-mining-
toolbox.htm. Accessed May 2016.

Getis, A., & Ord, J. K. (1992). The analysis of spatial association
by use of distance statistics. Geographical Analysis, 24(3),
189–206. doi:10.1111/j.1538-4632.1992.tb00261.x.

Getis, A., & Ord, J. K. (1996). Local spatial statistics: An over-
view. In: P. Longley, & M. Batty (Eds.), Spatial Analysis:
Modelling in a GIS Environment, (Vol. 374, pp. 261–277).
New York: John Wiley & Sons.

Gilbert, R. O. (1987). Statistical methods for environmental pol-
lution monitoring. New York: Van Nostrand Reinhold Co.

Glanzman, R. K., McCarthy, J. H., & Rytuba, J. J. (1978). Lithium
in the McDermitt Caldera, Nevada and Oregon. Energy, 3(3),
347–353. doi:10.1016/0360-5442(78)90031-2.

Henry, C. D., Castor, S. B., Starkel, W. A., Ellis, B. S., Wolff, J.
A., Mcintosh, W. C., et al. (2016). Preliminary geologic map
of the McDermitt Caldera, Humboldt County, Nevada and
Harney and Malheur counties, Oregon (Open-File Report 16-
1). Reno: Nevada Bureau of Mines and Geology.

Kendall, M. G., & Gibbons, J. D. (1990). Rank correlation
methods (5th ed.). London: Oxford University Press.

Kraak, M. J., & Koussoulakou, A. (2005). A visualization envi-
ronment for the space–time-cube. In P. F. Fisher (Ed.),
Developments in spatial data handling 11th international
symposium on spatial data handling. Berlin: Springer.

Kristensson, P. O., Dahlback, N., Anundi, D., Bjornstad, M.,
Gillberg, H., Haraldsson, J., et al. (2009). An evaluation of
space time cube representation of spatiotemporal patterns.
IEEE Transactions on Visualization and Computer Graphics,
15(4), 696–702. doi:10.1109/TVCG.2008.194.

Li, X., Coltekin, A., & Kraak, M.-J. (2010). Visual exploration of
eye movement data using the space–time-cube. In S. I. Fab-
rikant, T. Reichenbacher, M. v. Kreveld, & S. Christoph
(Eds.), Geographic information science. Lecture notes in
computer science (Vol. 6292, pp. 295–309). Springer: Hei-
delberg.

Maley, T. S. (1992). Mining law. Boise, ID: Mineral Land Publi-
cations.

Maxwell, S. E., & Delaney, H. D. (2004). Designing experiments
and analyzing data: A model comparison perspective (Vol. 1).
London: Lawrence Erlbaum Associates.

Muntean, J. L., Davis, D. A., & Shevenell, L. (2016). The Nevada
mineral industry 2014. Reno, NV: Nevada Bureau of Mines
and Geology.

Nakaya, T., & Yano, K. (2010). Visualising crime clusters in a
space–time cube: An exploratory data-analysis approach
using space–time kernel density estimation and scan statistics.
Transactions in GIS, 14(3), 223–239. doi:10.1111/j.1467-9671.
2010.01194.x.

Niyogi, S. A., & Adelson, E. H. (1994). Analyzing gait with spa-
tiotemporal surfaces. In Proceedings of the 1994 IEEE
workshop motion of non-rigid and articulated objects (pp. 64–
49).
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