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Abstract

The shape of the damping profile of kink oscillations in coronal loops has recently allowed the transverse density
profile of the loop to be estimated. This requires accurate measurement of the damping profile that can distinguish
the Gaussian and exponential damping regimes, otherwise there are more unknowns than observables. Forward
modeling of the transverse intensity profile may also be used to estimate the width of the inhomogeneous layer of a
loop, providing an independent estimate of one of these unknowns. We analyze an oscillating loop for which the
seismological determination of the transverse structure is inconclusive except when supplemented by additional
spatial information from the transverse intensity profile. Our temporal analysis describes the motion of a coronal
loop as a kink oscillation damped by resonant absorption, and our spatial analysis is based on forward modeling the
transverse EUV intensity profile of the loop under the isothermal and optically thin approximations. We use
Bayesian analysis and Markov chain Monte Carlo sampling to apply our spatial and temporal models both
individually and simultaneously to our data and compare the results with numerical simulations. Combining the
two methods allows both the inhomogeneous layer width and density contrast to be calculated, which is not
possible for the same data when each method is applied individually. We demonstrate that the assumption of an
exponential damping profile leads to a significantly larger error in the inferred density contrast ratio compared with
a Gaussian damping profile.

Key words: magnetohydrodynamics (MHD) – Sun: corona – Sun: magnetic fields – Sun: oscillations –
Sun: UV radiation – waves

1. Introduction

Standing kink oscillations were first detected in coronal loops

using the Transition Region And Coronal Explorer (TRACE;

Aschwanden et al. 1999, 2002; Nakariakov et al. 1999). Their

detection is now routine (e.g., Zimovets & Nakariakov 2015;

Goddard et al. 2016), and thanks to the increased spatial and

temporal resolution of modern instruments such as the Atmo-

spheric Imaging Assembly (AIA; Lemen et al. 2012) of the

Solar Dynamics Observatory (SDO), they have great potential

for seismological investigation of the coronal plasma (e.g.,

reviews by De Moortel & Nakariakov 2012; Stepanov et al.

2012; Pascoe 2014; De Moortel et al. 2016). They are

commonly used to infer the strength of the coronal magnetic

field (e.g., Nakariakov et al. 1999; Nakariakov & Ofman 2001;

Van Doorsselaere et al. 2008; White & Verwichte 2012; Pascoe

et al. 2016b; Sarkar et al. 2016). Additional structuring

information may be obtained using higher harmonics, which

there is increasing evidence of (e.g., Verwichte et al. 2004; De

Moortel & Brady 2007; Van Doorsselaere et al. 2007; Wang

et al. 2008; Srivastava et al. 2013; Pascoe et al. 2016a, 2017a,

2017c; Li et al. 2017). The strong damping of kink oscillations

is attributed to resonant absorption (Sedláček 1971), which

requires a smooth transition between the high-density plasma

inside coronal loops and the background plasma. Inside this

inhomogeneous layer, energy is transferred from kink to Alfvén

waves where the local Alfvén speed matches the kink speed Ck

on a timescale comparable to the period of oscillation (e.g.,

Hollweg & Yang 1988; Goossens et al. 2002; Ruderman &

Roberts 2002).

The damping rate due to resonant absorption depends on the
transverse density profile of the coronal loop. The observed
damping rate can therefore be used in seismological analysis of
oscillations to obtain information about the transverse structur-
ing. However, the damping rate is a single observable, whereas
models for the transverse density profile are typically described
by two unknowns (e.g., density contrast ratio and the width of
the inhomogeneous layer). Furthermore, different models for
the shape of the density profile have been considered (e.g., a
sinusoidal or linear density profile inside the inhomogeneous
layer), and this choice also affects the expected damping rate of
kink oscillations (e.g., Goossens et al. 2002; Roberts 2008;
Soler et al. 2014).
Pascoe et al. (2013) proposed a seismological method based

on observing the initial Gaussian damping regime of kink
oscillations in addition to the later exponential damping regime.
The general damping profile (GDP) that describes these two
regimes allows two observables to be measured, and hence the
transverse density profile can be calculated (for the assumed
density profile model). Pascoe et al. (2016b) analyzed the
transverse oscillations of three coronal loops using the GDP for
the first time to produce seismological inversions for the
transverse density profile. This method was extended by Pascoe
et al. (2017a) to describe a time-dependent period of
oscillation, the presence of additional parallel harmonics, and
any decayless component. Pascoe et al. (2017a) also employed
a new method to account for a dynamical background trend and
used Bayesian analysis to test the model against the
observational data. Pascoe et al. (2017c) included an additional
term in the background trend to describe loops that experience
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a rapid shift in the location of the equilibrium, such as the
contracting loops previously analyzed by Simões et al. (2013)
and Russell et al. (2015). These applications of the seismolo-
gical method based on the shape of the damping profile exploit
the best cases of kink oscillations that have been observed so
far. However, the usefulness of seismological methods is
increased by extending the number of observations to which
they may be applied. In cases where the particular observa-
tional conditions are poor and less information can be reliably
extracted from the oscillation data, it is necessary to fill the gap
with some other source of information.

Another such source of information about the structure of
coronal loops that we consider in this paper is their intensity
profile. EUV imaging instruments also allow us to investigate
the transverse damping profile using the observed intensity
profile, for example, initial studies by Aschwanden et al.
(2003, 2007) and Aschwanden & Nightingale (2005) using
TRACE 171Å. Pascoe et al. (2017b) used a similar method
(applied to data from SDO/AIA) to estimate the inhomoge-
neous layer width of a coronal loop and found a value
consistent with that calculated seismologically for the same
loop in Pascoe et al. (2017a). Goddard et al. (2017) studied
the density profiles of 233 coronal loops and found that the
majority exhibit evidence for having an inhomogeneous layer
of finite width. The potential for seismological techniques to
provide structuring information is also relevant for studies of
multi-threaded coronal structures considered by many authors
(e.g., Lenz et al. 1999; Aschwanden et al. 2000; Pascoe
et al. 2007; Brooks et al. 2012; Antolin et al. 2015;
Aschwanden & Peter 2017).

In this paper, we perform a detailed analysis of a particular
coronal loop, described in Section 2. The temporal (seismolo-
gical) and spatial (forward modeling) diagnostic methods used
are described in Section 3. In Section 4, we apply each of these
methods separately to the loop data. In response to the strengths
and limitations of the single-model approach, we develop
techniques based on using multiple sources of data simulta-
neously, and the results of these multi-model methods are
presented in Section 5. Further discussion of effects relevant to
our method and results are in Section 6, including a comparison
with numerical simulations to estimate the associated errors.
Conclusions are presented in Section 7.

2. Observation

The coronal loop we analyze in this paper is shown in
Figure 1. It is designated as “Event 5 Loop 1” in Goddard
et al. (2016) and Pascoe et al. (2016c). In this paper, we use
the seismological methods for damped kink oscillations
applied in Pascoe et al. (2016b, 2017a) and the method of
forward modeling the EUV intensity profile from Pascoe
et al. (2017b). We apply these methods to estimate model
parameters, in particular ò=l/R, which is the size of the
transverse inhomogeneous layer l normalized by the loop
minor radius R. For these methods, we require the time series
for the position of the loop and the intensity profile
perpendicular to the loop axis. In our case, both of these
observations are generated from the same slit (blue line in
Figure 1) using the same bandpass (171 Å) of the same
instrument (SDO/AIA), though this is not a requirement. A
benefit of the multi-model analysis (Section 5) is its potential
to combine data from different sources.

The bottom panel of Figure 1 shows the time–distance map
for the loop starting at 04:40 on 2011 February 10, just after a
B6.0 GOES-class flare that occurs at 04:39 (Zimovets &
Nakariakov 2015). The white line shows the position of the
loop previously used in Pascoe et al. (2016c), which was based
on the assumption of a monolithic (i.e., single-thread) structure
and tracked in time using the standard method of fitting each
intensity profile using a Gaussian function (e.g., GAUSSFIT in
IDL) and determining the loop position as the center of the
Gaussian. However, on closer inspection, and by considering
the orientation of the loop (top panel of Figure 1), we note that
the line of sight (LOS) is almost parallel to the loop’s plane,
and hence the intensity profile is composed of the two legs
appearing to overlap on the plane of the sky. To accurately
measure the oscillation, we performed a fit using a model
comprised of two structures to allow us to track each leg of the
loop separately (green and blue lines in Figure 1). We note that
the legs oscillate in phase with each other and with the original
time series (white line), consistent with a horizontally polarized
fundamental kink mode that we are viewing almost side-on.
Fitting two legs rather than a single structure also produces a

lower and more accurate estimate of the loop minor radius
R≈7Mm, though this is still relatively wide for a coronal
loop, which facilitates the estimation of the loop density profile
by forward modeling. The length of the loop is estimated to be
L=440±44Mm. Accordingly, R/L≈0.02, consistent with
the thin tube approximation R/L=1.

3. Methods

In this section, we describe two methods that we apply to our
observational data individually in Section 4 and simultaneously
in Section 5.

3.1. Seismology Using Damped Kink Oscillations

The seismological method is based on the use of the kink
oscillation damping profile as described in Pascoe et al.
(2016b, 2017a, 2017c). Large-amplitude standing kink oscilla-
tions are typically observed for fewer than six cycles (e.g.,
Figure 2 of Goddard & Nakariakov 2016). Since our method is
based on the measurement of the damping profile, we require
this strong damping to be present in the signal. However,
compared to previous applications of the method, the data for
the oscillating loop analyzed in this paper are poor in terms of
having a higher noise level and hence a lower signal quality
(fewer cycles observed above the level of the noise). We
therefore consider a simpler model than in our previous papers,
based on the fundamental standing mode with amplitude A1

and period of oscillation P1 without the additional parallel
harmonics and initial shift in equilibrium position used in
Pascoe et al. (2017c),

y t A t
t

P t
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where t0 is the start time of the oscillation and t t t0= -˜ . The

period of oscillation P t1(˜) is allowed to vary linearly with time

(compared with the third-order polynomial used in Pascoe

et al. 2017a). The background trend ytrend is described by a

spline using six interpolation points per leg. Here n is the
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damping envelope given by the GDP
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where A t tns s= =( ) and 0 e 0 ek r r r r= - +( ) ( ). The

transverse density profile is described by the density contrast

ratio ρ0/ρe and the width of the inhomogeneous layer ò. Here,

τd is the exponential damping time (e.g., Goossens

et al. 1992, 2002), and the corresponding time for the Gaussian

regime τg is from Hood et al. (2013) using the thin tube

approximation Ck=λ/P and the change in variable t=z/Ck

(see also Section6.1 of Pascoe et al. 2013). The applicability of
the approximation we use has also been demonstrated in

numerical simulations by Magyar & Van Doorsselaere (2016),

showing agreement within 10% for low-amplitude oscillations

approximating the linear regime. Since additional parallel

harmonics are not considered, neither are longitudinal structur-

ing effects, e.g., due to stratification or expansion. The damping

profile is based on the thin tube approximation, and so we also

neglect geometrical dispersion, that is, P P L C21 k k= = ,

where L is the loop length, and the kink speed for a low-β

plasma (uniform magnetic field) is

C C
2

1
, 3k A0

e 0r r
=

+
( )

where CA0 is the internal Alfvén speed, and the external Alfvén

speed is given by C CAe A0 0 er r= . When this model is

applied to the observational data, we instead consider the

period of oscillation in terms of the Alfvén transit time inside

the flux tube TA=L/CA0, giving

P T2
1

2
. 4k A

e 0r r
=

+
( )

This has the benefits of separating out the dependence on the

density contrast, which is already a model parameter because it

also affects the damping profile, and not requiring the loop

length to be included in the model, since that parameter is

estimated independent of our seismological method—for

example, by magnetic extrapolation (e.g., Verwichte et al.

2013; Long et al. 2017; Pascoe et al. 2017c) or, more simply, as

π times the height of the loop (accounting for the inclination of

the loop’s plane from the vertical). Since the period of

oscillation is allowed to vary linearly, it is described by two

values of the Alfvén transit time: TA0 at time t0 and TA1 at the

end of the time series.
Phase mixing (e.g., Heyvaerts & Priest 1983) of the Alfvén

waves generated by mode coupling increases the efficiency of
dissipative processes. We can use the model parameters
discussed above to estimate the lifetime of the Alfvén waves
(Mann & Wright 1995; Pascoe et al. 2016b) as

L

C C
. 5A

Ae A0


t

p
=

-( )
( )

3.2. Forward Modeling of EUV Intensity Profile

In this section, we consider seven models for the transverse
density profile, described by Equations (6)–(12) below, and
apply each to our observational data, i.e., the transverse
intensity profile. Each profile describes an enhancement to the
transverse density profile due to a coronal loop with the
parameter A=ρ0−ρe, where the internal density is greater
than the external density ρ0>ρe, and ρe>0. Since these
profiles describe the density enhancement, when comparing
the profiles to data, they are added on top of a background
density profile describing the plasma outside the loop, which is

Figure 1. SDO/AIA 171 Å image (top) of the analyzed loop with its axis
indicated by the dashed red line. The solid blue line shows the location of the
slit used to generate the time–distance map (bottom). The white line shows the
original time series used in Pascoe et al. (2016c) based on a single Gaussian fit
to the intensity profile, while the green and blue lines track the two loop legs
separately.
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not necessarily uniform. For our data, the field of view is
closely cropped around the oscillating loop (Figure 1), and so
we find a linear background density profile to be sufficient to
account for its variation (Figure 5).

The transverse density profile used for our seismological
method (Section 3.1) is the linear transition layer profile
(Model L)

r

A r r
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where r is the local coordinate across the flux tube at the point

of the observation, r1=R−l/2, r2=R+l/2, l=òR. Our use
of this profile is based on the availability of the full analytical

solution for the damping envelope (Hood et al. 2013), and so it

is currently the only profile that can be used for both our

temporal and spatial analysis. However, when considering the

spatial information revealed by the intensity profile separate

from the seismological method (e.g., Goddard et al. 2017;

Pascoe et al. 2017b), we may choose any other profile to test.

Below, we describe six other density profiles we also test

against the observational data. The results of these tests

(Section 4.2) support our use of Model L, and this choice is

also discussed further in Section 6.2.
The step function profile (Model S) corresponds to the

limiting case ò=0 for which there is no smooth inhomoge-
neous layer, and so kink oscillations would not be subject to the
enhanced damping caused by resonant absorption (e.g., Edwin
& Roberts 1983):
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A Gaussian profile is commonly used to fit the transverse
intensity profile of the coronal loops. The transverse density
profile itself being Gaussian (Model G) has instead been
previously considered (e.g., Aschwanden et al. 2007; Pascoe
et al. 2017b):
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The generalized symmetric Epstein profile (Model E; e.g.,
Nakariakov & Roberts 1995; Pascoe & Nakariakov 2016) is
defined as

r A
r

R
sech , 9

p
2r = ⎜ ⎟

⎛

⎝

⎞

⎠
( )

∣ ∣
( )

which describes a smooth profile, as with the Gaussian profile,

but with a controlled steepness determined by the parameter p.

Increasing the steepness corresponds to a more localized

inhomogeneous layer, and Model S is reproduced in the limit

p  ¥ (although even values of p10 could be observa-

tionally indistinguishable).
The linear dependence used in Model L is not the only

possible choice for the density profile inside an inhomogeneous
layer. A sinusoidal (Model N) dependence has also been
considered by several authors (e.g., Ruderman & Roberts 2002;

Terradas et al. 2006):
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We note that Model N may also be used for seismological

analysis when only considering the exponential damping

regime (Sections 6.2 and 6.3).
Soler et al. (2013, 2014) also proposed an inhomogeneous

layer with a parabolic density profile (Model P) with the form
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Finally, a continuous profile based on the hyperbolic tangent
function (Model T) has also been used in numerical simulations
of oscillating coronal loops (e.g., Antolin et al. 2014; Howson
et al. 2017; Pagano & De Moortel 2017):
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Our use of the isothermal approximation greatly simplifies
calculations by relating the intensity profile to the square of the
density integrated along the LOS, i.e., excluding the temper-
ature dependence of the EUV emission and the instrument
response function.
For Model S, the density inside the loop is constant, so the

integrated loop intensity per unit length along its axis is readily
found to be proportional to A2d, where d is the loop depth along
the LOS given by the chord length of the circular loop cross-
section

d R r r R2 , , 132 2 = - ∣ ∣ ( )

where r x x0= -∣ ∣, x is the direction transverse to the loop,

and the loop center is at x0. This method can be extended to the

other density profile models by considering the contributions

from a number of cylindrical shells, each having a uniform

density given by the corresponding density profile at the center

of the shell. For Models L, N, and P, the density in the core

region is constant, so the shells are uniformly distributed over

r r r,1 2= [ ]. For Models G, E, and T, the density varies

continuously, so the shells are distributed over r=[0, 2.5R].
We use 100 shells in our analysis, which is sufficient to

produce converged results. The results are also consistent with
the approach based on a 2D array used in Pascoe et al. (2017b)
and Goddard et al. (2017), but the increased efficiency allows
us to readily investigate the variation of the transverse density
profile with time (Section 6.1).
Since the corona is optically thin, the contribution to the

intensity profile from the background plasma depends on the
LOS integration depth. This is generally unknown, and we
assume a value of 100Mm as a reasonable estimate. However,
for this reason, the EUV intensity profile cannot be used to
calculate the density contrast of the coronal loops directly.
Instead, we use forward modeling to estimate the spatial scale
of the transverse structuring (R and ò) and then combine this
with our seismological information to calculate the density
contrast ratio. Kink oscillations therefore allow us to probe the
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local plasma conditions; e.g., the kink speed is a weighted
average of the internal and external Alfvén speeds, and the
damping rate depends on ρ0/ρe and ò, whereas the EUV
emission may contain contributions from plasma along the
same LOS as the loop but located far from it. The effect of the
point-spread function for the 171Å SDO/AIA channel is
simulated by applying Gaussian smoothing with σ=1.019
(Grigis et al. 2013). Comparing several different models for the
transverse density profile also allows us to investigate which
models best describe the observational data. While each one
will only be an approximation, e.g., based on the assumptions
of cylindrical symmetry and not accounting for any fine
structuring, our aim is to estimate the transverse spatial scale ò

(or the steepness parameter p, in the case of Model E). We
therefore require density profile models that include this
parameter to describe the observational data better than models
that do not for the application of this method to be practical.

4. Single-model Results

In this section, we present the results and limitations of our
temporal and spatial analysis methods when applied separately
to our observational data. Each of the models is compared with
the corresponding observational data D using the Bayesian
inference and Markov chain Monte Carlo (MCMC) methods
previously described in Pascoe et al. (2017a; see also a recent

review of Bayesian analysis for coronal seismology by
Arregui 2018).

4.1. Temporal Analysis (Kink Oscillation Seismology)

Figure 2 summarizes the results of the seismological method
described in Section 3.1. The oscillation model described by
Equations (1)–(4) is compared with the observation data
(crosses) for each of the loop legs using the Bayesian inference.
The results are based on 106 MCMC samples, and posterior
summaries for the key physical parameters are given in
Table 2. The right panels of Figure 2 show the 2D histograms
for the transverse density profile parameters ρ0/ρe and ò. We
note that our model function is written in terms of these
parameters, rather than the parameters τg,d, so that we obtain
their posterior probability distributions directly rather than
having to perform additional steps. However, the corresp-
onding values of τg,d are included in Table 2, and example
histograms are included in Figure 7. We see that for the
oscillations of each leg, the time series alone does not provide
any significant constraint on the density profile parameters.
This corresponds to τg being well constrained by the data but τd
being poorly constrained. The contours of the marginalized
posterior probability distributions describe curves in the
parameter space similar to those discussed in the context of a
single damping regime (e.g., Arregui et al. 2007a; Goossens
et al. 2008; Arregui & Asensio Ramos 2014). In those studies,

Figure 2. Seismological inversions for Leg 1 (top) and Leg 2 (bottom). The left panels show the time series for the leg positions (black crosses), while the color
contour represents the normalized posterior predictive probability density for our kink oscillation model. The vertical dotted lines correspond to the maximum
a posteriori probability (MAP) value for the start time of the oscillation. The right panels show normalized 2D histograms approximating the marginalized posterior
probability density function for the loop transverse density profile parameters as estimated by the kink oscillation damping envelope (Equation (2)). The dashed lines
outline the lower limits for the density profile parameters based on the asymptotic approximations given in Equations (14) and (15).
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the single (exponential) damping time is one observable that
depends on two unknowns (ρ0/ρe, ò), whereas the seismolo-
gical method considered here attempts to use two independent
observables (the Gaussian and exponential damping times). If,
as in this case, the oscillation data do not allow both τg,d to be
well constrained, then effectively only the overall damping rate
provides seismological information, and we return to the case
of there being more unknowns than observables for a chosen
density profile model. The seismological analysis of poor
oscillation data therefore fails to constrain the density profile
parameters beyond providing some lower limits discussed
below. For this reason, we aim to combine this seismological
information with additional information about the density
profile obtained by the forward-modeling method presented in
the next section, which provides an independent estimate of ò

(though not the density contrast ratio due to the unknown LOS
depth).

In addition to the signal-to-noise ratio, the extent to which
the structuring parameters are constrained is also determined by
the inverse relationships implied by τg,d (Equation (2)). The
parametric curves are asymptotic in the limits 10 er r  and

0 er r  ¥, such that ò is better constrained for larger density
contrasts than for smaller ones. On the other hand, these
asymptotes may be used to estimate lower limits for the density
structure parameters.

The estimate for the lower limit of ò corresponds to the limit

0 er r  ¥, or 1k  . For large density contrasts, the
damping profile is dominated by the exponential damping
regime, so we relate it to the exponential damping rate

Q

4
, 14

2
d


p

> ( )

where the signal quality for the exponential regime is

Qd=τd/Pk. This is the same approximation as Goossens

et al. (2008), except for the constant of proportionality, which

differs by a factor of 2/π, since we consider the linear

transition layer density profile rather than the sinusoidal density

profile. However, for the estimate of the lower limit of the

density contrast, corresponding to 2  , our estimate uses the

damping rate for the Gaussian damping regime (Pascoe

et al. 2012, 2013, 2015; Hood et al. 2013),

Q

Q

1 2

1 2
, 150

e
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where Qg=τg/Pk. These approximations are indicated by

dashed lines in density profile inversion plots such as the right

panels of Figure 2. They are also given in Table 2 when the

temporal data alone are used, as for these cases, the upper limits

are only constrained by the prior information, defined as [0, 2]
for ò and chosen as [1, 5] for ρ0/ρe.
Figure 3 demonstrates the effect of different levels of noise

in the oscillation signal on the seismological estimate of the
transverse density profile parameters. For these tests, synthetic
signals are generated based on the oscillation of Leg 1, with
noise added to the position in the form of uniformly distributed
random displacements. Results are shown for several levels of
noise, the largest of which is comparable to that seen in the
observational data.

4.2. Spatial Analysis (Forward Modeling of EUV
Intensity Profile)

The spatial analysis used in this paper is based on that in
Pascoe et al. (2017b) but adapted for the properties particular to
the loop analyzed in this paper, i.e., the contribution from both
loop legs in the intensity profile rather than only one. The two
intensity-enhancement structures are considered as appearing
close to each other as a consequence of our particular LOS
(e.g., De Moortel & Pascoe 2012) rather than physically
interacting (e.g., Arregui et al. 2007b; Pascoe et al. 2007; Soler
& Luna 2015). Accordingly, where the structures overlap, we
calculate the total intensity as the sum of the intensity from
each leg, I I I1 2 1

2
2
2r r= + µ + , along our LOS rather than

summing the densities, which would produce an additional

Figure 3. Effect of noise on the oscillation signal (top) and the seismological estimate of the transverse density profile parameters (bottom). Results are shown for
noise with a maximum absolute value of 0.05 (left), 0.1 (middle), and 0.4Mm (right). Panels are the same as in Figure 2, with red error bars corresponding to the MAP
and 95% credible intervals.
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contribution ∝ρ1ρ2. Each leg is taken to have its own position

(x1, x2) but the same density profile parameters (A, R, ò). The

contribution to the intensity profile from the external plasma is

described using a linear trend for the background density. In

this paper, we only apply our spatial analysis to one particular

segment of the loop. Since our method assumes the loop has a

circular cross-section (in this case, two circular cross-sections

for the two legs), we consider a segment toward the top of the

loop (where there are fewer contributions from other structures)

but avoid the apex of the loop (where the intensity profile is

complicated by the loop curvature).
We consider the linear transition density profile (Model L)

for consistency with the seismological component of our

analysis, which also assumes this profile. The results are shown

in Figure 4 and demonstrate that the model is able to accurately

describe the observed intensity profile and, in particular,

produce a well-constrained value of ò. Figure 4 and the left

panel of Figure 5 also show the results for the three other

models that feature a finite inhomogeneous layer. The models

produce similar results in terms of the density profile and

forward-modeled intensity profile. We note, however, that the

values of the model parameters corresponding to these similar

profiles can vary significantly. In particular, each model returns

different values of ò (see Section 6 for further discussion). The

value of R defined by Model P is also significantly different

from those given by the other models due to the parabolic

Figure 4. Forward modeling of the transverse intensity profile (at t = 0) using the density profiles with a finite inhomogeneous layer (Models L, N, and P). The left
panels show the intensity profile (black crosses), while the color contours represent the normalized posterior predictive probability density. The vertical dotted lines
show the MAP values for the positions of the two legs. The middle and right panels show histograms of the normalized layer width ò and loop minor radius R,
respectively, based on 106 MCMC samples. The vertical dotted and dashed lines denote the MAP value and the 95% credible interval, respectively.
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profile being asymmetric about R inside the inhomogeneous
layer. This property may also contribute to ò being less well
constrained by Model P than by the three other models.

We also repeat our analysis for the other transverse density
profiles described in Section 3.2, the results of which are shown
in Figure 6 and the right panel of Figure 5. The results for all
density profile models are also summarized in Table 1. As in
Pascoe et al. (2017b), the Epstein profile produces results that
are nearly identical to those of Model L, since it contains the
same parameters, albeit the width of the inhomogeneous layer
is expressed in terms of the steepness parameter p rather than ò.
On the other hand, Models G and S produce different results as
a consequence of having one fewer model parameter—that is,
no parameter corresponding to the inhomogeneous layer—so
the shape of the profile is being determined by the height (A)

and width (R) alone. The results for Model G are not very

different, since this loop has a wide transition layer, though the
profile being too broad is evident around the outer edge of Leg
2 (x≈28Mm) in addition to the more pronounced intensity
peaks near the centers of the legs. On the other hand, the
absence of an inhomogeneous layer in Model S produces
significant differences, particularly near the center of the
intensity profile, where the intensity contributions from the two
legs are superposed.
The different density profile models can be quantitatively

compared by calculating Bayes factors Bij (Jeffreys 1961; Kass
& Raftery 1995):

B
P D M

P D M

K B

,

2 ln . 16

ij
i

j

ij ij

=

=

( ∣ )

( ∣ )

( )

Figure 5. Comparison of the transverse density profiles corresponding to the MAP values for each of the seven models considered. Legs 1 and 2 are shown in green
and blue, respectively.

Figure 6. Comparison of different transverse density profiles for the loop. The forward-modeled transverse intensity profile is shown (as in Figure 4) for the Epstein
(Model E), Gaussian (Model G), and step function (Model S) density profiles.

Table 1

Parameters for Different Transverse Density Profile Models (Mi): Linear Transition Layer Profile (Model L), Sinusoidal Transition Layer Profile (Model N), Parabolic
Transition Layer Profile (Model P), Hyperbolic Tangent Profile (Model T), Generalized Symmetric Epstein Profile (Model E), Gaussian Density Profile (Model G),

and Step Function Density Profile (Model S)

Mi A x1 (Mm) x2 (Mm) R (Mm) ò p KiS KiG KLi

L 1.08 0.05
0.05

-
+ 12.1 0.4

0.3
-
+ 23.2 0.3

0.3
-
+ 7.1 0.2

0.3
-
+ 0.9 0.2

0.2
-
+

L 56.1 19.2 L

N 1.08 0.05
0.06

-
+ 12.1 0.4

0.3
-
+ 23.2 0.3

0.3
-
+ 7.1 0.3

0.3
-
+ 1.3 0.2

0.3
-
+

L 55.1 18.1 1.1

P 1.10 0.05
0.07

-
+ 12.0 0.3

0.4
-
+ 23.2 0.3

0.3
-
+ 5.6 0.6

0.4
-
+ 1.5 0.4

0.5
-
+

L 52.0 15.1 4.1

T 1.10 0.05
0.10

-
+ 12.1 0.5

0.3
-
+ 23.2 0.3

0.3
-
+ 7.1 0.3

0.3
-
+ 1.0 0.2

0.5
-
+

L 51.7 14.7 4.4

E 1.08 0.04
0.05

-
+ 12.0 0.4

0.4
-
+ 23.2 0.3

0.3
-
+ 7.6 0.3

0.3
-
+

L 2.1 0.5
0.6

-
+ 49.6 12.7 6.5

G 1.20 0.07
0.05

-
+ 11.7 0.6

0.6
-
+ 23.5 0.4

0.4
-
+ 6.1 0.4

0.6
-
+

L L 37.0 L 19.2

S 1.01 0.06
0.04

-
+ 12.3 0.4

0.4
-
+ 23.3 0.4

0.4
-
+ 6.7 0.3

0.3
-
+

L L L −37.0 56.1

Note. Posterior summaries are given at the MAP and uncertainties by the 95% credible interval.
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We calculate several different Bayes factors, shown in Table 1,

to compare the seven density profile models. Models S and G

do not contain a finite inhomogeneous layer, so each model is

compared with these using the factors KiS and KiG, respec-

tively. The values in Table 1 support there being very strong

evidence (Kij>10) for all models over Model S (no

inhomogeneous layer) and for all models except S over Model

G. We find that Model L best describes the observational data,

and this is quantified by the Bayes factor KLi, which is positive

for all cases. We note that this Bayes factor is smallest for the

comparison with Model N, reflecting the similarity of these two

profiles, which the data are unable to conclusively distinguish

(see further discussion in Section 6.2). The observational data

therefore support our use of a transverse density profile that

contains a finite inhomogeneous layer in general, and the linear

transition layer profile in particular, for our analysis for this

data set (beyond the practical issue that it is the only profile for

which the Gaussian damping time is known). However, we

may also perform our analysis using Model N if we restrict

ourselves to only considering the exponential damping regime

of kink oscillations (see Section 6.3).

5. Multi-model Results

In the previous section, we demonstrated that the seismo-
logical method for determining the transverse density profile of
our loop based on its damped kink oscillation was not effective
in constraining ρ0/ρe and ò, owing to the limited quality of the
oscillation signal (in particular, the noise in the signal as
demonstrated in Figure 3). On the other hand, the loop has a
large radius, so there is sufficient spatial information for ò to be
well constrained by forward modeling of the transverse
intensity profile. These results may be used together to allow
us to constrain the density contrast; i.e., if we take the estimate
of ò≈0.9 for Model L (Figure 4) and compare that with the
seismological inversion (Figure 2), we can infer a density
contrast of ρ0/ρe≈2.3. More formally, we could repeat our
seismological analysis but replace the prior information for ò,
which we considered to have a uniform probability in the range
[0, 2], with the posterior probability information from the
spatial analysis (middle panel of Figure 4).

However, we are interested in developing a more general
method that allows multiple physical models and data sources
to be used simultaneously to constrain model parameters. To
achieve this, the MCMC code used in Pascoe et al.
(2017a, 2017b) has been further developed to use multiple
independent variables, dependent variables, and model func-
tions but a common set of model parameters. Each dependent
variable is assigned its own measurement error σi, which is also
varied as a model parameter. For a multi-model method to be
an improvement over each model applied individually, the
different model functions should share at least one parameter,
which is the normalized inhomogeneous layer width ò in the
case of our spatial and temporal methods.

The code makes use of the LIST data type of IDL, which is
convenient for handling different observational data sets (e.g.,
spatial or temporal information). An approach using multi-
dimensional arrays, for example, would require the different
data sets having different numbers of data points to be taken
into account.

5.1. Simultaneous Temporal Analysis of Both Legs

Our first multi-model analysis considers the time series for
the two loop legs simultaneously. According to our interpreta-
tion of the oscillations as a fundamental harmonic of a standing
kink oscillation, each leg has the same start time (t0), phase,
and period of oscillation (determined by the initial and final
values of the Alfvén transit time TA0,1). We also assume the
legs have the same values of density contrast, minor radius, and
inhomogeneous layer width. The model parameters that differ
for each leg are therefore the amplitude of the oscillation (A1),
the background trend, and the measurement error (σY).
The results of this analysis are shown in Figure 7. The top-

left panel shows the oscillation of both legs and their common
start time (dashed line). The density profile parameters are
shown in the top-right panel. Since the analysis of each leg
separately did not successfully constrain the density profile
parameters, neither does this simultaneous method.
While the loop legs appear to overlap for our LOS in EUV

emission, they are physically orientated, with one being closer
to us than the other. If we consider a semicircular loop, then for
footpoints on the same LOS, each leg would be observed at the
same height. Consequently, a standing mode would have the
same amplitude in each leg. A more complicated loop
geometry or inclined LOS could result in one leg having a
larger amplitude oscillation than the other, but our results
(Table 2) are consistent with them being equal. For the
fundamental standing mode (and other odd harmonics), the legs
would also have the same phase, while for even parallel
harmonics, the legs would move in antiphase.

5.2. Spatiotemporal Analysis

Since we have both loop legs present in our observational
slit, we have a choice of combining the spatial information with
the oscillation of Leg 1 or Leg 2. As in Section 5.1, we can also
model the oscillation of both legs simultaneously and combine
this with our spatial analysis, the results of which are shown in
Figure 8. All three combinations produce similar results, given
in Table 2. The combination of both spatial and temporal
information allows the density profile parameters to be well
constrained by the model.

6. Discussion

6.1. Evolution of Transverse Density Profile

Our present method does not account for the time-dependent
behavior of the transverse loop profile. Such changes may arise
as a consequence of large-amplitude oscillations, e.g., the
Kelvin–Helmholtz instability (KHI) or longitudinal flows driven
by the ponderomotive force, or due to heating associated with
the dissipation of the wave energy. In this paper, the
seismological method assumes the transverse density profile
does not change when calculating the kink oscillation damping
profile, and our forward-modeling method is based on a single
intensity profile (corresponding to before the oscillation begins).
Figure 9 shows the variation of R, ò, and A just before and

during the oscillation. A strong negative correlation is evident
in the parameters when the oscillation amplitude is greatest and
with the same periodicity. The apparent quasi-periodic
variation of the density profile parameters with the same
period as the kink oscillation would be of interest for a follow-
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up study. In terms of the longer, nonoscillatory trend, the effect
is much weaker, with R and ò each decreasing by ∼10%.

Figure 9 also shows the variation of the normalized leg mass
(per unit length) in time based on our forward-modeled density
profile. This is estimated using the MAP values of the density
profile parameters (shown by the symbols in the other panels of
Figure 9) to calculate the linear mass density for the observed
leg segment. We note that the oscillatory behavior is not seen in
this parameter but that a gradual decrease of approximately
30% is detected.

The KHI (e.g., Terradas et al. 2008a; Soler et al. 2010;
Zaqarashvili et al. 2015; Magyar & Van Doorsselaere 2016;
Howson et al. 2017) would cause a redistribution of mass in the
perpendicular direction, whereas the ponderomotive force
causes field-aligned flows toward the loop apex (e.g., Terradas
& Ofman 2004). On the other hand, our slit is quite close to the

loop apex, and we would also expect flows to bring material
from lower down toward our slit. An alternative is that the
apparent decrease is a consequence of heating (e.g., Pagano &
De Moortel 2017) or cooling (e.g., Cargill et al. 2016), which
causes plasma emission to become less intense in the particular
171Å bandpass used.

6.2. Choice of Transverse Density Profile Model

In Section 4.2, we demonstrated that the values of density
profile parameters such as R and ò vary for the different
models tested; i.e., the definition of these parameters depends
on the choice of profile. In particular, we may consider the
linear transition layer profile (Model L) and the sinusoidal
transition layer profile (Model N). Figure 10 shows the
density profile described by Model N with ò=2 (solid line).

Figure 7. Seismological analysis using the oscillations of both loop legs simultaneously. Panels are the same as in Figure 2.

Figure 8. Analysis based on the simultaneous use of the transverse intensity profile and the oscillations of both loop legs. Panels are the same as in Figures 2 and 4.
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The density profiles for Model L with ò=1.4 (dashed line)
and ò=2 (dotted line) are also shown. It is evident that
Models L and N describe significantly different density
profiles in the limit 2  . On the other hand, the profiles
produced by òL=1.4 and òN=2 (with the density profile
model denoted by the subscript) are very similar, differing
mainly in the smoothness of the profile near the edges of the
inhomogeneous layer. Figure 11 shows the relationship
between the density profile parameters for Models L and N.
For each value of 0<òN�2 considered (symbols), the
density profile is generated using Model N and then compared
with profiles generated by Model L to find which value of òL

produces the closest density profile (top left panel). We see
that òL<òN (consistent with Figure 4) and that the limit

2N  corresponds to òL≈1.4. The bottom panels of
Figure 11 show that for òL1.4, Model N has already
reached the upper limit of òN=2, so the density profile can
only be approximated by increasing the radius RN and
decreasing the density enhancement AN. We note that the
fact that Model L can describe a wider range of density
profiles (by varying ò alone) presents an additional practical
reason to favor the use of Model L in the analysis of coronal
loops, or at least as an initial guess. The smoother profiles
produced by Model N are likely to be more physically realistic
than the piecewise profiles of Model L. However, these small
differences are likely to be observationally undetectable (and,
indeed, are not seen for the data analyzed in this paper), so
Model L is generally more practical for the reasons discussed
above.

The resonant absorption rate is determined by the gradient of
the Alfvén speed around the resonance position (typically R).

The rate is known for Models L and N for the exponential
damping regime (whereas for the Gaussian damping regime, it
is currently only known for Model L). We may consider a
general form (e.g., Goossens et al. 2002; Roberts 2008; Soler
et al. 2014),

P

C
, 17

d


t

k
= ( )

where C=2/π for Model N and 4/π2 for Model L.

Accordingly, we see that if data cannot be used to distinguish

these two profiles, then there is an uncertainty of a factor of

2/π≈0.64 in the damping time τd that would affect the

results of seismological information subsequently derived

using this parameter. On the other hand, the density profile

parameters themselves also depend on the choice of density

profile shape, as we have shown. In particular, we find that

our value of ò for Model N is approximately 1.4 times larger

than that for Model L for the same observational data (see

Figure 4 and Table 1). The difference in the maximum value

of the density profile (which determines the density contrast

ratio) is negligible, so for a more appropriate comparison of

the damping rates, we can consider the factor C/ò rather than
C alone. For our observational data, using the MAP values

for ò, we obtain C/ò=4/(π2×0.9)≈0.45 for Model L and

2/(π×1.3)≈0.49 for Model N.
The systematic error expected to arise due to the unknown

density profile is therefore significantly overestimated when
considering the value of C alone and not including the
effectively different definition of ò. In our case, the difference

Table 2

Results of the Different Methods Presented in This Paper

Temporal Data Leg 1 Leg 2 Legs 1 and 2 Leg 1 Leg 2 Legs 1 and 2

Spatial Data L L L ✓ ✓ ✓

Section 4.1 4.1 5.1 5.2 5.2 5.2

Bayesian Analysis

Oscillation start time t0 (minutes) 4.3 0.3
0.1

-
+ 4.3 0.3

0.2
-
+ 4.3 0.2

0.1
-
+ 4.2 0.2

0.3
-
+ 4.3 0.3

0.2
-
+ 4.3 0.2

0.1
-
+

Initial Alfvén transit time TA0 (minutes) 4.9 0.3
0.7

-
+ 5.3 0.5

0.3
-
+ 5.4 0.7

0.1
-
+ 5.0 0.3

0.2
-
+ 5.0 0.2

0.3
-
+ 4.9 0.2

0.2
-
+

Final Alfvén transit time TA1 (minutes) 4.1 0.3
0.4

-
+ 4.2 0.4

0.1
-
+ 4.3 0.5

0.1
-
+ 4.0 0.2

0.1
-
+ 4.0 0.1

0.2
-
+ 4.0 0.1

0.1
-
+

Initial kink period Pk0 (minutes) 8.5 0.4
0.4

-
+ 8.4 0.4

0.4
-
+ 8.5 0.3

0.3
-
+ 8.4 0.4

0.5
-
+ 8.4 0.3

0.5
-
+ 8.3 0.2

0.4
-
+

Final kink period Pk1 (minutes) 6.8 0.2
0.2

-
+ 6.6 0.1

0.2
-
+ 6.7 0.1

0.1
-
+ 6.8 0.1

0.2
-
+ 6.7 0.2

0.1
-
+ 6.7 0.1

0.1
-
+

Gaussian damping time τg (minutes) 13.2 2.5
2.1

-
+ 11.2 4.4

1.8
-
+ 12.2 1.9

1.4
-
+ 13.8 1.5

1.5
-
+ 12.1 1.4

1.1
-
+ 12.9 1.3

0.7
-
+

Exponential damping time τd (minutes) 10.1 9.2
5.2

-
+ 11.0 8.9

3.1
-
+ 11.0 9.4

2.4
-
+ 9.2 1.3

1.2
-
+ 8.0 1.0

1.1
-
+ 8.6 1.0

0.9
-
+

Density contrast ratio ρ0/ρe >1.6 >1.8 >1.8 2.2 0.3
0.3

-
+ 2.4 0.3

0.5
-
+ 2.3 0.2

0.3
-
+

Inhomogeneous layer width ò >0.30 >0.27 >0.25 0.9 0.1
0.2

-
+ 0.9 0.2

0.2
-
+ 0.9 0.2

0.2
-
+

Kink mode amplitude A1 (Mm) 1.3 0.1
0.1

-
+ 1.4 0.1

0.1
-
+ 1.3 , 1.40.1

0.1
0.1
0.1

-
+

-
+ 1.3 0.1

0.1
-
+ 1.4 0.1

0.1
-
+ 1.3 , 1.30.1

0.1
0.1
0.1

-
+

-
+

Position error σy (Mm) 0.23 0.21 0.23, 0.21 0.23 0.21 0.23, 0.21

Intensity error σI (DN) 1.74 1.74 1.74

Additional Estimates

Kink period Pk (minutes) 8.4±0.3 8.4±0.4 8.4±0.3

Kink speed Ck (Mm s−1
) 1.7±0.2 1.7±0.2 1.8±0.2

Internal Alfvén speed CA0 (Mm s−1
) 1.5±0.2 1.5±0.2 1.5±0.2

External Alfvén speed CAe (Mm s−1
) 2.2±0.2 2.3±0.3 2.2±0.2

Magnetic field strength B0 (G) 11.4±1.2 11.8±1.3 11.6±1.2

Phase-mixing timescale τA (minutes) 2.9±1.2 2.6±1.0 2.8±1.1

Note. The oscillation start time t0 is measured relative to the start time of the analyzed data of 04:40 on 2011 February 10. Posterior summaries are given at the MAP

and uncertainties by the 95% credible interval. Additional estimates for an estimated loop length L=440±44 Mm and a plasma density of ne=10
15 m−3 are also

listed.
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between the observed loop having a sinusoidal rather than
linear density profile would contribute a factor of ≈0.92 (rather
than 2/π≈0.64), i.e., an uncertainty 10%.

The different range of density profiles produced by the
different models should be taken into account when consider-
ing parametric studies. For example, Soler et al. (2014)
reported that the error in the period of oscillation due to the
thin boundary (TB) approximation in the limit 2  is ≈45%
for Model L and ≈15% for Model N. This larger error for
Model L is consistent with that model producing a wider range

of density profiles than Model N. The error for Model L with
ò≈1.4 is comparable to that for Model N with ò≈2 (Figure1
of Soler et al. 2014). This smaller difference in the period of
oscillation when comparing appropriate values of ò is also
consistent with the kink mode being a collective oscillation
depending on the density-weighted average of the Alfvén
speed, rather than being sensitive to details of the transverse
structuring (e.g., Terradas et al. 2008b; Pascoe et al. 2011).

6.3. Exponential and Gaussian Damping Profiles

In this paper, we consider both spatial (forward modeling of
the EUV intensity profile) and temporal (damping rate of kink
oscillation) information to constrain the transverse density
profile of a coronal loop. For the seismological method, we use
the GDP given by Equation (2) as the most general
approximation for the damping of kink oscillations (accounting
for both the Gaussian and exponential damping regimes).
However, an important consideration of this study is that the
particular observational data do not allow us to identify the two
damping times (Figure 2), so we use the spatial information to
determine ò independently. Given our choice of density profile
(see Section 6.2), we can then determine the density contrast
ratio using the observed damping time and period of
oscillation. Since we are only using the seismological data to
determine the damping rate (i.e., not considering the shape of
the damping profile), the use of the GDP is not a necessary
component of our model. For example, we can use our method
of spatiotemporal analysis using only an exponential or

Figure 9. Time dependence of the transverse density profile parameters R (top left), ò (top right), and A (bottom left) as determined by forward modeling of the
transverse intensity profile. The symbols indicate the MAP values, and the shaded regions correspond to the 95% credible intervals. The bottom right panel shows the
corresponding variation in leg mass per unit length (normalized by its initial value).

Figure 10. Comparison of density profiles produced by Model L and Model N
for several values of ò and a density contrast ratio ρ0/ρe=2.
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Gaussian damping profile (with the appropriate definition of the
damping time). We note that for the exponential damping
profile, the method is not necessarily restricted to Model L, as it
(currently) is for the Gaussian damping profile. For example, τd
is also known for Model N.

Repeating our analysis as in Section 5.2 for an exponential
damping profile and a Gaussian damping profile also allows us
to compare the damping profile models directly using Bayes
factors (Equation (16)). Comparing the version of our method
using the Gaussian damping profile with the two versions using
the exponential damping profile gives us KGE=7.5 using
Model L and KGE=8.0 using Model N, corresponding to
strong evidence for the Gaussian version over both exponential
versions. The Bayesian evidence for the version using the GDP
is, in turn, stronger than that for the versions using the Gaussian

or exponential damping profiles alone; K=3.8 (GDP over
Gaussian), 11.2 (GDP over exponential with Model L), and 11.7
(GDP over exponential with Model N). We can therefore expect
the inversion based on the general or Gaussian damping profile
(the results of which are very similar) to be more appropriate for
our observational data than that based on the exponential
damping profile. The results of these additional models are
shown in Table 3 (the results for the spatiotemporal method
using the GDP are repeated from Table 2 for comparison).
We note that the versions of the method using the

exponential damping profile produce density contrast estimates
that are significantly lower than those using the Gaussian or
general damping profiles. On the other hand, the difference
between the density contrast estimated using the exponential
damping profile and Models L and N is <10%, consistent with

Figure 11. Relationship between density profile parameters ò, R, and A for Models L and N (indicated by the subscript). In the top panels, the symbols correspond to
parameter values found by fitting Model L to a density profile generated by Model N. In the bottom panels, Model N is fit to a density profile generated by Model L.
Shaded regions correspond to the 95% credible intervals for the model parameters.

Table 3

Comparison of Spatiotemporal Analysis Using GDP (Equation (2); see also Table 2) with Versions of the Method Using
the Gaussian or Exponential Damping Profiles

Temporal Data Legs 1 and 2 Legs 1 and 2 Legs 1 and 2 Legs 1 and 2

Damping Profile GDP Gaussian Exponential Exponential

Density Profile Model L Model L Model L Model N

Section 5.2 6.3 6.3 6.3

Oscillation start time t0 (minutes) 4.3 0.2
0.1

-
+ 4.3 0.2

0.2
-
+ 4.3 0.1

0.2
-
+ 4.3 0.1

0.1
-
+

Initial Alfvén transit time TA0 (minutes) 4.9 0.2
0.2

-
+ 4.9 0.2

0.2
-
+ 4.6 0.1

0.2
-
+ 4.7 0.2

0.2
-
+

Final Alfvén transit time TA1 (minutes) 4.0 0.1
0.1

-
+ 4.1 0.2

0.1
-
+ 3.7 0.1

0.1
-
+ 3.7 0.1

0.1
-
+

Density contrast ratio ρ0/ρe 2.3 0.2
0.3

-
+ 2.3 0.3

0.2
-
+ 1.5 0.1

0.2
-
+ 1.6 0.2

0.3
-
+

Inhomogeneous layer width ò 0.9 0.2
0.2

-
+ 0.8 0.1

0.3
-
+ 0.9 0.2

0.2
-
+ 1.3 0.3

0.3
-
+

Leg 1 kink mode amplitude A1 (Mm) 1.3 0.1
0.1

-
+ 1.3 0.1

0.1
-
+ 1.6 0.1

0.2
-
+ 1.7 0.2

0.1
-
+

Leg 2 kink mode amplitude A1 (Mm) 1.3 0.1
0.1

-
+ 1.3 0.1

0.1
-
+ 1.6 0.1

0.1
-
+ 1.7 0.2

0.1
-
+

Leg 1 position error σy (Mm) 0.23 0.23 0.24 0.24

Leg 2 position error σy (Mm) 0.21 0.21 0.21 0.21

Intensity error σI (DN) 1.74 1.74 1.74 1.77

Magnetic field strength B0 (G) 11.6±1.2 11.8±1.2 10.2±1.1 10.4±1.1

Phase-mixing timescale τA (minutes) 2.8±1.1 2.5±1.0 5.9±4.2 6.9±4.4

Note.In the case of the exponential damping profile, we consider transverse density profile Model N in addition to Model L, which is used in all other versions.
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the discussion in Section 6.2. The choice of kink oscillation
damping profile therefore has a more significant effect on the
seismologically inferred density profile than the choice of using
Model L or Model N. The methods using the exponential
damping profile also produce ≈30% higher estimates for the
initial amplitude of the kink oscillation A1. The choice of
damping profile can therefore influence the expected role of
any amplitude-dependent behavior (e.g., Ofman et al. 1994;
Goddard & Nakariakov 2016), such as nonlinear effects or
instabilities. The estimate of the magnetic field strength is
weakly sensitive to the density contrast ratio, so the exponential
damping profile leads to an underestimate of ≈10% compared
with the GDP. On the other hand, the phase-mixing timescale
is more sensitive, and the exponential damping profile over-
estimates it by ∼100% compared with the GDP.

In addition to the Bayesian evidence supporting the Gaussian
damping profile over the exponential damping profile, we can
also consider the consistency of the estimates for the density
contrasts with the damping profile on which they are based
(e.g., the flowchart in Figure22 of Pascoe et al. 2013). For a
low-density contrast ρ0/ρe≈1.5, implied by the analysis using
the exponential profile, the GDP (Equation (2)) estimates that
the switch from Gaussian to exponential should occur after
approximately five cycles. Since our observational data only
contain approximately four cycles, the exponential regime
would not be appropriate for this density contrast. On the other
hand, the analysis using a Gaussian damping profile suggests
ρ0/ρe≈2.4, for which the switch would occur after approxi-
mately 2.4 cycles, so we expect the Gaussian damping profile
to apply for the majority of the observational data.

Both the Bayesian evidence for the Gaussian damping
profile over the exponential one and the self-consistency of the
Gaussian inversion compared with the inconsistency of the
exponential inversion suggest the Gaussian damping profile is
the most appropriate for these observational data. In the next
section, we also compare these inversions with the results of
numerical simulations.

6.4. Applicability of TB Approximation

A potential limitation on the accuracy of current seismolo-
gical techniques is the use of the TB approximation. For the
data analyzed in this paper, ò is well constrained by the
intensity profile, and the value of the density contrast ratio is
determined using seismological information and the analytical
expressions for τg and/or τd, which are based on the TB
approximation. Since ò is well constrained by our forward-
modeling method (independent of the TB approximation), we
may use our seismological estimate as a starting point to
perform a parametric study for the density contrast ratio and
check the accuracy of our inversion.

The effect of wide inhomogeneous layers has been
investigated for the exponential damping regime by Van
Doorsselaere et al. (2004; for Model N) and Soler et al. (2014;
for Models L, N, and P). These studies demonstrate
nonmonotonic behavior for the difference between the
numerically calculated damping time and their corresponding
analytical (TB approximation) values. The error in the damping
time typically increases with ò until ò∼0.5 before decreasing
to a minimum for ò∼1 and then increasing again for larger
values of ò. The parametric study by Pascoe et al. (2013)
considered both the Gaussian and exponential damping
regimes (Model L) and demonstrated that the TB

approximation remained reasonable for ò0.6 for loops with
low-density contrasts (ρ0/ρe∼2) so long as the appropriate
damping regime was considered. Ruderman & Terradas (2013)
found that the analytical expression for τd underestimated the
numerically calculated value and that for their largest value of
ò=0.3, the difference was ≈18%.
We perform 2D numerical simulations in a cylindrical

geometry using a Lax–Wendroff scheme to solve the linear
MHD equations as in Hood et al. (2013) and Pascoe et al.
(2013). The simulations have a resolution of 2400×3000 in
the radial (r) and longitudinal (z) directions, respectively. The
numerical domain has a size r=[0, 6R], and in z, it scales with
the choice of density contrast ratio to accommodate eight
cycles of the kink oscillation (note that the pixel size is much
smaller in the radial direction to resolve the resonant absorption
in the inhomogeneous layer). The kink oscillation damping
profile is determined using the radial component of velocity vr
at r=0.
Figure 12 shows the analysis of these numerical results

(symbols) and the observed oscillation (color contour) using
either an exponential (top panel) or Gaussian (bottom panel)
damping profile (see also Section 6.3). For low-density
contrasts, ρ0/ρe∼2, the Gaussian damping profile provides a

Figure 12. Analysis of numerical and observational data using an exponential
(top) or Gaussian (bottom) damping profile, where the signal qualities are
Qd,g=τd,g/Pk. Numerical simulations (symbols) for Model L with ò=0.9 are
performed for different density contrast ratios ρ0/ρe. The gray shaded regions
denote the 95% credible intervals for Qd,g. The color contour represents the
analysis of the observational data, with the red error bars defined by the MAP
values and 95% credible intervals. The dashed curves correspond to the
analytical relationships based on the TB approximation and the MAP value
for ò.
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much better description of the damping behavior than the
exponential damping profile. In terms of the GDP
(Equation (2)), the switch from Gaussian to exponential occurs
after approximately three cycles for ρ0/ρe=2, which repre-
sents the majority of our observational data (approximately four
cycles detected). The GDP and estimate for the switch are
based on the TB approximation, while Hood et al. (2013) and
Ruderman & Terradas (2013) found that the Gaussian damping
profile applies for longer for larger values of ò.

The dashed curves in Figure 12 correspond to the TB
approximations for the signal quality Q=τ/P. Both curves
underestimate the numerically calculated values. Accordingly,
we expect that these expressions will underestimate the density
contrast for a given Q and ò. Our numerical simulations most
accurately reproduce the observed damping rate for
ρ0/ρe≈2.8. The TB approximation using a Gaussian damping
profile therefore underestimates this value by ≈18%, whereas
using the exponential damping profile underestimates it
by ≈46%.

The Gaussian damping profile therefore provides a sig-
nificantly better estimate of the density contrast for low-density
contrast loops. We note that the systematic error arising due to
the use of the exponential damping profile rather than the
Gaussian damping profile is greater than both the error due to
the TB approximation and the possible error due to our
assumption of Model L (as compared with Model N in
Sections 6.2 and 6.3).

Figure 13 shows a comparison of the numerical results
(colored curves) with the observational data for the oscillation
of Legs 1 and 2 (circles). To allow this comparison, the
observational data points have been detrended and normalized.
The bottom panel shows the variation of the mean position
error χ2 with density contrast ratio and has a minimum for
ρ0/ρe≈2.8, consistent with Figure 12. We note that for our
numerical calculations with ò=0.9, the thin tube approx-
imation Ck=λ/P remains accurate to within 4%, and its
dependence on the density contrast ratio implies that this
difference arises due to geometrical dispersion (e.g., Figure18
of Pascoe et al. 2013) rather than the influence of the finite
inhomogeneous layer.

7. Conclusions

The method of multi-model Bayesian inference we have
developed for this work allows multiple data sources to be used
simultaneously to constrain the model parameters. For the
particular application in this paper, we considered the
transverse density profile of a coronal loop that performs a
flare-induced kink oscillation. Density profile parameters
may be estimated independently, either by forward modeling
of the transverse intensity profile or seismologically using
the damping profile of the kink oscillation. For both of these
methods, we use a transverse density profile with a finite
transition layer, the size of which is described by the parameter
ò. Since this same parameter is used in both models, we
produced accurate constraints of the density profile parameters
using both models simultaneously. This is despite each model
producing poor constraints for this particular loop when applied
to the same observational data individually. Specifically, the
loop density contrast ρ0/ρe cannot be obtained by our forward-
modeling method due to the unknown LOS depth contributing
to the intensity of EUV emission in an optically thin plasma
such as the solar corona. The density contrast may be estimated
seismologically using the kink mode damping profile. How-
ever, for coronal loops with low-density contrast, such as the
one in this paper, the seismological inversion typically
produces a weak constraint on ò due to the asymptotic behavior
(e.g., Figure 2). On the other hand, this asymptotic behavior
may be used to calculate lower limits for ò and ρ0/ρe given by
Equations (14) and (15).
Coronal loops typically have minor radii of a few Mm, so the

use of the transverse intensity profile to infer the density profile
is limited by the spatial resolution of modern EUV instruments.
However, when used in combination with seismological
estimates based on the damping of kink oscillations, the
intensity profile may still provide a useful upper limit to the
width of the transition layer ò. This is particularly useful for
coronal loops with lower-density contrasts, for which the
seismological inversion typically places a weak constraint on ò,
e.g., Figure 2. Since the loop we analyze is particularly wide
(R≈7Mm), it is well resolved by SDO/AIA, so the forward-
modeling component of the model produces a narrow
constraint on ò. This narrow constraint on ò feeds into the
seismological method to narrowly constrain the density
contrast ratio.
Another oscillating loop (Event 32 Loop 1 in Goddard

et al. 2016) has previously also been studied using the
seismological (Pascoe et al. 2017a) and forward-modeling
(Pascoe et al. 2017b) methods separately. The two approaches
produced consistent estimates for ò, corresponding to the

Figure 13. Comparison of damped kink oscillation signals (top panel) from
numerical simulations (colored curves) and observational data (circles) for
different values of the loop density contrast ratio ρ0/ρe. The bottom panel
shows the values of χ2, which is minimum for ρ0/ρe=2.8.
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additional assumption of an isothermal loop used in forward
modeling being a reasonable one. However, owing to the high-

quality time series for that oscillation, the seismological

estimate of 0.49 0.12
0.23 = -
+ was constrained comparably well as

by forward modeling 0.59 0.15
0.14

-
+ . The method used in this paper

would therefore produce no significant improvement over

previous results in that case.
The particular model used in this paper is therefore most

useful for wide loops with low-density contrasts, although the

general method may be applied to any observations for which
multiple data sources complement each other when they can be

described by a single, self-consistent physical model. The

model may also be extended to include additional sources of
information, such as modeling the modulation of radio

emission or Doppler shifts.
Our method is based on the simultaneous use of spatial (EUV

intensity profile across the oscillating loop) and temporal (kink

oscillation damping profile) information. We demonstrated
several variations of our method depending on the choice

of models. For the kink oscillation, we considered a Gaussian

or exponential damping profile (Section 6.3) in addition to
the GDP, which includes both regimes (Section 5.2). For

consistency, we use the same model for both the spatial and
temporal components of our technique when applied simulta-

neously. This limits us to Model L for the general or Gaussian

damping profiles, whereas for the exponential damping profile,
we considered both Model L and Model N. On the other hand,

we demonstrated that this choice of density model has a small

effect on the inferred density profile (Section 6.2). Furthermore,
for this particular observation, we found that Model L best

described our observational data (Section 4.2).
Our Bayesian analysis revealed very strong evidence to

prefer the results based on the general/Gaussian damping

profiles over those based on the exponential damping profile
(which produced a significantly lower estimate of the density

contrast ratio and higher estimate of the oscillation amplitude).

This was also supported by our numerical simulations, which
allowed us to estimate the effect of the wide inhomogeneous

layer (ò∼1), whereas the seismological estimates are based on

the TB approximation. For the general/Gaussian damping
profile, the density contrast was underestimated by ≈18%,

compared with an underestimate of ≈46% using the exponen-

tial damping profile. Ensuring that the most appropriate
damping profile is used is therefore the largest potential source

of error in the seismological use of damped kink oscillations,

compared with the effects of the TB approximation and choice
of density profile model. We have not quantified the influence

of nonlinear effects, though the study by Magyar & Van

Doorsselaere (2016) suggests the effect of KHI is weak for
ò0.5. The delayed onset of KHI for loops with wider

inhomogeneous layers is also evident in simulations analyzed

by Goddard et al. (2018) and Pagano et al. (2018).
Future observations for which ò is well constrained by spatial

information may be analyzed according to the procedure in this
paper, i.e., using the seismological estimate as a starting point

for a localized numerical parametric study to best determine the

loop parameters. We note that this may be assisted by expecting
as a simple initial estimate that the TB approximation typically

underestimates the density contrast by 20% (see also Van

Doorsselaere et al. 2004; Pascoe et al. 2013; Ruderman &
Terradas 2013; Soler et al. 2014; Pagano et al. 2018).

An interesting component of this study is our tracking of the
two overlapping legs (e.g., Figure 1). This may be considered
as a first step toward future work that considers multi-threaded
structures. Furthermore, we note that the methods discussed in
this paper only used data from a single slit across a loop. It
could be extended further to consider multiple slits, for which
spatial analysis could reveal longitudinal structuring (e.g.,
expansion or stratification), and temporal analysis could reveal
the spatial dependence of different harmonics. Additionally, the
use of multiple bandpasses (forward modeled by a code such as
FOMO; Van Doorsselaere et al. 2016) could allow the
isothermal approximation to be relaxed and provide additional
temperature and density information or multi-mode analysis to
be considered (e.g., sausage modes observed in the modulation
of radio emission).
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