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Abstract

Background: Few studies have used spatially resolved ambient particulate matter with an aerodynamic diameter

of <10 μm (PM10) to examine the impact of PM10 on ischemic heart disease (IHD) mortality in China. The aim of our

study is to evaluate the short-term effects of PM10 concentrations on IHD mortality by means of spatiotemporal

analysis approach.

Methods: We collected daily data on air pollution, weather conditions and IHD mortality in Beijing, China during

2008 and 2009. Ordinary kriging (OK) was used to interpolate daily PM10 concentrations at the centroid of 287

township-level areas based on 27 monitoring sites covering the whole city. A generalized additive mixed model

was used to estimate quantitatively the impact of spatially resolved PM10 on the IHD mortality. The co-effects of the

seasons, gender and age were studied in a stratified analysis. Generalized additive model was used to evaluate the

effects of averaged PM10 concentration as well.

Results: The averaged spatially resolved PM10 concentration at 287 township-level areas was 120.3 ± 78.1 μg/m3.

Ambient PM10 concentration was associated with IHD mortality in spatiotemporal analysis and the strongest effects

were identified for the 2-day average. A 10 μg/m3 increase in PM10 was associated with an increase of 0.33% (95%

confidence intervals: 0.13%, 0.52%) in daily IHD mortality. The effect estimates using spatially resolved PM10 were larger

than that using averaged PM10. The seasonal stratification analysis showed that PM10 had the statistically stronger

effects on IHD mortality in summer than that in the other seasons. Males and older people demonstrated the larger

response to PM10 exposure.

Conclusions: Our results suggest that short-term exposure to particulate air pollution is associated with increased IHD

mortality. Spatial variation should be considered for assessing the impacts of particulate air pollution on mortality.

Keywords: Spatiotemporal analysis, Ischemic heart disease, Particulate matter, Ordinary kriging, Generalized additive

mixed model

Background
Ischemic heart disease (IHD) is one of the most common

causes of death worldwide, causing 7,249,000 deaths in

2008, 12.7% of total global mortality [1]. According to

Global Burden of Disease Study in 2010, the number of

ischemic heart disease deaths rose from 450.3 million in

1990 to 948.7 million in 2010, ranking the second leading

causes of death in China in 2010 [2]. A number of risk fac-

tors for ischemic heart disease have been suggested, such

as age, gender, hypertension, obesity and smoking [1-3].

Some studies have indicated that exposure to air pollu-

tion was associated with IHD mortality [4-6], morbidity

[7], and hospital admissions [8,9]. Studies on the impacts

of ambient particles less than 10 μm in aerodynamic

diameter (PM10) on health have also been performed in

China, but most have used non-spatial data of daily PM10,

e.g. monitoring values from one station or the average

concentrations of a limited number of monitor stations, to
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estimate the association between PM10 and IHD mortality

[10-12]. This may result in inaccuracies, specifically expos-

ure misclassification, as PM10 may vary over a specific

area due to expected differences in PM10 levels by the im-

pact of local sources and meteorology. It is not clear how

this uncertainty would impact risk estimations, either to-

ward overestimation or underestimation, but it does make

such evaluations much more difficult [13-15].

Various techniques (e.g. inverse distance weighting, land

use regression analysis and geo-statistical methods such as

kriging) have been developed to interpolate air pollution

values at the locations where data are unavailable using

data collected at multiple sites [16,17]. Some studies have

applied the interpolation methods to examine the health

effects of air pollution in studies [18,19]. There also has

been evidence that the methods used to generate esti-

mates of exposure to air pollution could affect the health

risk estimates in epidemiological studies [20,21].

Studies have applied interpolation methods to estimate

the air pollutant concentrations in China [22,23]. How-

ever, there is no study that has used spatially resolved

PM10 concentrations to quantify the impact of PM10 on

IHD mortality in China. The goal of this research is to

apply a generalized additive mixed model to examine the

association between spatially resolved PM10 concentra-

tions and IHD mortality in Beijing.

Methods
Study area

Beijing is the capital of China, and located in the north-

ern tip of the roughly triangular North China Plain.

It has an area of 16,410 square kilometers, with 14

urban and suburban administrative districts (Dongcheng,

Xicheng, Chaoyang, Haidian, Changping, Fengtai,

Shijingshan, Mentougou, Daxing, Fangshan, Tongzhou,

Shunyi, Huairou and Pinggu District) and two rural coun-

ties (Minyun and Yanqing County) which included 304

township-level areas. The population is 1.96 million (The

Sixth National Population Census, Beijing, 2010). For

townships, the size ranges from 1 to 390 square kilometers

and the population ranges from 2000 to 359400 (The

Sixth National Population Census, Beijing, 2010). It has a

dry, monsoon-influenced humid continental climate, char-

acterized by hot, humid summers and cold, windy, dry

winters. Average annual temperature and precipitation

was 14.0°C and 483.9 mm, respectively. Ambient air pollu-

tion is seriously elevated along with the increasing of fuel

consumption (including vehicles, power plants and indus-

tries) and construction projects in the city.

Data collection

Daily numbers of IHD deaths between 1 January 2008 and

31 December 2009 were obtained from China Centers for

Disease Control and Prevention (China CDC) for 287

township-level areas. The IHD death data were unavail-

able in Minyun and Yanqing Counties. The deaths at each

area were residents of the corresponding area. IHD was

defined according to the International Classification of

Diseases, 10th version (ICD-10:I20-I25). The data were

classified by gender (female and male) and age (<65

and ≥65 years).

PM10 data of 27 ambient air quality monitoring sites

in Beijing city were collected from the Beijing Municipal

Environmental Protection Bureau (Figure 1). The miss-

ing rate during the study period was from 0.4% to 6.7%.

Imputation will produce error so we did not fill the

missing value before interpolating. For SO2/NO2, only a

single daily average concentration for the whole city was

available from the Beijing Public Net for Environmental

Protection. To control for the effect of weather conditions

on IHD mortality, daily meteorological data on mean

temperature and relative humidity from one station (lo-

cated at N39°48′ E116°28′) were obtained from China

Meteorological Data Sharing Service System.

Data analysis

Spatial interpolation for PM10 concentration

We selected two methods, inverse distance weighting

(IDW) and ordinary kriging (OK), to interpolate the

daily PM10 concentrations from the values of 27 moni-

toring sites to the centroids of the 304 township-level

areas across Beijing city. IDW and kriging are the most

common interpolation methods. About the performance

of IDW and kriging, the findings have been mixed [24].

The IDW interpolation method is to estimate the

value of a given location by a weighted average of data at

nearby monitors, where interpolation weights for each

monitor’s value are computed as a function of distance

between observed sample sites and the site to be pre-

dicted [16]. We used λi = 1/di
2 as a weighting factor for

the monitor site i, where di is the distance between the

monitor site i and the point to be predicted (i.e., the

centroid of each township).

The kriging method is a geo-statistical technique and

also a weighted combination of monitor values that uses

spatial autocorrelation among data to determine the

weights [16]. OK is the most common kriging method.

It assumes a constant but unknown mean, which allows

construction of an unbiased estimator that does not re-

quire prior knowledge of the stationary mean of the ob-

served values [23]. In this study, we estimated the data

at the centroid of each township using OK.

To test the validity of the interpolation methods and

provide a more quantitative comparison of the two

models, we conducted “leave-one-out cross-validation”

(LOOCV). This method involves using a single monitor

values as the validation data and the remaining monitor

values as the training data. This is then repeated such
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that each monitor is used once as the validation data.

The difference (including the root-mean-square error

(RMSE) and the mean) and the correlation between the

observed and predicted values were calculated as the

measure indices of LOOCV.

Modeling the association between PM10 and IHD mortality

A generalized addictive mixed model (GAMM) was ap-

plied to analyze the effects of PM10 on IHD mortality,

which uses additive nonparametric functions to formu-

late covariate effects and adds random effects to the

additive predictor accounting for over-dispersion and

correlation [25,26]. We put the township-level IHD

deaths as the dependent variable and the corresponding

township-level PM10 estimates as the main independent

variable in GAMM. Penalized Quasi-likelihood method

[27,28], accounting for the over-dispersion of daily death

counts, was used in GAMM framework to model the

natural logarithm of the expected daily death counts as a

function of the predictor variables. A random area-level

intercept in GAMM can be used to model those areas

with higher death rates [29,30].

First, the basic model was built excluding the air pollu-

tion variables. The penalized spline functions of time

and weather variables for accommodating nonlinear re-

lationships of mortality with these variables were incor-

porated. The partial autocorrelation function was used

to guide the selection of degrees of freedom (df) for time

trend [31]. We used squared Pearson scaled residuals to

compare the fit of the models [30]. In this way, a penal-

ized spline with seven degrees of freedom per year for

time trend, which had the smallest sum of the absolute

partial autocorrelation values over a 30-day lag period,

was used to control for the seasonal and long-term

trends. Because temperature’s effects on health may be

lagged for more than 10 days [32,33], the 14-day moving

average temperature was controlled in our model [34,35].

The present-day relative humidity was incorporated in the

models because no evidence of confounding by this vari-

able was shown in air pollution epidemiology [35]. Three

degrees of freedom for temperature and relative humidity

Figure 1 The 27 monitoring stations for PM10 in Beijing.

Xu et al. Environmental Health 2014, 13:109 Page 3 of 12

http://www.ehjournal.net/content/13/1/109



were chosen based on the model fitting [36]. The day of

the week (DOW) and public holiday (PH) was adjusted as

a categorical variable in the basic model. After the basic

model was established, the pollutant variables were intro-

duced. The final model was:

log E Yi;t

� �� �

¼ α þ βPM10i;t þ S Tempt; 3ð Þ
þ S RHt; 3ð Þ þ S t; 7 � Yearsð Þ
þ λDOWt þ δPHt þ μZi

Where i is the township (township = 1, ……, 287); t is

the day; Yi,t is the number of IHD deaths in township i

on day t. α is the intercept. PM10i,t is the daily PM10

concentration in township i on day t. S(.) is a penalized

spline; Tempt is the mean temperature on day t; RHt is

relative humidity on day t; a spline with 3 degrees of

freedom (df) was used for temperature and relative hu-

midity. A spline with 7 degrees of freedom per year for

time was used to control for season and long-term

trend. DOWt is the categorical variable day of the week

on day t. PHt is the indicator of public holiday on day t.

Zi is a random intercept for township i.

In order to compare the effects of spatial resolved

PM10 and averaged PM10 of 27 monitoring stations in

Beijing, we also used GAMM and generalized additive

model (GAM) to examine the impacts of averaged PM10.

The same confounders as GAMM were adjusted in

GAM as follows:

log E Ytð Þð Þ ¼ α þ βPM10t þ S Tempt; 3ð Þ
þ S RHt; 3ð Þ þ S t; 7 � Yearsð Þ
þ λDOWt þ δPHt

We next analyzed the associations between PM10 and

IHD mortality with different lag structures, i.e. single-

day lags (from lag 0 to lag 5) and multiday lags (lag 0–1

to 0–5). In single-day lag models, lag 0 referred to the

current-day air pollutants concentration, and lag 1 cor-

responded to the previous-day concentration; while in

multiday lag models, lag 0–1 meant the 2-day moving

average concentration of current day and the previous

day.

Single and multiple air pollutant models were also fit-

ted to examine the effects of PM10 on IHD mortality in

GAMM. In the single-pollutant model, PM10 was put

alone in the model; in the two-pollutant models, SO2

(lag0-1) or NO2 (lag0-1)) were jointly included. SO2 or

NO2 at lag 0–1 was controlled because this lag was

shown to be more strongly associated with health effects

[37,38].

Stratified analyses by gender, age and season also were

conducted. For season—spring, summer, autumn and win-

ter are defined as March–May, June–August, September–

November and December–February, respectively. The Z

test was used to detect statistically differences between ef-

fect estimates from stratified analyses [39].

Sensitivity analyses were conducted to check the im-

pacts of PM10 on IHD mortality using the different de-

grees of freedom (4–9) for time trend, temperature (4–6)

and relative humidity (4–6) as well as controlling 14-day

moving average relative humidity in the model. All the

sensitivity analyses were done only for the whole

population.

All the data analysis was performed in statistical soft-

ware R version 3.0.1 (R Development Core Team, 2013).

The “gstat” package was used to interpolate spatial

PM10. The “mgcv” package was used to fit GAMM and

GAM. All statistical tests were two-sided and P-values

with less than 0.05 were considered statistically signifi-

cant. The results are presented as the percent change

and 95% confidence intervals (95%CIs) in daily IHD

mortality per 10-μg/m3 increase in PM10 concentrations.

Results
Table 1 showed the descriptive statistics for IHD deaths,

air pollutants and weather data in Beijing during the

study period. There were a total of 26,653 IHD deaths

(14,240 males and 12,413 females) from Jan 1 2008 to

Dec 31 2009. The average daily deaths of IHD were

about 40, with the most occurring in the winter months

and the least in the summer, of which 17.7% were

for <65 years old and 82.3% for ≥ 65 years old.

The average temperature and relative humidity were

13.4 ± 11.1°C and 51.7 ± 19.9% during the study period.

The mean values of SO2 and NO2 were 36.0 μg/m3 and

52.2 μg/m3, respectively. The air pollution levels varied

across seasons. The mean daily SO2 level was higher in

winter and spring than in autumn and summer while

the mean daily NO2 level was higher in winter and au-

tumn than in spring and summer.

In summary, the mean daily PM10 concentrations were

120.8 ± 81.6 μg/m3. There were higher PM10 concentra-

tions in spring and winter than in autumn and summer.

At 27 monitoring stations, the daily means of PM10 ranged

from 72.6 μg/m3 to 144.9 μg/m3; 67.9% ~25.7% days had

higher PM10 level than the China ambient air quality

standard level-II (150 μg/m3) (Additional file 1: Table S1).

The correlations in daily PM10 concentrations between

stations were strong (Additional file 1: Table S2).

To estimate PM10 concentration more precisely, we

adopted “leave-one-out” cross-validations to provide

a more quantitative comparison of the interpolation

methods (Additional file 1: Table S3). Every index of

cross-validations indicated OK gave more accurate

spatial PM10 estimates than IDW. The estimated PM10

using OK were strongly correlated with observed PM10,

with the correlation coefficient ranging from 0.90 to
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0.99 (P < 0.01). Generally, the differences between ob-

served and spatially resolved PM10 were small.

The averaged spatially resolved PM10 concentration at

287 township-level areas was 120.3 ± 78.1 μg/m3, follow-

ing the same trend in seasons as the observed PM10

levels. During the study period, the average daily PM10

concentration in the south of Beijing was higher than

that in the north of Beijing (Figure 2).

The Spearman correlations between air pollutants and

meteorological variables during the whole study were

Table 1 Summary statistics for PM10, spatially resolved PM10, SO2, NO2, daily mean temperature, daily mean relative

humidity and daily IHD death counts in Beijing between 2008 and 2009

Season Min 25% Median 75% Max Mean SD

PM10(μg/m
3)*a Spring 7.0 80.0 124.0 184.0 600.0 144.5 96.3

Summer 5.0 64.0 98.0 134.0 463.2 101.4 52.2

Autumn 7.0 54.0 94.0 148.0 553.0 110.1 75.9

Winter 7.0 62.0 108.0 170.0 600.0 127.7 88.7

Overall 5.0 64.0 104.0 150.0 600.0 120.8 81.6

Spatially resolved PM10(μg/m
3)b Spring 13.1 84.9 125.4 186.7 593.1 147.6 93.4

Summer 17.3 69.0 98.8 1338 432.0 103.7 50.4

Autumn 11.3 61.3 99.1 150.8 489.9 114.9 75.1

Winter 13.2 61.6 96.9 144.4 600.0 114.9 78.8

Overall 11.3 68.0 104.2 150.7 600.0 120.3 78.1

SO2(μg/m
3) Spring 6 14.0 25.0 39.8 138 30.7 22.7

Summer 6 8.0 11.0 14.0 44 12.5 6.7

Autumn 6 12.0 16.0 29.0 136 24.9 21.8

Winter 10 39.3 72.0 102.0 202 75.7 42.3

Overall 6 12.0 21.0 46.0 202 36.0 35.6

NO2(μg/m
3) Spring 16 41.6 49.6 59.2 152 51.6 18.4

Summer 14.4 28.8 40.0 44.8 62.4 37.9 11.0

Autumn 19.2 40.0 52.8 67.2 142.4 58.2 26.6

Winter 9.6 40.0 59.2 80.6 140.8 60.6 25.9

Overall 9.6 36.8 48.0 60.8 152 52.2 23.2

T(°C) Spring −0.1 10.0 15.6 20.6 26.8 15.2 6.5

Summer 17.5 24.3 26.0 28.0 31.6 26.0 2.7

Autumn −2 7.1 15.1 19.9 25.4 13.4 7.6

Winter −9.4 −3.5 −1.5 0.5 9.4 −1.3 3.4

Overall −9.4 2.3 15.4 23.55 31.6 13.4 11.1

RH(%) Spring 15 30.0 44.0 56.0 95 44.8 18.2

Summer 19 57.0 68.0 76.0 90 64.8 15.5

Autumn 19 44.0 60.5 71.0 88 57.2 18.0

Winter 11 24.0 38.0 53.0 82 39.8 17.4

Overall 11 35 53 68 95 51.7 19.9

IHD(N) Spring 20 32.8 37 42 57 37.3 7.3

Summer 19 28 32 37 49 32.5 6.4

Autumn 18 34 40 46 67 41.0 9.8

Winter 29 43 49 55 75 49.1 8.4

Overall 18 33 39 46 75 39.9 10.1

Note: PM10: Particulate matter with an aerodynamic diameter of <10 μm; SO2: sulfur dioxide; NO2: nitrogen dioxide; T: Temperature; RH: Relative humidity;

IHD: Ischemic heart disease; N: Number of death.

*The maximum limit of detection for PM10 concentration is 600 μg/m3.
aRepresenting the average of the 27 monitoring stations.
bRepresenting the average of the 287 townships where health data was available.
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presented (Additional file 1: Table S4). PM10 was posi-

tively associated with other air pollutants and meteoro-

logical variables. The correlation between PM10 and

NO2 (r = 0.55) was stronger than that between PM10 and

SO2 (r = 0.43).

Figure 3 shows the association between PM10 and IHD

mortality using spatially resolved PM10 concentrations.

We observed statistically significant associations of daily

IHD mortality with PM10 on the current day (lag 0), the

previous day (lag 1), the moving average 2 days (lag 0–1)

and the moving average 3 days (lag 0–2). We estimated an

increase of 0.26% (95% CI: 0.09%, 0.43%), 0.23% (95% CI:

0.06%, 0.39%), 0.33% (95% CI: 0.13%, 0.52%) and 0.26%

(95% CI: 0.04%, 0.47%) in IHD mortality associated with a

10-μg/m3 increase in PM10 at lag 0, lag 1, lag 0–1 and lag

0–2, respectively. The largest effects was observed for

2-day average.

For the effects of averaged PM10 on IHD mortality, we

also observed the largest effects at lag 0–1 using GAMM

and GAM. However, the effect estimates were smaller

and the confidence intervals were larger than those

using spatially resolved PM10 (Figure 3).

In the two-pollutant model, the association of PM10

with IHD mortality was seen to be reduced at all lag pat-

terns after adjustment for SO2 or NO2 (Figure 4), but

still remained significant at lag 0–1 day.

The associations between PM10 and IHD mortality

differed by season (Table 2). The effects of PM10 on

IHD mortality were the strongest in summer, with a

10-μg/m3 increase associated with a 0.83% (95% CI:

Figure 2 The averaged spatially resolved PM10 concentrations at 304 towns in Beijing during 2008–2009.
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0.31%, 1.35%), 0.88% (95% CI: 0.31%, 1.45%) increase of

IHD mortality at lag 0–1 and lag 0–2 days, respectively.

The differences of effect estimates between summer

and spring as well as between summer and winter were

statistically significant.

The association of PM10 with IHD mortality also var-

ied by gender and age group (Figures 5 and 6). The lar-

gest effects of PM10 were observed on the current day for

females and at lag 0–1 for males. The effect estimates of

PM10 among females were higher than those among

Figure 3 Percentage increase of IHD mortality associated with a 10-μg/m3 increase in PM10 concentration in Beijing, China. Note: GAM:

Estimated effects in GAM using averaged PM10; GAMM_Mean: Estimated effects in GAMM using averaged PM10; GAMM_Estimates: Estimated

effects in GAMM using spatially resolved PM10.

Figure 4 Percent increase in IHD mortality associated with a 10-μg/m3 increase in PM10 concentrations using the single- and two-pollutant

models in GAMM.
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males on the current day while the effect estimates of

PM10 among males were higher than those among females

at lag 1 day and lag 0–1 days. However, the between-

gender differences were not statistically significant. We

observed the effect estimates among people aged ≥65 years

were significant and approximately 3 times higher than

those aged < 65 years at lag 0–1, but the differences of ef-

fect estimates between age groups were not statistically

significant.

Sensitivity analysis was conducted to check our findings.

Changing the degrees of freedom for time, temperature

and relative humidity did not substantially affect the asso-

ciation of PM10 with IHD mortality. The effects estimates

were hardly changed when 14-day moving average relative

humidity was controlled in our model. These results sug-

gested that our findings are statistically robust.

Discussion
We found that there were statistically significant associa-

tions between spatially resolved estimated PM10 mass

concentration and increased risk of IHD death of the

exposed population in Beijing, China. To our knowledge,

it is the first time to use the spatiotemporal analysis

method to examine the acute effects of ambient PM10

on IHD mortality, and also the first study to show spatial

variation of ambient PM10 level in township-level of

Beijing. We also examined whether the effect estimates

varied by age, gender and season.

Studies [40,41] have shown that the concentrations of

air pollutants varied spatially across a specific area.

Capturing the spatial variation using spatial modeling

methods have been used to estimate air pollutants values

from multiple monitor stations to the whole study region

or exposure at the individual level. However, there was no

consistent conclusions on which method was the best. Air

pollution exposure estimates using spatial methods are af-

fected by several factors, including the density and loca-

tion of monitors and the available variables affecting air

pollutants concentrations. Firstly, governmental monitor

stations usually are placed in urban region, while fewer

monitors are available in rural areas. This may result in

misestimating the exposure in rural areas when using the

values from nearby urban areas. Secondly, industrial and

traffic emissions that may be more important in the urban

areas, land use patterns and meteorological factors can in-

fluence the spatial and temporal distribution of air pollut-

ants. Some models, such as land use regression model

(LUR) [24,42] and generalized addictive mix model

(GAMM) [43-45] allowing for those variables, have been

utilized to estimate the air pollutants exposure. Studies

showed LUR or GAMM performed better than the con-

ventional spatial interpolation methods (inverse distance

weighting, nearest neighbor method or kriging) [43-47].

Those variables were unavailable in our study, so we are

left only to estimate PM10 using the simple spatial

interpolation methods. We found that the OK produced

more accurate and less biased estimates than inverse dis-

tance weighting based on cross-validation results; there-

fore, we applied OK to interpolate PM10 concentrations

over each township in Beijing.

Particulate matter may trigger ischemic heart disease

through several possible mechanisms, including increasing

inflammation [48], abnormal regulation of cardiac auto-

nomic system [49], increasing blood viscosity [50] and

vasoconstrictor such as endothelins [51]. Previous studies

have reported inconsistent association between PM10 and

ischemic heart disease mortality [10,11,52]. In our ana-

lysis, the largest effect was observed for 2-day average,

with a 0.33% (95% CI: 0.13%, 0.52%) increase of IHD mor-

tality per 10-μg/m3 increase of 2-day moving average

PM10. The magnitude of our estimates was smaller than

previous findings [10,11] . For example, Li et al. [11] found

IHD mortality increased by 0.53% (95% CI: 0.30%, 0.84%)

for a 10 μg/m3 increment PM10 on the same day in

Tianjin. However, in Netherlands, Hoek et al. [52] did

Table 2 Percentage increase in IHD mortality associated

with a 10-μg/m3 increase in PM10 concentrations by four

seasons using the single-pollutant model in GAMM

Lag Season Percent change (95% CI)

lag0

Spring 0.17(−0.07,0.40)

Summer 0.60(0.13,1.06)*

Autumn 0.35(0.06,0.64)*

Winter 0.23(−0.06,0.51)

lag1

Spring 0.19(−0.05,0.43)

Summer 0.68(0.22,1.14)*b

Autumn 0.27(−0.01,0.56)

Winter 0.12(−0.16,0.41)

lag2

Spring 0.03(−0.21,0.27)

Summer 0.43(−0.03,0.90)b

Autumn −0.08(−0.37,0.21)

Winter −0.16(−0.44,0.12)

lag01

Spring 0.24(−0.02,0.51)

Summer 0.83(0.31,1.35)*a

Autumn 0.41(0.08,0.73)*

Winter 0.27(−0.06,0.60)

lag02

Spring 0.22(−0.06,0.51)

Summer 0.88(0.31,1.45)*ab

Autumn 0.29(−0.06,0.65)

Winter 0.14(−0.22,0.51)

Note: *P < 0.05.
aThe difference of effect estimate between summer and spring was statistically

significant (p < 0.05).
bThe difference of effect estimate between summer and winter was statistically

significant (p < 0.05).

CI: confidence interval.

Xu et al. Environmental Health 2014, 13:109 Page 8 of 12

http://www.ehjournal.net/content/13/1/109



Figure 5 Percent increase (95% CI) in IHD mortality associated with a 10-μg/m3 increase in PM10 concentrations by sex using the

single-pollutant model in GAMM.

Figure 6 Percent increase (95% CI) in IHD mortality associated with a 10-μg/m3 increase in PM10 concentrations by age using the

single-pollutant model in GAMM.
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not observed statistically significant association between

PM10 and IHD mortality. The heterogeneity of these find-

ings may be explained by the different characteristics of

the study sites such as PM10 level, components of PM10,

sensitivity of local residents to PM10, indoor air pollution,

weather patterns [53,54]. In addition, the df selection deci-

sions and the different lag patterns in GAM and the num-

ber of study years could affect the estimated effects

[55,56].

Our study observed harvesting effects although the ef-

fects have no statistically significance. This means that

PM10 may hasten the deaths of persons who were ex-

tremely frail. But the effect sizes of PM10 rebound because

PM10 could exacerbate ischemic heart disease [57], poten-

tially increasing the number of sensitive persons whose ill-

ness is life threatening.

Consistent with previous reports [15,58], we found

that the effect estimates using spatially resolved PM10

were larger than that using averaged PM10 from multiple

stations. This suggested that previous time-series studies

using the average levels may underestimate the effects of

PM10. Although the effects difference using different ex-

posure metrics was not too large, it still needs be consid-

ered especially in cities with large spatial variation of air

pollutants and cannot be ignored because the association

between air pollution and mortality itself was weak.

In the two-pollutant models, the associations between

PM10 and IHD mortality adjusting for SO2 or NO2 were

attenuated and become insignificant at some lag patterns,

which may be caused by the collinearity between PM10

and NO2 as well as SO2 (Additional file 1: Table S4). The

findings are consistent with previous studies [58]. So far it

is still an unresolved scientific question to separate the

independent effects of individual air pollutant from

multiple-pollutant models in short-term effects studies

of air pollution. Moreover, in order to better examine

the effects of spatial resolved PM10 in multiple-pollutant

model, the other air pollutants also needed to be esti-

mated spatially because between-pollutant relationships

may not be characterized well just by the averaged value

in one area. Further studies are needed to resolve these

problems.

Seasonal differences in the short-term effects of PM10

on IHD mortality were found in this study. The associ-

ation in the summer period was stronger than in the other

seasons. Li et al. [11] also identified the strongest effects

of PM10 on IHD mortality in summer in Tianjin, China.

However, Chen et al. [59] observed the largest estimates

of PM10 on daily mortality in winter and summer in

northern cities of China which have similar meterological

conditions to Beijing. There are several explanations for

the inconsistent findings in the studies. Firstly, the particu-

late matter constituents may vary by season in these cities.

We cannot obtain the data of the PM10 components,

which hinders further study on how the different particu-

late matter constituents affect the effects by season. In

additional, socioeconomic characteristics, activity patterns

of local residents and statistical models used could par-

tially account for the discrepant finding.

We found the effect estimate of PM10 on IHD mortality

in females was larger than those in males on the current

day. This suggested that females were more sensitive to

PM10, which was possibly due to higher airway hyper-

responsiveness to oxidants, more deposition of fine parti-

cles or relatively lower socioeconomic status [54]. The

larger lag effects in males may be partly explained by the

higher incidence of heart disease in males than in females,

particularly pre-menopausal females. Studies have shown

that biological factors, such as hormone levels, help pro-

tect women against heart disease [60].

Our study also found the elderly were more susceptible

to PM10 exposure than the younger group. This is consist-

ent with previous reports [54,61]. Preexisting chronic dis-

ease such as cardiorespiratory disease in the elderly are

more prevalent than in the younger group.

This study has several limitations. Firstly, we cannot ob-

tain daily data on SO2, NO2, temperature and relative hu-

midity from multiple stations, so the township-based

spatial distributions of the covariates cannot be estimated.

Consequently, we did not control for the spatial variation

of these variable in our model, which may result in a bias

in effect estimates. Secondly, our exposure assignment ap-

proach assumed that the subjects lived and worked at the

same township, and considered outdoor air concentra-

tions at the centroid of the corresponding township as

personal exposure, which might result in exposure mis-

classification. Thirdly, studies have shown that exposure

measurement error may affect the effect estimations when

exposure predictions as explanatory variables are incorpo-

rated into a regression model for health effects analyses

[62,63]. The exposure measurement error contains a

Berkson-like component that increases the variance of the

effect estimate and a classical-type component that not

only increase the variance but also bias the effect esti-

mates [64]. Szpiro and his colleagues developed a method

for measurement error correction based on asymptotic

approximations that derived for linear regression for the

exposure and health models [64,65]. To date, there has

been no methods for measurement error correction used

in the nonlinear regression models and assessing health

effects of multiple predicted pollutants exposure [65].

Thus, we did not correct the measurement error in our

study, which may have an impact on the effect estimates.

Conclusions
Ambient PM10 concentration was statistically signifi-

cant associated with IHD mortality of the population in

spatiotemporal analysis in Beijing, China. The stronger
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association occurred for the 2-day average. Season, gender

and age appear to modify the effects of PM10 on IHD

mortality. GAMM considering spatial variations of ambi-

ent PM10 produced greater effect estimates than GAM

using averaged PM10 concentrations. It implies that spatial

variation should be considered for assessing the impacts

of air pollution on mortality. Our findings may have impli-

cation for primary prevention of IHD deaths in China and

guiding future work on more advanced methods of esti-

mated exposure and health effects.

Additional file

Additional file 1: Table S1. Summary statistics for daily PM10 (μg/m
3)

at 27 monitoring stations in Beijing, China between 2008 and 2009 (see

Figure 1 for the locations). Table S2 Spearman correlations between daily

PM10 concentrations at 27 monitoring stations in Beijing city between

2008 and 2009. Table S3 The comparison between the predicted and

observed PM10 concentrations using different interpolation methods at 27

monitoring stations during 2008-2009. Table S4 The correlation between

pollutants and meteorological variables.
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