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Abstract

Coronavirus disease (COVID-19), caused by acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a worldwide 

challenge effecting millions of people in more than 210 countries, including the Sultanate of Oman (Oman). Spatiotemporal 

analysis was adopted to explore the spatial patterns of the spread of COVID-19 during the period from 29th April to 30th 

June 2020. Our assessment was made using five geospatial techniques within a Geographical Information System (GIS) 

context, including a weighted mean centre (WMC), standard deviational ellipses, Moran’s I autocorrelation coefficient, 

Getis-Ord General-G high/low clustering, and Getis-Ord G∗

i
 statistic. The Moran’s I-/G- statistics proved that COVID-19 

cases in datasets (numbers of cases) were clustered throughout the study period. The Moran’s I and Z scores were above the 

2.25 threshold (a confidence level above 95%), ranging from 2274 cases on 29th April to 40,070 cases on 30th June 2020. 

The results of G∗

i
 showed varying rates of infections, with a large spatial variability between the different wilayats (district). 

The epidemic situation in some wilayats, such as Mutrah, As-Seeb, and Bowsher in the Muscat Governorate, was more 

severe, with Z score higher than 5, and the current transmission still presents an increasing trend. This study indicated that 

the directional pattern of COVID-19 cases has moved from northeast to northwest and southwest, with the total impacted 

region increasing over time. Also, the results indicate that the rate of COVID-19 infections is higher in the most populated 

areas. The findings of this paper provide a solid basis for future study by investigating the most resolute hotspots in more 

detail and may help decision-makers identify targeted zones for alleviation plans.

Keywords COVID-19 · GIS · Moran’s I · Oman · G∗

i
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1 Introduction

Coronavirus disease 2019 (COVID-19), the recent great-

est threats encountering the globe, has been declared as a 

pandemic by the World Health Organization (WHO) since 

March 2020. The ongoing global interest of this massive 

health risk is motivated mainly by the accelerated rate of 

spread this pandemic, besides its substantial health, socio-

economic, and even political consequences over both devel-

oped and developing countries (Torales et al. 2020; Coccia 

2020). According to the WMO Covid-19 dashboard (https 

://covid 19.who.int/), to date (17th November), the num-

ber of confirmed cases across the globe exceed 55 million, 

while deaths approach 1.4 million (Riou and Althaus 2020). 

According to Cutler and Summers. (2020), the estimated 

costs of the COVID-19 pandemic in the US may reach $16 

trillion (approximately 90% of the annual gross domestic 

product), exceeding the cost of the Iraq War and approaching 
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the costs of global climate change (Ficetola and Rubolini 

2020).

Much efforts have been made to control the spread of the 

COVID-19 at local, national, and global scales (Chakraborty 

and Maity 2020). However, the ‘global’ strategy to cope with 

this emerging pandemic has been hampered by many chal-

lenges, primarily its ‘creeping’ nature and rapid transmission 

rate, which to date has impacted more than 210 countries 

and territories worldwide (Nicola et al. 2020; Sohrabi et al. 

2020; Bourgonje et al. 2020). Several studies have confirmed 

its extraordinary rate of transmission, associated with certain 

socioeconomic and environmental factors (Shereen et al. 2020; 

Gupta et al. 2020; Li et al. 2020; Saadat et al. 2020). Amongst 

these efforts, many researchers worldwide have been attempt-

ing to understand the behavior of this pandemic, particularly its 

transmission, detection, treatment and socioeconomic impacts 

(Allington et al. 2020; Alzamora et al. 2020; Liu et al. 2020a,b; 

Gross et al. 2020; Elmousalami and Hassanien 2020).

The spread of diseases in general and infectious diseases in 

particular is inevitably spatial. Public health experts can iden-

tify how infections move via local or even global transmission 

by following contact trajectories within population networks 

(Salinsky and Gursky 2006; Mackey et al. 2014). In this regard, 

Geographical Information System (GIS) is a powerful analytical 

tool, not only coz it incorporates fundamental epidemiological 

information on humans, times and locations but also coz it acts 

as a shared interface for centralised reporting and tracking of 

indicators from various areas (e.g. epidemiologic data georef-

erencing) (Law and Wilfert 2004; Esri 2011). These advantages 

allow epidemiologists produce maps showing the spatial distri-

bution of diseases at various scales: global, regional, national, 

provincial or local. These maps enable scientists to better predict 

which populations will be vulnerable and their levels of expo-

sure to the risk of infections. Also, probabilistic risk maps at 

detailed spatial scales allow epidemics to be tracked, strategies 

for prevention and control to be prioritised, and local authori-

ties to assign appropriate budgets for disease control. In addi-

tion, GIS makes the propagation of infectious disease easier to 

visualise by temporary map animation and network analysis 

(Boulos and Geraghty 2020; Zhou et al. 2020). With the aid 

of information technology (IT) solutions, improved accuracy, 

efficiency, resource monitoring and cost savings can support 

sound and significant investments across the entire public health 

sector (Kittayapong et al. 2008; Allam and Jones 2020). Numer-

ous studies have provided evidences that, as part of a hospital or 

emergency operations centre, GIS is an essential tool for many 

situational awareness programs dealing with pandemic diseases 

(Sithiprasasna et al. 2004).

Understanding the spatiotemporal incidences of COVID-

19 at the national level is extremely important to deliver vital 

perspicacity into how epidemics occur, continue, and recede. 

Oman is one of the world countries facing the pandemic risk 

of COVID-19, with its first confirmed case registered on 28th 

February 2020 in Muscat. According to the Omani Ministry 

of Health, the infection rate has increased sharply since the 

late of April to the mid of August, with almost 2274–82,924 

confirmed cases over this period, with a broader distribution 

in the majority of wilayats. From the demographic perspective, 

Oman currently represents one of the top-ranking countries in 

terms of the percentage of confirmed cases to the total popula-

tion of the country, with almost 23,000 cases per million (https 

://covid 19.who.int/; mid-November 2020). Although many 

studies have employed spatial techniques to assess spatial and 

temporal characteristics (e.g. centre, density, hotspots, cold 

spots, direction, etc.) COVID-19 (e.g. Biswas and Sen 2020; 

Danon et al. 2020; Kang et al. 2020; Zhou et al. 2020), no 

research to yet was found for Oman. Such an assessment is 

important to quantify spatial and temporal patterns of COVID-

19 spread, assess its track changes over time, and determine 

the different demographic, environmental, and socioeconomic 

variables that may accelerate transmission and infection rates. 

From a policy standpoint, this assessment is desired to aid 

policy makers develop their plans and strategies in a more 

reliable way, taking into consideration spatial variations of 

this health massive threat. In this context, GIS—through a 

wide variety of spatial statistics—can play a significant role 

in delineating the spatial and temporal patterns of COVID-

19 in Oman. Specifically, advancements in GIS techniques, 

particularly spatial modeling and data mining, have made it is 

possible to provide an inclusive picture of the primary spatial 

hotspots of this virus at different spatial scales (e.g.  Wang 

et al 2020; Kamel Boulos and Geraghty 2020; Sarwar et al. 

2020; Mollalo et al. 2020; Bherwani et al. 2020; Zhu and Xie 

2020; Adekunle et al. 2020; Shi et al. 2020). A representative 

example is Ramírez-Aldana et al. (2020) who applied spatial 

statistics to characterize COVID-19 patterns over Iran.

The main aims of this study are to (1) assess the spatiotem-

poral patterns of COVID-19 spread using data of confirmed 

cases, which varied from 2274 (29th April) to 40,070 (30th 

June 2020); (2) quantify temporal variations of the rate of 

infection; and (3) compare variations in the daily infection 

rate at wilayat level. Results of this can contribute to under-

standing the dynamics and processes controlling the spread of 

COVID-19 over both space and time, which can help policy 

makers adopt more appropriate actions and strategies to miti-

gate the spread of this pandemic in Oman. Herein, it should 

be indicated that this study uses the term “wilayat”, which is 

a local administrative level, equal to a “county” in the U.S.

2  Materials and Methods

2.1  Study Area

Oman occupies the southeast corner of the Arabian Penin-

sula and is located between latitudes of 16° 40´ and 20° 20´ 

https://covid19.who.int/
https://covid19.who.int/
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N and longitudes of 51° 50´ and 59° 40 E. The total area of 

Oman is 309,500  km2 and it has a coastline extending almost 

165 km from the Strait of Hormuz in the north to the Repub-

lic of Yemen in the south. their are 11 governorates (Fig. 1b) 

and 61 wilayats in Oman (Fig. 1c). The total population of 

Oman is 4,617,927 based on the Oman’s National Centre 

for Statistics and Information data (NCSI 2019). Figure 2 

shows the population and population density (population/

km2) for each province in 2019. Based on Oman’s National 

Centre for Statistics and Information (NCSI 2019), Bowsher, 

As-Seeb and Salalah had the highest populations; Mutrah 

ranked fourth in population but first in population density 

(NCSI 2019).

2.2  Data Set Description

Real-time data on COVID-19 were obtained using the Taras-

sud + App (TA +): a mobile application developed by the 

Oman’s Ministry of Health (OMH). The TA + displays the 

country status of COVID-19, guidelines, self-reported data, 

statements and other COVID-19 metadata, including an 

interactive world map for coronavirus statistics (Ming et al. 

2020; Sohrabi et al. 2020). The TA + is updated regularly—

on a daily basis—with data on new, existing confirmed 

cases, recoveries, and deaths through the Omani governo-

rate and local authorities. Although TA + has an application 

programming interface (API) to extract updated informa-

tion, official statements are delivered publicly only by the 

Ministry of Health (MOH). The virus was confirmed to has 

reached Oman on 24th February following a confirmed posi-

tive test for two citizens arrived from Iran.

This study deployed daily COVID-19 data for 8 weeks 

spanning the period between 29th April and 30th June 

2020. The early weeks of the spread were not included in 

this study given the low number of confirmed cases. Even 

these few cases distributed over a small number of wilayats. 

Figure 3 illustrates the growth in the accumulative, recov-

ered and death cases between 29th April and 30th June in 

Fig. 1  Study area, including: a location of Oman; b distribution of the 11 governorates in the study area; and c wilayats in the study area
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Oman. However, although the selected study period can be 

seen as an early stage in the proposed timeline of COVID-

19 in Oman, this period corresponded to a sharp increase 

in the total infected cases across the country. Accordingly, 

the selected study period gives an opportunity to explore 

the spatial distribution of COVID-19 in Omani wilayats in 

a more robust way. The daily data of COVID, combined 

with relevant spatial data (i.e., coordinates of locations of 

the cases), were employed in this study. Table 1 lists the 

different spatial data used in this study and their attributes. 

Fig. 2  Schematic map showing the distribution of population in Oman in 2019: a population distribution in 61 wilayats in 2019; b population 
density (population/km2) for each wilayat in 2019. The same scale is used for all maps

Fig. 3  A log–log plot showing 
the growth in the accumulative, 
recovered, and deaths cases 
between 29th April and 30th 
June 2020 in Oman
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Importantly, the data were collected at varying spatial scales 

(i.e., governorates, wilayats, districts, and even street level). 

All these spatial data were integrated in a geodatabase in a 

GIS environment. Figure 4 depicts the spatial distribution 

of the confirmed cases per each week over the period from 

29th April to 30th June 2020. Also, we showed the spatial 

distribution of COVID-19 cases, but per 100,000 of popula-

tion in each wilayat. This gives indications on the different 

hotspots of this pandemic, as a function of the total number 

of populations in each wilayat.  

2.3  Spatial Analytic Methods

GIS provides a wide variety of tools that allow for deter-

mining different spatial statistics of any epidemic risk (e.g. 

distribution, hotspots, orientation, trajectories of spread, 

etc.). In this context, we employed GIS techniques to inves-

tigate spatial variations of disease incidence, visualize the 

epidemic information, and spatial tracking of pandemic 

hotspots over the study period. This is a preliminary, but 

necessary, step to understand spatial variability of incidence 

in relation to different environmental, socioeconomic, topo-

graphic, and demographic variables and also for a spatiotem-

poral prediction of regional transmission speed and magni-

tude in the near future.

2.3.1  Calculating Geographic Distribution

The calculating geographic distribution (CGD) is a com-

monly used approach by epidemiologists to compare disease 

distributions over days or weeks (Dong et al. 2017). In this 

study, we employed CGD, using ArcPro 2.5 software, to 

analyze spatial distribution of COVID-19 in Oman, mainly 

its centres and tracing. Simply, this method was used to iden-

tify the spread of COVID-19 by calculating and mapping 

hotspots of spread on a weekly basis from 29th April to 

30th June. First, for each week, the mean centre of the out-

break was identified for the whole country. This was made 

based on daily aggregated data for each week. Second, we 

computed the weighted variation in the distance between 

each location with confirmed cases and this mean centres. 

This procedure was implemented using the standard distance 

tool within ArcPro 2.5 software. To account for changes in 

the mean centre over the whole study period, we employed 

the Standard Deviational Ellipse (SDE) method in ArcPro. 

This tool gives quantitative assessment of changes in the 

trajectories of COVID-19 hotspots over the study period 

(Samphutthanon el al. 2014). Statistically, for each week, 

SDE calculates the standard deviation of any location, rep-

resented in x- and y-coordinates, from the mean centre of 

the pandemic, illustrating these deviations in an ellipse 

with a diameter up to one standard deviation (Carnes & 

Ogneva-Himmelberger 2012). This ellipse has a directional 

axis, expressed in degrees (0–360), which defines the spa-

tial orientation of COVID-19 spread for this specific week 

(e.g. 90°: east expansion, 180°: south expansion, 270°: west 

expansion, etc.). This method allows to quantitatively define 

changes in the trajectory of COVID-19 main centre between 

the different weeks (Scott and Janikas 2010). These ellipses 

also give a visual inspection of changes in the trajectories of 

COVID-19 over time.

2.3.2  Spatially Integrated Statistics

To define the spatial patterns of the spread of COVID-19, 

we employed two well-established geospatial statistics: 

global Moran’s I and G test. These statistics are well-non 

in the GIS literature as powerful tools to understand spa-

tial patterns of any phenomenon, including epidemic risks 

(Bailey 2001; Getis 1991; Cromley 2003; Bailey et al. 

2011; Adegboye et al. 2020). Moran’s I and G test are 

measures of spatial autocorrelation of data, allowing to 

define spatial clustering of COVID-19 incidence and its 

varying spatial densities. Spatial data are simply described 

as highly correlated if likely values are spatially close to 

each other, and conversely defined as independent or ran-

dom data if no pattern that explains the arrangement of 

these data can be identified (Naish et al. 2011; Huang et al. 

2020; Kang et al. 2020). In GIS, their are different tools 

that provide a value of Moran’s I magnitude, with positive 

Table 1  Datasets obtained 
from Oman’s Ministries and 
Departments

The geodatabase and an excel-sheet data coverage such as COVID-19 confirmed cases, validation data of 
confirmed cases were obtained from the Ministry of Health (MOH), while data on the population and pop-
ulation density were obtained from National Centre for Statistics and Information (NCSI 2019)

Variables Format Source

1 Population size GIS Shapefile (polygon) NCSI

2 Population density GIS Shapefile (polygon) NCSI

3 Districts map GIS Shapefile (polygon) NCSI

4 Governorates and Wilayats boundaries GIS Shapefile (polygon) NCSI

5 Daily COVID-19 data TA + (MOH) MOH

6 COVID-19 (validation data) Excel-Sheets MOH
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values indicating a tendency toward clustering, while 

negative values suggest a random pattern of distribution. 

Other relevant statistics to Moran’s I statistic is Z score, 

which quantifies the degree of deviation (i.e., dispersion 

or clustering around Moran’s I value) and p value, which 

gives indications on the statistical significance of clus-

tering outputs. In this context, significant autocorrelation 

reveals that the value of the variable at a given location 

depends on the values at neighbouring locations and vice 

versa. Typically, the global Moran’s I value lies within a 

Fig. 4  Maps showing the number of cases per week for each wilayat between 29th April and 30th June in Oman



803Spatiotemporal Assessment of COVID-19 Spread over Oman Using GIS Techniques  

1 3Published in partnership with CECCR at King Abdulaziz University

range of − 1.0 to + 1.0, with values close to -1 suggesting a 

typically random pattern of COVID-19 spread and values 

approaching 1 indicating more clustering (Adegboye et al. 

2020; Ceylan 2020). According to Prasannakumar et al. 

(2011), Moran’s I is computed, as:

where N is the number of COVID-19 cases, Xi is the vari-

able value at a particular location, Xj is the variable value 

at another location, X is the mean of the variable, and Wij is 

a weight applied to the comparison between location i and 

location j. This distance-based weight matrix is based on 

the inverse distance between locations I and  j (i.e.,, 1/dij).

Similar to Moran’s I test, G test is another indicator of 

spatial autocorrelation, identifying hotspots and local spatial 

clustering of COVID-19 (Getis & Aldstadt 2004). However, 

it is inversely related to Moran’s I test, as values close to − 1 

indicate aggregation of similar values (i.e., clustering), while 

values close to 1 suggest segregation (i.e,. random patterns). 

According to Getis and Aldstadt (2004), G is computed, as:

where xi and xj are attribute values for locations i and j, wi,j 

is the spatial weighted distance between locations i and j. N 

is the number of locations, ∀ j ≠ i indicates that locations i 

and j cannot reflect the same feature.

G test commonly returns four values: observed general G, 

expected general G, Z score, and p value (Getis and Aldstadt 

2004). Further details about the computation of these statis-

tics are outlined by Getis and Ord (2010). First, we looked 

at the p value of this statistic. If it is small and statistically 

significant, this suggests that their is a spatial clustering of 

the cases. Otherwise, their is a random distribution of the 

cases. If p value suggested a clustering, we look at the sign 

of Z score. A positive sign (i.e., observed General G index 

is larger than the expected General G index) indicates that 

higher values of COVID-19 cases tend to be clustered over 

the study domain. Rather, a negative sign of Z score (i.e., 

the observed General G index is smaller than the expected 

index) suggests that lower cases of COVID-19 tend to be 

grouped (Getis and Ord 2010).

Getis-Ord G∗

i
 is another test commonly used in hotspot 

analysis in GIS. Similar to G test, it provides two meas-

ures: Z score and p value. Both statistics indicate whether 

the highest/lowest numbers of COVID-19 cases tend to be 

spatially dependent (i.e., clustering) (Huang et al. 2020; 

Huling et al. 2020). Specifically, resultant Z score informs 
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where locations with either high or low incidence tend to be 

clustered over space. Importantly, according to Getis-Ord 

G
∗

i
 , for any location to be considered as a significant hotspot 

of COVID-19, other locations in the neighbourhood should 

exhibit high incidence of COVID-19 as well. Accordingly, 

the local sum of cases for any specific point and its neigh-

bours is compared proportionally to the sum of cases for 

all points over space. For statistically significant positive Z 

scores, the larger the Z score is, the more intense the clus-

tering of high values (hot spot). A statistically significant Z 

score is determined when the local sum is much different 

than the expected local sum. Following this approach, a Z 

score is assigned to each location over space. For statistically 

significant positive Z scores, higher Z score suggests more 

clustering of higher number of cases (i.e., hot spot). In con-

trast, statistically significant negative and smaller Z scores 

indicate more clustering of lower incidence of COVID-19 

(i.e., cold spot) (Huling et al. 2020). Herein, we calculated 

G
∗

i
 statistic to analyze spatial clustering of COVID-19 cases 

for each week independently for the period from April 29 

to June 30 and define the corresponding hotspots and cold 

spots sites. Herein, G∗

i
 is computed, as:

where N is the number of COVID-19 cases, Xi is the vari-

able value at a particular location, Xj is the variable value 

at another location, X is the mean of the variable, and Wij is 

a weight applied to the comparison between location i and 

location j. This distance-based weight matrix is based on the 

inverse distance between locations i and j (i.e., 1/dij).

3  Results

3.1  Spatiotemporal Orientation and Shifting

3.1.1  Weighted Mean Center (WMC)

Figures 6 (a small circle highlighted in green) and 7 illus-

trate the weekly change in the WMC of COVID-19 infec-

tions from 29th April to 30th June 2020. During this 9-week 

phase, the x-coordinate of the mean centre of COVID-19 

in Oman moved many times. Overall, the tracking change 

results revealed that the centers of COVID-19 outbreaks 

moved or spread to the northwest and southwest of Oman. 

Specifically, the mean center was initially located at 58.22° 

E, 23.41  N, but an animation of the vicissitudes described 
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a transfer in the WMC over time. For instance, on 5 May 

2020 the WMC was placed at 58.23° E, 23.43° N, but had 

shifted to 58.23° E, 23.46° N, about 3 km northwest, by 13 

May 2020 (Table 2).

3.1.2  Directional Distribution

Directional distribution (DD) analysis indicated that the 

trend of the COVID-19 cases shifted from northeast to 

northwest (Fig. 6). As noted, during the 9-week period, 

the main hotspots of COVID-19 were placed primarily in 

northern Oman (wilayats of Mutrah, Bowsher, and As-

Seeb). Getis-Ord G∗

i
 coefficient suggests that these three 

wilayats were defined as hotspots at a significance level 

of 99% (p < 0.02). While wilayat of Ibri was defined as a 

hotspot (p < 0.05) in the first week of the study area (30th 

April–4th May), it rapidly converted to a wilayat with 

non-significant clustering of COVID-19 cases in Oman 

(p > 0.05). Rather, few wilayats on the eastern coast were 

defined as significant hotspots in Oman. Notably, south-

ern and most of inner wilayats were classified wither as 

cold spot regions or regions with non-significant clus-

tering of COVID-19 incidence over the study period. 

It should be indicated that the virus expanded over the 

country, but the rate of westbound spread is notewor-

thy. Ellipses changed in size and shifted from the north-

east to the northwest and southwest during the study 

period. Table 3 displays the axis lengths, rotation, and 

area of each ellipse. The size of the ellipses increased 

and decreased over time. The orientation coincided with 

the spatiotemporal agglomerate characteristics such as 

population and population density, indicating that the 

spread of COVID-19 infections exhibited both orientation 

and direction and showed a spatiotemporal trend in the 

9 weeks from 29 April to 30 June 2020. Thus, the extent 

of the SD varied from week to week. For example, the 

width area of the ellipse was 194 km and its length was 

227 km on 29 April 2020, while on 29 May 2020, it was 

176 km in width area and 184 km in length (Fig. 6 and 

Table 3). Although Table 3 shows that the east axis moved 

40 km west by the end of the study phase, regardless of 

increase or decrease over time, the distribution relative to 

the mean centre was more concentrated between 57.97° 

and 58.25° E (see Fig. 7).  

3.2  Spatiotemporal Spread

The global Moran’s I statistic showed that COVID-19 cases 

in datasets (numbers of confirmed cases) were clustering 

throughout the study. All of the Moran’s I and Z scores were 

well above the 2.25 threshold (a confidence level above 

95%), ranging from 2274 cases on 29 April to 40,070 cases 

on 30 June 2020. In regions wherever their existed higher 

numbers of cases, neighboring wilayats inclined to have 

analogous number of cases. Our results showed a signifi-

cant spatial autocorrelation, indicating that COVID-19 rates 

between wilayats were positively and significantly spatially 

related (clustering with distances) from 29 April to 30 June 

2020 (see Fig. 8). It appears that the pattern of COVID-

19 becomes more clustered over time in the study area; it 

could indicate that the disease is spreading less rapidly. 

Similarly, the Moran’s I and G test statistics indicated posi-

tive relationships between COVID-19 rates and population 

density (Moran’s I = 0.276, Z score = 7.274, p value = 0.0001 

and G = 0.0002, Z score = 7.506, p value = 0.0001, respec-

tively). Likewise, positive relationships were found between 

COVID-19 rates and total population (Moran’s I = 0.204, 

Z score = 4.367, p value = 0.0001 and G = 0.00007, Z 

score = 3.946, p value = 0.00007, respectively).

3.3  Spatial Clustering

The results are presented every week from 29 April to 30 

June 2020 in Fig. 6. They indicate hotspot areas with sig-

nificantly high infection rates findings. However, our results 

showed varying rates of infections, and the pattern of risk 

changed with time (see Fig. 6): some wilayats had more or 

fewer infections than others. For example, wilayats such as 

As-Seeb and Bowsher in the Muscat Governorate, in particu-

lar, were considered medium-risk areas from 5 to 21 May 

2020 but were identified as high-risk areas (hotspot-95% 

confidence) from 29 May to 30 June 2020 the conditions that 

Z score higher than 3.50 (hotspot-95% confidence). Another 

example, wilayat Sohar in Al-Batinah North Governorate, 

was identified as a non-significant area from 5th May to 21st 

June 2020, but a low-risk area (hotspot- 90% confidence) 

from 29th June to 15th June and a medium-risk area on 23rd 

June 2020 (see Fig. 6). Based on the COVID-19 level for the 

9 weeks, we were able to identify willayat Mutrah (Muscat 

Table 2  The centre of COVID-19 weighted by the number of cases 
for each wilayat over the 9-weeks period (highlighted in green in 
Fig. 5)

Date X-Coord Y-Coord km2

29-Apr-20 58.255212 23.419215 0

5-May-20 58.239013 23.431584 2.29

13-May-20 58.240718 23.433133 0.490

21-May-20 58.234877 23.459678 3

29-May-20 58.209793 23.459678 3.32

7-June-20 58.234877 23.459678 4.11

15-June-20 58.106908 23.312946 13.44

23-June-20 58.047374 23.297791 6.4

30-June-20 57.97499 23.266568 8.14
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Governorate), as the one with the highest rates of infection 

in the whole country (Z scores ranging between 7.5 and 5.2 

from 30 April to 7 June 2020), whereas it classified as a 

second highest rates from 15 to 30 June 2020. This approach 

intimates that epidemiologists can understand illness case 

clusters when they factor in spatiotemporal characteristics.

Fig. 5  Maps showing COVID-19 count per 100,000 and week for each wilayat between 29th April and 30th June in Oman
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Fig. 6  Clustering of COVID-19 (using the infection rates for each 
wilayat as the attribute value). Locations with similarly high num-
bers of COVID-19 (hotspots) are shown in dark green. COVID-19 
rates coded by Gi* statistics display the prevalence of COVID-19 
based on weekly data from 29th April to 30th June 2020. The cen-

tre of COVID-19 is weighted by the number of cases and over each 
wilayat over the 9-weeks period (highlighted with green). Standard 
deviational ellipses of COVID-19 infections distribution in a study 
area over the 9-week period from 29th April to 30th June 2020 (high-
lighted in black)



807Spatiotemporal Assessment of COVID-19 Spread over Oman Using GIS Techniques  

1 3Published in partnership with CECCR at King Abdulaziz University

4  Discussion

This study applied a different of spatiotemporal and statis-

tical methods including as a CGD, pattern, and clustering 

analysing, all of which are important to understand the 

spread of COVID-19 in Oman from 29 April to 30 June. 

The first approach applied in this study was to analyze 

the geographic distribution of COVID-19. The weighted 

mean centre changed throughout the study phase (see 

Fig. 6, a small circle highlighted in green). The capability 

to ascertain a weighted COVID-19 centre is valuable for 

tracing variations in the distribution coz it acts well when 

investigating the distribution of values related to an area. 

These results revealed dynamic areas of infections. One 

probable reason for the continued increase in COVID-19 

infections and the vicissitudes and shifts between wilayats 

stated in this research is the imperfection of the control 

strategies currently being practiced restricting the spread 

of the virus since the first case was identified on 24 Febru-

ary 2020. Another potential reason could be that COVID-

19 community transmission in certain regions may have 

been overlooked or certain regions were not classified as 

risk areas. Furthermore, the current data and limited study 

period may not be enough to discover the valid reasons for 

the high concentrations of COVID-19 infections.

Although control measures such as home quarantine, 

social distancing and wearing masks have been implemented 

across Oman, the number of confirmed cases continues to 

increase steadily. Tracking the changes in the distribution 

of infections will halp epidemiologists and authorities in 

Oman to predict where the next hotspot will appear, and 

thus attempt to prevent it by ordering lockdowns before the 

rate of infection increases. DD indicates this trend, coz it is 

a confidential statement and renders results based on an ana-

lytical method rather than merely a distinct representation of 

maps (see Fig. 6, ellipses highlighted in black). The ellipses 

of COVID-19 coincide with the population numbers and 

densities features of affected areas (see Fig. 6, ellipses high-

lighted in black). This may be due to the wilayat of Mutrah 

being a historic and busy trade centre—it also includes Mina 

Sultan Qaboos, Oman’s main port (Alkamali et al. 2017); 

Bowsher, a new town which is the location of various gov-

ernment offices and organisations; and As Seeb, an ancient 

town surrounded by a number of farms, a popular summer 

resort and industrial zone with high reliance on foreigners. 

All these circumstances may have facilitated the spread of 

COVID-19 in the area.

This research also aimed to identify the spatiotemporal 

patterns of COVID-19 in Oman. Moran’s I was applied 

to identify clusters using attribute values and locations of 

COVID-19. This is typically done with polygons containing 

a summary statistic, such as COVID-19 case rates, census 

data or population density data. It is critical to perceive that 

the autocorrelation cannot be used to identify clusters, as 

shown in spatially integrated charts such as Fig. 8. It indi-

cates whether the patterns of values over the study area 

are distributed in an assembled, irregular or dispersed way 

(Zhang and Zhang 2007).

Our results showed that the average difference between 

neighbouring features is less than those between all the fea-

tures; this remained true for the values which appeared to 

cluster throughout the study period, from 29 April to 30 

June 2020. However, the Moran’s I autocorrelations did not 

identify features of the variables (e.g. the distance between 

values, population or population density) as high and low 

cluster values, as we applied the G test for this purpose. 

theirfore, the autocorrelation and G test are essential meth-

ods to identify robust spatiotemporal patterns in the associa-

tions between factors and COVID-19 infections; however, 

Fig. 7  Shift in the weighted mean center over the study period. The 
centre of COVID-19 is weighted by the number of cases for each 
wilayat over the 9-weeks period (highlighted in green in Fig. 6)

Table 3  Changes in the DD (1 SD) from the weighted mean centre of 
COVID-19 infections over the 9-week period

Date Length Weight Area  (km2) Rotation

29-Apr 227 195 34,862 50

5-May 225 194 34,487 55

13-May 211 192 31,921 53

21-May 196 181 24,253 74

29-May 175 188 22,384 88

7-June 176 184 25,391 90

15-June 326 194 47,966 18

23-June 360 211 55,889 23

30-June 399 213 65,624 27
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they only considered the distribution of an individual ele-

ment in a single layer at a time (see Fig. 8). It is hard to 

conclude whether robust or weak associations are enhancing 

higher or lower spatially ghettoized. For this, we applied Gi* 

to map hotspots and cold spots across the country. Mapping 

the hotspots and cold spots of infection was the third step in 

understanding how it spread. By applying procedures such 

as the Gi*, we were capable of recognizing spatial areas 

showing disease incidences with a higher certainty (Fig. 6). 

The G∗

i
 maps showed potential epidemics as well as explain-

ing the underlying origin of infection (Fig. 6). These maps 

also allowed us to compare places based on quantities (Baah 

et al. 2015) and to identify which sites meet our criteria to 

understand the relationships between locations in the study 

area.

Mapping the hotspots and cold spots of infection can 

be also used to map health statistics to compare the qual-

ity of health care in Oman (McLafferty 2003). The Min-

istry of Health in Oman and other public officials can 

apply classification maps to see how and where health 

care varies. Our results presented hotspots of the geo-

graphical distribution of COVID-19 from 29 April to 

30 June 2020 (see Fig. 6). The disease has prominent 

regional properties in terms of geographical distribu-

tion among 61 wilayats, with significant spatiotempo-

ral agglomeration. It is vital to note that the infection 

was initially concentrated in wilayat Mutrah; it spread 

first to neighbouring wilayats, particularly As-Seeb and 

Bowsher in the Muscat Governorate, and then throughout 

the country.

Fig. 8  a Autocorrelation (Moran’s I) and observed General G statistic 
marked with black, while (Moran’s I, and G test p values) is marked 
with red; Fig. 4b. Autocorrelation (Moran’s I) and observed General 

G statistic marked with black, while (Moran’s I, and G test Z score) is 
marked with red
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Analyzing the possible causes such as professions and 

industries most at risk, the density of living arrangements 

(not simply population density), of COVID-19 infec-

tions is halpful to hazard supervisors in deciding where 

to concentrate their resources. This research can signifi-

cantly halp make the country-wise healthcare policies by 

applying GIS tools to manage temporal assessments of 

pandemic diseases such as COVID-19. Thus, wise health-

care policies are required to provide developed COVID-

19 monitoring and provide more useful intervention and 

control of the novel coronavirus in Oman.

5  Conclusion

Based on the data of COVID-19 in Oman from 29 April 

to 30 June 2020, in this study, the spatial CGD, Moran’s 

I, General- G, and G∗

i
 statistics were adopted to deduce 

that COVID-19 has had a significant spatial correlation 

and clustering in Oman. Although the global Moran’s I 

and G-statistic identified strong spatial patterns of the 

COVID-19 in the relationships between variables, these 

approaches only considered the distribution of single lay-

ers at a specific time. It was hard to determine whether 

strong or weak relationships were more and less spatially 

segregated. Using G∗

i
 (hotspots and cold-spots analysis), 

we were able to identify which spatial districts showed 

a high likelihood of infection events. Therefore, links 

between COVID-19 hotspots, cold-spots, density, density, 

presence, or absence, can be useful in future studies to 

investigate their correlations, such as ecological, climato-

logical, and socioeconomic variables. The epidemic situ-

ation in wilayat, such as Mutrah, As-Seeb, and Bowsher 

in the Muscat Governorate, is more severe, and the current 

transmission still presents an increasing trend. Therefore, 

the transmission capacity of COVID-19 in other wilay-

ats in Oman is strong. The spatiotemporal risk details 

exhibited in this research indicate that the temporal haz-

ard model − based on weekly infection rates produces a 

better understanding of changes. Remaining to develop 

the prevailing COVID-19 monitoring regime’s effective-

ness is vital to give more precise, comprehensive moni-

toring data. In turn, it will provide useful strategies for 

enhancing the transmission disease surveillance system 

and controlling interventions in any effected region. GIS 

can be used to map the disease’s occurrence against multi-

ple parameters, including demographics, the environment, 

geography, and past incidents to understand the origin of 

outbreaks, spread patterns, and intensity, which in turn 

supports the implementation of control, preventive and 

surveillance measures.
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