
1. Introduction

Significant and rapid changes in nutrient turnover and budget have occurred over the past century (Li 
& Bowman,  2001; Vitousek et  al.,  1997). Temperature, precipitation, soil weathering, microbial activity, 
and nutrient runoff control carbon (C), nitrogen (N), and sulfur (S) availability and their turnover rates in 
wetlands (Matias et al., 2011; Whitehead, 2000). However, these dynamics have largely been overlooked in 
global-scale assessments, even though wetlands contribute globally between 25% and 30% of CH4 emissions 
(Saunois et al., 2020), store almost 30% of the organic C (Lal, 2008), and have higher C soil content than 
forests and grasslands (Kayranli et al., 2010), while occupying only 7% of the Earth's surface (Lehner & 
Döll, 2004).

Unprecedented high temperatures in the northern latitudes have accelerated permafrost melting (Treat 
et al., 2016), leaving an unfrozen, active peat layer that remobilizes large amounts of C and other nutrients 
into wetlands, and change their hydrological and biogeochemical functioning (Malone et al., 2013) result-
ing in higher N2O, CH4, and CO2 emissions (Abbott & Jones, 2015; Loiko et al., 2017). At lower latitudes, 
significant cropland expansion to meet the high global food and fiber demand has increased nonpoint nu-
trient pollution linked to fertilizer applications (Wagner et al., 2008). In addition, intense hydroclimatic 
fluctuations (i.e., prolonged droughts followed by sudden and severe floods) have affected watershed runoff 
resulting in nutrient-rich stormflow pulses into wetlands (Kaushal et al., 2014; Solomon, 2007) usually lo-
cated at low elevation within the catchment (Were et al., 2019).

Changes in nutrient loads, whether anthropogenic or not, can interfere with the preexisting biogeochemical 
cycles within wetlands and significantly affect the gas emission quality and soil nutrient stocks. Anoma-
lous concentrations of N or S can have inhibitory effects on the C cycle (Kaushal et al., 2010, 2011), such 
as S fertilization inhibiting CH4 emissions due to energetic preference of 2

4
SO  reduction over CH4 genesis 
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(Bronson et al., 1997; Gauci et al., 2004). A high rate of N fertilization increases N2O emissions (Bonnett 
et al., 2013; Burgin & Groffman, 2012). However, a different response may occur in N-poor soil where an 
increase in N input may increase net primary productivity (NPP) and bioavailable substrates, in turn in-
creasing CH4 emissions (Dise & Verry, 2001). Over the long term, increases in NPP may also increase plant 
nutrient uptake, hence less N may be available to soil denitrifying bacteria (Mosier et al., 2002). Changes 
in nutrient inputs also affect microbial ecology, hence the nutrient turnover and storage. Excess nutrient 
inputs can increase rates of soil organic matter (SOM) decomposition and cause a shift toward wetlands 
as a net C source rather than a sink, and warming can also synergistically amplify this effect (Kaushal 
et al., 2014).

Many recent studies (Arora et al., 2018; Bloom et al., 2017; Hayman et al., 2014; L. Liu et al., 2020; Melton 
et al., 2013; Riley et al., 2011; Zhu et al., 2015) have investigated wetlands biogeochemistry coupled to hy-
droclimatic forcing, vegetation dynamics, soil properties, and soil biology to improve the CH4 budget assess-
ment at regional and global scales. The Wetland CH4 Intercomparison of Model Projects (WETCHIMP; Mel-
ton et al., 2013; Wania et al., 2013) analyzed and compared the most advanced models available for global 
CH4 emissions using a common protocol for hydroclimatic variables next improved in Saunois et al. (2020). 
These projects can be considered the state-of-the-art in wetland modeling and highlight the strengths and 
weaknesses of current models. Besides the level of complexity used to describe the C cycle and climate 
feedbacks in each model, only a relatively small number of models incorporate multiple nutrient cycles, 
although they usually limit their descriptions to C and N (Saunois et al., 2020). Among those, Community 
Land Model 4 (CLM4Me; Riley et al., 2011), Dynamic land Ecosystem Model (DLEM; Tian et al., 2015; Tian, 
Melillo, et al., 2011; Tian, Xu, et al., 2011; Xu et al., 2010), ecosys (Chang et al., 2019; Grant, Mekonnen, & 
Riley, 2019; Grant, Mekonnen, Riley, Arora, et al., 2019), and Sheffield Dynamic Global Vegetation Model 
(SDGVM; Beerling et al., 2011; Woodward et al., 1995) combine a global dynamic vegetation module, soil 
hydroclimatic changes, permafrost dynamics, land cover change, and agriculture management (e.g., ferti-
lization, irrigation, and harvesting). However, each model solves each geographic grid cell independently; 
hence, no water runoff is explicitly accounted for (Wania et al., 2013), and only a very simplified version of 
the N cycle is represented. Therefore, the combined effects of global land use linked to hydroclimatic forces 
on global greenhouse gas (GHG) emissions and nutrient stocks are not fully described, resulting in model 
uncertainties. Addressing grid cell connectivity and feedback and the interrelationships between biological-
ly mediated processes governing not only C and N but also S and P cycling will improve the understanding 
of watershed features.

The aim of this study was to investigate the relationship between multiple nutrient interactions (i.e., C, N, 
S, and P) and environmental forcing factors for wetland GHG emissions. We used a mechanistic nutrient 
biogeochemical model, Biotic and Abiotic Model for SOM-version 4 (BAMS4), in a dynamic solver, BRT-
Sim, to describe in space and time the coupled ecohydrological and biogeochemical cycles over a global 
grid of 0.5° × 0.5° resolution during the period 2000–2017. The mechanistic description of the wetland was 
coupled with a simplified runoff model that estimates agricultural runoff from the surrounding catchment 
to account for N, P, and S fertilizer inputs. Using BRTSim-BAMS4 we (1) report new estimates of wetland 
CH4, N2O, and CO2 emissions globally; (2) investigate and quantify nutrient sequestration rates in wetlands 
at different latitudes; (3) quantify the environmental factors that influence GHG emissions and nutrient 
sequestration; and (4) examine fertilization effects on GHG emission dynamics.

2. Materials and Methods

2.1. C–N–S Reaction Network (BAMS4)

The BAMS4 reaction network is a simplification of the SOM cycle described in Pasut et al. (2020) and elabo-
rated from Riley et al. (2014), Tang et al. (2019), and Ceriotti et al. (2020). It consists of two organic polymer 
pools of PolyC (lignin and cellulose) and PolyCN (peptidoglycan), three organic monomer pools of MonoC, 
MonoCN, and MonoCS, representing the organic carbon, nitrogen, and sulfur, respectively, and two inor-
ganic carbon molecules (CH4 and CO2). The C cycle includes four microbial functional groups, three aerobic 
(fungi FDEP, heterotrophic bacteria BAER, and methanotrophs BMOB) and one anaerobic (methanogenic mi-
crobes BMGB), which control the depolymerization, mineralization, CH4 oxidation, and CH4 genesis, respec-
tively. The C cycle was coupled with the N and S cycles, which include nitrification, denitrification, nitrogen 
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fixation, S pools reduction, S pools oxidation, and thiosulfate and sulfur trioxide disproportionation (NH3 

→ 
4

NH  → 

2

NO  → 

3

NO  → NO → N2O → N2 → 
4

NH , and 2

4
SO  →     2 2

3 2 4 0
SO S O S HS , respectively). 

NH3 gas emissions can be large in agricultural system but typically very small in wetlands because the equi-
librium reaction between 

4
NH  and NH3(g) is strongly directed toward 

4
NH , resulting in very small wetland 

NH3(g) exsolution and emission to the atmosphere, especially for low 
4

NH  concentration usually found in 
wetland (e.g., 10−5 or 10−6). Each C, N, and S pool can be present in aqueous, protected (e.g., on the mineral 
surface binding), or gaseous phase. Each reaction includes specific microbial functional groups (ammo-
nia-oxidizing bacteria BAOB, nitrite-oxidizing bacteria BNOB, denitrifying bacteria BDEN, sulfur reducing bac-
teria BSrRB, thiosulfate- and sulfide-reducing bacteria BThSRB, sulfate-reducing bacteria BSRB, thiosulfate and 
sulfide disproportioning bacteria BSDB, and photolithoautotroph oxidizing bacteria BSOB) described in detail 
in Pasut et al. (2020) and represented in Figure 1. The first two functional groups are aerobic, while the oth-
ers are anaerobic. BAMS4 also represents a simplified P cycle that includes 3

4
PO  production from MonoCN 

mineralization, 3

4
PO  protection, and 3

4
PO  plant uptake (R4, R55, and R32).

The microbial dynamics include C and N immobilization, growth, mortality, and necromass decomposition 
described by Michaelis–Menten–Monod kinetics. Less than 3% of microbial biomass is composed by P and S 
(Paul, 2014); therefore, their immobilization was neglected. The biological response is controlled by temper-
ature, pH, water stress (Figure S1), O2 availability, and other stressors related to the competition for electron 
donors and acceptors, and inhibitory factors. SOM protection on the soil matrix is described as a kinetic 
reaction after Riley et al. (2014), while the protection of inorganic species is described at equilibrium. Plant 
nutrient uptake ( 

4
NH , 


3

NO , 2

4
SO , and 3

4
PO ) is accounted for by MM kinetics, and CH4 is transported to the 

atmosphere by diffusion and plant uptake.

We used the NPP from the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra 
satellite (Imagery produced by the NASA Earth Observations team based on data provided by the MODIS 
Land Science Team) as a proxy of SOM input to the soil, and we used the C:N and C:S ratios of above and 
belowground litter quality to partition C, N, and S in soil (Table S7).

Tables S1–S6 summarize all the reactions and corresponding parameters for both biotic and abiotic pro-
cesses used in BAMS4, which were derived from earlier estimation and validation (Maggi et al., 2008; Pasut 
et al., 2020; Riley et al., 2014) and are not expanded here.

2.2. Data Description

This study used georeferenced databases of dynamic and constant environmental variables at 0.5° × 0.5° 
resolution globally. The dynamic quantities consist of monthly fractional wetland area (SWAMPS v3.2; 
Poulter et al., 2017; Schroeder et al., 2015), NPP (MODIS Land Science Team, 2019), evapotranspiration 
(Zhang et  al.,  2016), runoff, the 6-h Climatic Research Unit (CRU-TS 3.21) time series of precipitation, 
longwave and shortwave solar radiation, and atmospheric temperature, which were used to construct daily 
input data from 2000 to 2017. The constant quantities consist of the soil physical properties (i.e., porosi-
ty, bulk density, and soil texture; Hengl et al., 2017), soil hydrothermal properties (i.e., Brooks and Corey 
model parameters [Brooks & Corey, 1964], permeability, heat capacity, and conductivity; Dai et al., 2013), 
equilibrium soil organic C (Hengl et al., 2017), land cover (MODIS – LC; Cover & Change, 1999; Friedl & 
Sulla-Menashe, 2015; Sulla-Menashe et al., 2019), N and P fertilization (Potter et al., 2011a, 2011b), and 
biogeochemical parameters. Kinetic parameters were not geographically distributed. Additionally, we cre-
ated a global data set of S fertilization and four land cover-specific (grassland, forest, wetland, and tundra) 
maximum and average plant root density profiles (based on Canadell et al., 1996; Paul, 2014), methane 
plant efficiency emissions (based on Walter et al., 2001), nitrogen fixation rate (based on Paul, 2014), and 
C:N ratio of aboveground litter quality (based on Bréchet et al., 2017; Hättenschwiler & Jørgensen, 2010; 
Paul, 2014; Pei et al., 2019; Rouifed et al., 2010; Snowdon et al., 2005), which are distributed as described in 
the Data Availability Statement and listed in Table S7.

The agricultural area surrounding the wetland was derived from the MODIS-IGBP land cover product 
(MODIS – LC; Cover & Change, 1999; Friedl & Sulla-Menashe, 2015; Sulla-Menashe et al., 2019). We cal-
culated the long-term average area of both wetland and cropland from 2000 to 2017 and overlapped them 
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to identify the grid cells affected by agriculture, which were tagged across the entire simulation. The wa-
tershed discharge Q was estimated following the Runoff Curve Number model (NRCS-CN) as Hong and 
Adler (2008):




 

2
( )

,a

a

P I
Q

P I S
 (1)

 
25,400

254,S
CN

 (2)

where P is the precipitation, Ia is the initial abstraction (Ia = 0.2S), S is the potential retention, and CN is the 
curve number estimated from hydrologic soil group characteristics (Figure S9), the class of land use, and 
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Figure 1. BAMS4 reaction network. RX identifies the reactions, which are expanded in Tables S1–S6 and are characterized by parameters earlier estimated and 
validated in Pasut et al. (2020). BAMS4, Biotic and Abiotic Model for SOM-version 4.
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the antecedent soil moisture condition (see supporting information and summary in Table S8). The flow di-
rection was derived from the steepest down-slope gradient of a digital elevation map (Data Announcement 
88-MGG-02, Digital relief of the Surface of the Earth. NOAA, National Geophysical Data Center, Boulder, 
CO, 1988). The nutrient concentration in the runoff was calculated as 30% of the total fertilizer inputs to 
account for crop nutrient uptake. We did not explicitly model crop dynamics in this work.

The details and reference for each database used in our modeling are summarized in Table S9.

2.3. Computational Domain

The computational domain involves about 25,000 grid cells describing wetlands, and neglects lakes, rivers, 
reservoirs, rice paddies (due to the lack of globally distributed data on the agricultural management), and 
saline estuaries and salt marshes (due to the high salt concentration that inhibits microbial metabolism, 
Poulter et al., 2017). From the original SWAMPS database (Poulter et al., 2017), we selected the grid cells 
where the maximum average wetland area fraction is greater than 5% to reduce computational effort and 
eliminate potential ephemeral wetlands (Figures S2a–S2c), and where the permafrost is less than 80% of the 
ground area (Brown et al., 2001) due to the lack of permafrost thawing modeling. The selected grid cells cov-
er a wetland area of almost 5 million km2; which almost 22% is affected by agricultural runoff (Figure S2d). 
Each grid cell included a 2-m vertical profile divided over three soil layers of rootzone (30, 30, and 40 cm 
thickness), a soil layer of 100 cm below the rootzone, and four atmospheric layers (30, 30, 40, and 100 cm 
thickness) to allow for water ponding, and heat and gas exchange with the atmosphere.

Each grid cell was initialized with SOM concentrations estimated in the SoilGrids (Menne et al., 2012) and 
run for 250  years, relooping the same dynamic quantities of the 2000–2017 period to reach a statistical 
steady state in the biogeochemical reactions. The last 18 years were used for our analyses.

2.4. BRTSim Solver

BAMS4 was integrated in a general-purpose multiphase and multispecies bioreactive transport simulator, 
BRTSim-v4.0e solver, for the aqueous species advection and diffusion, gas diffusion, SOM protection in 
the soil matrix, and gas exsolution/dissolution, together with variably saturated soil and heat flow (Mag-
gi, 2019). The vertical profile of each chemical and biological species in the soil was not imposed, neither 
over time nor over space, but emerged from multiple biologically mediated reactions in BAMS4. In this way, 
the system can respond to sudden environmental changes, particularly important for pH and O2 availability.

2.5. Methods of Validation

The simplified BAMS4 reaction network proposed here was first tested against the full-size BAMS3 net-
work applied to a peatland in Michigan (Shannon & White, 1994) to ensure equivalent outputs. Next, the 
monthly and long-term annual average land surface temperature of the topsoil (top 30 cm) was assessed 
against the land surface temperature database of NOAA (top 5 cm; Menne et al., 2012). The long-term aver-
age of modeled pH and SOC in the topsoil was assessed against the values in SoilGrids (Hengl et al., 2017). 
Modeled CH4 fluxes were benchmarked against the annual average field observations from 12 sites globally 
distributed (Table S10 data from FLUXNET2015 data set Pastorello et al. [2020]) and data for the Amazon 
catchment reported in Pangala et al. (2017). The global average annual CH4 emission was also compared to 
global modeling assessments (L. Liu et al., 2020) and top-down and bottom-up estimation from the Global 
Methane Budget 2000–2017 project related to wetland modeling in Saunois et al.  (2020) (Table S10 and 
Figure S10). The N2O global emission was benchmarked against the DLEM global N2O estimation from 
terrestrial ecosystems in Tian et al. (2015). Average carbon sequestration rates were benchmarked against 
literature values in Mitsch et al. (2013), Villa and Bernal (2018), and Cheng et al. (2020).
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2.6. Analyses

Among all the outputs of BRTSim-BAMS4, the C, N, and S sequestration, and CH4, CO2, and N2O gas 
emissions were selected as target state variables in the analyses between 2000 and 2017. Emission rates 
were calculated as the variation of CH4, CO2, and N2O gaseous concentration across the four atmospheric 
nodes within a specific time interval. CO2 emissions include the CO2 produced during aerobic and anaer-
obic respiration, autotrophic CH4 oxidation, denitrification, S pool reductions, and CH4 oxidation during 
aerenchyma transport. C, N, and S sequestration rates were calculated as the total input (the above and 
belowground SOM input, N fixation, and N and S fertilizations) minus all the losses (gas emission, plant 
uptake of N and S, and leaching below the root zone). Data are presented as average value ± the standard 

deviation σ (    2
( ) /

i
x n , where xi is a state variable, μ is its average, and n is the sample size). 

Linear correlation coefficients were used to evaluate potential relationships between each GHG emission 
rate and wetland surface area. The lag time between the spike in gas emissions and the maximum area was 
calculated using cross-correlation analysis.

We grouped the wetlands according to the Köppen–Geiger (KG) climate classification (Köppen & Gei-
ger, 1930) to carry out a statistical analysis of the controlling stressors on GHG emissions and C, N, and S 
sequestration rates, and a dynamic analysis of the effect of fertilizers on GHG emissions and several con-
trolling factors (temperature, SOM input, BMGB, and BDEN). For the first analysis, the Pearson coefficient was 
used to study the correlation of the forcing boundary conditions (S, N, and P fertilization, N fixation, the 
difference between precipitation and evapotranspiration, and SOM input), microbial functional group con-
centrations, soil variables (SOC, temperature, and pH), and soil properties (porosity, hydraulic conductivity, 
root depth, soil bulk density, and CH4 plant uptake efficiency) against each target output for each climatic 
class. In this analysis, we accounted for the annual average of each variable between 2000 and 2017. The 
most relevant parameters resulting from this first stage were then analyzed seasonally by, comparing results 
with and without fertilizer input, and using the monthly average within each KG climatic class.

3. Results

3.1. Model Validation

Figure S3 shows that the simplified BAMS4 accurately capture the response of the full BAMS3 network 
for total C (TC), total N (TN), total S (TS) in soil, and the annual gas emissions of CH4, N2O, CO2, and H2S 
(R = 0.995, p ≤ 0.001). In addition, BAMS4 captured the monthly and long-term annual average land sur-
face temperature data in Menne et al. (2012) (Figure S8a, R = 0.98). The latter database reports only the 
first 5 cm of the topsoil, while our model refers to the first 30 cm, which explains part of the mismatch. 
The benchmarking of pH and SOC in the topsoil against SoilGrids was satisfactory (Figures S8b and S8c, 
R  =  0.72 and R  =  0.99, respectively). Even though a background H+ recovery reaction was included in 
BAMS4 to act as a buffer (R57–R58 in Table S6), the pH was overestimated in some range of expected values. 
The reason can be ascribed to nonlinear effects on H+ production and consumption between the aerobic 
and anaerobic transition phases, and specific geochemistry of the soil, which are challenging to capture.

Benchmarking of CH4 emissions against field observations and the simulated global annual emission re-
sulted in a relatively good match (scatter-plot in Figure 2a, Tables S10 and S11, and Figure S10, respective-
ly). The simulated value of the Amazon catchment matched the top-down regional estimate (32.0 ± 4.2 Tg 
C-CH4 observed against the 29.3 ± 1.6 Tg C-CH4 simulated). Field measurements may include uncertainty, 
such as temporal gaps in the recording and limited numbers of years of data, hence hindering a direct 
comparison with the model output. Regional-scale measurements are not physically possible (Mekonnen 
et al., 2016), thus other global assessments from process-based and top-down models provide support to 
benchmark model outcomes. Our N2O global annual emission (0.3 ± 0.04 Tg N-N2O) is lower than the value 
of Tian et al. (2015) (0.95 ± 0.04 Tg N-N2O). This discrepancy may result from differences in the modeled N 
cycle; DLEM in Tian et al. (2015) represents a simplified version of the N cycles using an empirical equation 
to partition N gases into N2O, NO, and N2 as a function of porosity and volumetric water content, whereas 
BRTSim-BAMS4 attempts to account for other environmental factors, such as an explicit microbial dynam-
ics, O2, and pH.
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Figure 2. Global averages and isolatitude sums emission (at 0.5° latitude) of (a and b) CH4, (c and d) CO2, and (e and f) N2O emissions. In (a, c, and d), the 
average emission is normalized by the average wetland area. Light-gray shaded areas in (b, d, and f) represent the standard deviations of the isolatitude sums 
between 2000 and 2017. Panel (f) compares the assessments with and without the effect of fertilizer runoff (no significant effect on CH4 and CO2 emissions—
data not shown). Inset in (a) shows the simulated CH4 emissions against 12 field observations.
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The reader can find the benchmark for temperature, pH, and SOC (Figures S8a–S8c), the corresponding 
anomaly maps (Figures S4, S6, and S7), as well as benchmarking samples for the seasonal temperature in 
20 random grid cells over time (Figure S5).

3.2. CH4, CO2, and N2O Emissions

The estimated annual global average CH4, CO2, and N2O emissions were 135.6  ±  12.5  Tg C-CH4, 
589.1 ± 45.8 Tg C-CO2, and 0.3 ± 0.04 Tg N-N2O, respectively, between 2000 and 2017. A significantly high 
correlation exists between global monthly wetland CH4 and CO2 emissions (R = 0.98 and p ≤ 0.01), while no 
correlation links CH4 and N2O emissions (R = −0.08 and p ≥ 0.01), indicating that different environmental 
factors influence the N2O emissions (Figure 3). In the long term, all GHG emissions and the wetland area 
show a seasonal pattern (Figures 3a–3c) that follows the temperature change in the Northern Hemisphere, 
which causes the most significant seasonal changes in wetland area due to snow melting and runoff (Fig-
ures S2a–S2c). CH4 and CO2 peak between June and August, approximately 4–6 weeks after the peak in 
wetland area, suggesting a lag time between the optimal biomass response and the rise in water table and 
temperature. In contrast, the spike in N2O emissions occurs about 6 weeks before the peak in area, due to 
a more prompt response of denitrifying bacteria to temperature (optimum between 13°C and 37°C rather 
than 20°C and 37°C of BMGB), a faster reaction rate, and less O2 inhibition for BDEN.

Spatially, the tropical areas in the Amazon, central Africa, and southeast Asia were the principal hot-spots 
of CH4 and CO2 emissions annually releasing between 100 and 150 g C-CH4 m

−2 of wetland (Figures 2a 
and 2c) and 350 and 750 g C-CO2 m

−2 (Figures 2b and 2d), respectively. The northern latitude regions (e.g., 
Canada, Alaska, and north Russia) show the second highest emissions due to the prevalence of summer 
wetlands (Figures  S2a–S2c) and the high SOM input from the peatland and bog vegetation, despite the 
low winter temperature. In contrast, southern latitudes (e.g., south Australia, Patagonia), Sub-Sahara, and 
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Figure 3. Global monthly average wetland area (black line in a–c), (a) CH4, (b) CO2, and (c) N2O emissions between 
2008 and 2017. Panel (c) compares the assessments with and without the effect of fertilizer input (blue line).
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central Europe show significantly lower emissions, on average 1–40 g C-CH4 m
−2 year−1, and 150–350 g 

C-CO2 m
−2 year−1, respectively.

N2O emissions follow a spatial distribution directly linked to N fertilization; hence, N2O gases are greater 
for those areas where wetlands and croplands are in proximity, mostly in the north temperate regions and 
north-east India (yellow grid cells in Figure S1d). Here, the annual average emission is between 0.2 and 
0.5 g N-N2O m−2 year, which contributes to the spike in emissions for a given latitude range. Tropical areas 
have relatively high emissions as well, on average between 0.12 and 0.2 g N-N2O m−2 year−1, and there is a 
close relationship between SOM input and N2O emissions for areas not affected by N fertilization. In con-
trast, lower emissions occur in wetlands in Australia and Sub-Saharian regions, which are characterized by 
sparse vegetation and negligible runoff from agriculture, releasing ≤0.05 g N-N2O m−2 year−1.

A simulation conducted without fertilizer input (blue line, Figure  2f) shows that N2O emissions in the 
Southern Hemisphere are not significantly affected by N fertilization, while the overall emission is almost 
13% higher than with fertilization runoff between 60°N and 10°N. Comparing the two simulations (Fig-
ure 3c), N2O emissions without fertilization follow the same seasonality as those with fertilization; however, 
the peak is significantly lower.

3.3. Nutrient Sequestration Rates

Globally, the average C, N, and S sequestration rates are 120.5 ± 122.5 g C m−2 of wetland year−1, 3.75 ± 5.6 g 
N m−2 year−1, and 0.98 ± 2.05 g S m−2 year−1. The tropics have the highest sequestration rates of C, N, and 
S; on average, 273.6 g C m−2 year−1, 11.4 g N m−2 year−1, and 4.2 g S m−2 year−1 (Figures 4a, 4d, and 4g and 
Table 1). Carbon sequestration was also very high in peatland regions in northern latitudes (continental 
class [Dfc]), ranging between 200 and 400 g C m−2 of wetland year−1. Negative C sequestration rates (losses 
from soil) are observed mainly in the Sub-Sahara Desert, while negative N sequestration rates are found in 
northern Tibet. In contrast, negative S sequestration rates are globally distributed without a clear pattern. 
We further compared each nutrient sequestration rate with the corresponding total gas emissions, where 
each square in Figures 4c, 4f, and 4i represents the bin average of 10 g C m−2 year−1, 1 g N m−2 year−1, and 
1 g S m−2 year−1 increments. We found that an increase in C sequestration corresponds to an increase in 
C emission (the sum of CH4 and CO2), up to a maximum of 350 g C m−2 year−1, after which the emissions 
slightly decrease and stabilize between 700 and 400 g C m−2 year−1. Wetlands with high sequestration to 
emission ratios are located in the Southern Hemisphere (Amazon catchment, Malaysia, Indonesia, east 
Australia, and New Zealand) and are characterized by high SOM input and pH ≤ 6, which slows anaerobic 
reaction rates. We found the same patterns between N sequestration and total N emissions (corresponding 
to the sum of NO, N2O, and N2), but the N emissions decrease once reached the maximum. No clear trend 
between S sequestration and emissions (H2S) has been found. Comparing the wetlands affected by agricul-
tural inputs and those without, we found that the emission of C and N is greater in those with fertilization 
for the same amount of C and N sequestered; in contrast, the two values almost coincide for S sequestration.

The total long-term average of sequestered C, N, and S is 575 Tg C year−1, 20 Tg N year−1, and 7.4 Tg S year−1, 
respectively. In terms of sum per degree latitude (Figures 4b, 4e, and 4h), there are two peaks: the first across 
60°N and the second in the tropical area. The total value for carbon sequestration is lower than the one 
found in Mitsch et al. (2013), however, that value is an estimation from 21 wetlands distributed globally.

3.4. Controlling Variables

We analyzed the dominant variables that affect each GHG emission and nutrient sequestration rate, and 
we investigated whether these effects are associated with the KG climatic class. Figures 5 and 6 report the 
Pearson correlation coefficient between pairs of variables sorted from the positive (red) to the negative 
(blue) correlation.

The SOM input in the system (label SOM input) has the highest correlation with all the three GHG emis-
sions and the forcing variables. This correlation also helps to explain why the N2O emissions are high in 
northeast and southeast of the USA, despite N fertilization ranges between 0.1 and 5 kg N ha−1. Analyzing 
the aggregated KG classes, the net recharge (label P-ETA) has a positive but weak correlation with GHG. 
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However, a strong correlation was found in the continental regions (Dwa/Dwb/Dwc/Dwd/Dfa/Dfb classes), 
which tends to have a variable precipitation regime. N, P, and S fertilizations (labeled as N, P, and S Fert.) 
have weak correlations with each GHG emissions, either positive or negative depending on the target varia-
ble. N and S fertilizations have a weak and negative correlation with CH4, likely because the amended N and 
S increase the substrate competition and inhibition, except in the arid (Bsk and Bwh) and continental (Dfa) 
wetlands, where we found a positive correlation. In general, these are nutrient-poor environments, meaning 
that additional N input helps to sustain the microbial activity. N2O emission and N and S fertilization are 
generally positively correlated but are weakly negatively correlated in the temperate regions (Cs/Cwa/Cwb/
Cwc/Cfa/Cfb/Cfc).

Wetland GHG emissions are significantly correlated with microbial diversity. We found that BMGB is pos-
itively correlated not only with CH4 and CO2 emissions, which are the direct products of the reaction R6 
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Figure 4. (a) Average annual carbon (C) sequestration, (b) average C total per 0.5° latitude sequestration rate, and (c) average C sequestration against total 
C emissions (CH4 and CO2); (d) average annual nitrogen (N) sequestration, (e) average N total per 0.5° latitude sequestration rate, and (f) average annual N 
sequestration against total N emissions (NO, N2O, and N2); and (g) average annual sulfur (S) sequestration, (h) average S total per latitude 0.5° sequestration 
rate, and (i) average annual S sequestration S emissions (H2S). Each point represents a grid cell, while each square represents the bin average of a step of 10 g C 
m−2 year−1, 1 g N m−2 year−1, and g S m−2 year−1.



Global Biogeochemical Cycles

(methanogenesis) and R7 (methane oxidation), but also with N2O emissions. The presence of BMGB guar-
antees anaerobic conditions necessary for denitrification. The same trade-off explains the high correlation 
between BDEN and CH4 and CO2 emissions.

Interestingly, we found that among the soil variables, the simulated soil organic carbon (label SOC) has the 
highest correlation with each GHG, while temperature did not have a significant effect, in particular on CO2 
emissions (see also Section 3.5). Finally, pH has a negative correlation with all the target variables except 
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Variable Tropical Arid Temperate Continental Polar Global Reference

C seq 273.6 ± 169.0 31.7 ± 26.1 132.4 ± 112.0 113.1 ± 63.6 26.9 ± 24.2 120.37 ± 122.5 This work

C seqa 55.8–168.5 39–85.3 55.2–120 – 15.6–137.1 – Villa and Bernal (2018)

C seqb – – 12–1,180 – 2.96–407 185.2 Cheng et al. (2020)

N seq 11.4 ± 7.8 0.3 ± 0.9 4.0 ± 6.1 2.9 ± 2.1 0.5 ± 0.9 3.75 ± 5.6 This work

S seq 4.19 ± 2.99 0.04 ± 0.15 0.65 ± 1.35 0.37 ± 0.45 0.05 ± 0.14 0.98 ± 2.05 This work

Total C seqc 563 – 160 – 111 830 Mitsch et al. (2013)

Total C seqc 368 – 152 – 55 575 This work

aUpper and lower edges are the 25th and 75th quantiles. bMinimum and maximum values of the range. cTotal carbon sequestration (Tg C year−1).

Table 1 
Annual Average Nutrient Sequestration Rates for Different Climatic Classes (Value ± σ of g C/N/S m−2 Year−1)

Figure 5. Pearson coefficient of forcing for carbon input (label SOM input), net recharge (label PRE-ETA), N2 fixation (N fixation), and P, N, and S fertilization 
(label P, N, S Fert.), microbial functional groups concentration, that is, BMGB, BMOB, BAOB, BDEN, FDEP, BAER, BSRB, and BNOB, soil variables, that is, soil organic carbon 
(label SOC), temperature (label T), and pH (label pH), and soil properties, that is, porosity (label PHI), hydraulic saturation (label KS), plant CH4 emission 
efficiency (label PLEM), root depth (label ERTD), and bulk density (label BLD), against long-term average annual CH4, CO2, and N2O emissions during 2000–
2017. Results in each group are sorted from the highest positive (red) to the lowest negative (blue) correlation coefficient values. SOM, soil organic matter.
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in the arid and tropical climates (Af/Am/As/Aw), where it positively affects CH4, N2O, and CO2. Of all the 
soil properties, none seems relevant to GHG emissions except the porosity (label PHI), which is positively 
correlated with CH4 in some temperate and continental regions (Cs/Cwa and Dwa/Dwb/Dwc/Dwd), and 
bulk density (label BDL), which is negatively correlated with CH4, CO2, and N2O in some continental re-
gions (Dwa/Dwb/Dwc/Dwd).

The carbon input (label SOM input) has the highest and most uniform correlation among all the forcing 
conditions against each nutrient sequestration. By contrast, N, P, and S fertilizations (labeled as N, P, and S 
Fert.) have a weak negative correlation because the fertilizer increases the input of rapidly degradable sub-
strates. However, in the arid (Bsk and Bwh) and continental (Dfa) wetlands, we found a positive correlation 
with fertilizer input. As mentioned above, additional nutrient inputs to these soils helps to sustain microbial 
activity, but because of the extreme temperature and precipitation regimes, only a part of the fertilizer nu-
trients are sequestered in the soil matrix. Increases in microbial activity decrease nutrient sequestration. In 
particular, heterotrophic respiration is 10 times faster than the anaerobic one. In fact, we found that BMGB is 
highly positively correlated with sequestration of all nutrients, while BAER is negatively correlated in most 
of the KG classes.

Among the soil variables, the simulated soil organic carbon (label SOC) is the most highly correlated with 
sequestration of C, N, and S, while pH is strongly negatively correlated, except in arid regions (Bsk/Bwh/
Bwk). As per GHG emissions, the porosity (label PHI) is positively correlated with each KG class, and the 
bulk density (label BDL) is negatively correlated.
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Figure 6. Pearson coefficient of forcing for carbon input (label SOM input), net recharge (label PRE-ETA), N2 fixation (N fixation), and P, N, and S fertilization 
(label P, N, S Fert.), microbial functional groups concentration, that is, BMGB, BMOB, BAOB, BDEN,FDEP, BAER, BSRB, and BNOB, soil variables, that is, soil organic carbon 
(label SOC), temperature (label T), and pH (label pH), and soil properties, that is, porosity (label PHI), hydraulic saturation (label KS), plant CH4 emission 
efficiency (label PLEM), root depth (label ERTD), and bulk density (label BLD), against long-term average annual carbon (C), nitrogen (N), and sulfur (S) 
sequestration rate. Results in each group are sorted from the highest positive (red) to the lowest negative (blue) correlation coefficient values. SOM, soil organic 
matter.



Global Biogeochemical Cycles

3.5. Dynamic Analysis

We examined if a specific subseasonal relationship exists between GHG emissions and temperature, SOM 
input, BMGB, and BDEN, and whether fertilizer inputs affect this relationship. The KG climate classification 
groups wetlands within the same climate and the same or similar vegetation cover (Rohli et al., 2015). The 
starting point (January) is represented in Figure 7 with a dot while the arrow shows the time direction. 
Figure 7 reports only the KG classes (and therefore only the grid cells) affected by fertilization inputs, while 
Figure S11, shows the results for all KG classes.
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Figure 7. Dynamic analysis: CH4 with changing temperature (a), SOM input (b), and BMGB concentration (c) during 1 year; CO2 with changing temperature (d), 
SOM input (e), and BMGB concentration (f) during 1 year; N2O with changing temperature (g), SOM input (h), and BDEN concentration (i) during 1 year; January 
is the initial point, represented with a dot, then the arrow shows the direction. Data refer only the grid cells affected by agricultural runoff. Gray dashed line 
represents each KG class without fertilization inputs. SOM, soil organic matter; KG, Köppen–Geiger.
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Fertilization inputs slightly decrease CH4 emissions (Figures 7a–7c) due to electron competition except in 
arid regions (Bsh, Bsk, and Bwh), where the emissions remain almost constant. In contrast, CO2 emissions 
increase slightly (Figures 7d–7f) because of a decrease in CH4 production and oxidation, and a significant 
increase in N2O production (Figures 7g–7i). We found hysteresis in the relationship between CH4 and CO2 
emissions and temperature, with higher emissions during autumn than in spring at the same temperature 
(Chang et al., 2020), while SOM input and BMGB do not.

Dry climates (Bsh, Bsk, and Bwh) have the lowest CH4 emissions and do not show a wide hysteresis against 
temperature (Figure 7a). These areas have extreme temperatures that affect the vegetation (the major bi-
ome is desert, Rohli et al., 2015), with very low SOM input (Figure 7b). The tropical area is divided into two 
groups: rain forest (Af and Am in Figure S11) has high CH4 emissions, SOM input, and BMGB concentrations 
and is not affected by agricultural runoff; and the savanna (As/Aw), characterized mainly by grasslands 
(Rohli et al., 2015) with low SOM input, emissions, and BMGB concentrations. Continental and temperate re-
gions show the most significant change in CH4 emissions as a function of temperature (Figure 7a). Despite 
the highest emissions in Dfc (subarctic), Dfb (warm summer continental), and Cfb/Cfc (humid subtropical 
climate and oceanic climate), the effect of fertilizer is minor. Dfc and Dfb are characterized by grassland, 
peatland, and temperate forest (Rohli et al., 2015); hence, the annual SOM input is very high (Figure 7b), 
while Cfb/Cfc is characterized by tundra, grassland, and temperate forest, with high SOM input during 
summertime. Surprisingly, the BMGB concentration is quite stable over the year in each KG climatic group, 
with no significant changes, even accounting for fertilization (Figure 7c).

CO2 emissions show dynamics similar to CH4, highlighting again the strong correlation between these two 
gases (Figures 7d–7f).

Figures 7g–7i show very different dynamics for N2O emissions, with no hysteresis against temperature and 
a much wider cycle due to fertilization. Moreover, higher average emissions occur around April in Cfb/Cfc, 
Cfa, Dfb, Dfc, Dfa, and Cwb/Cwc climatic regions (Figure 7g). Emissions in tropical areas are lower than 
in other areas because of fewer anthropogenic pressures, including agricultural fertilization (Figures 7g–7i 
and S11g–S11i). In addition, tropical areas consist of rainforest (Rohli et al., 2015), therefore the C:N litter 
aboveground is very high (C:N

NPPAB
 = 64.30), releasing less N to the soil. Additional moderate inputs of N 

fertilizer have little effect on emissions. BDEN dynamics are very similar to CO2 or CH4 emissions and BMGB, 
with little change over the year (Figure 7i); however, here, fertilizers have a significant effect on biomass, in 
particular in the Cfb/Cfc and Dfa classes.

4. Discussion

Current global estimates of wetland CH4 emissions range between 95 and 213 Tg C-CH4 year−1 (Kirschke 
et al., 2013; L. Liu et al., 2020; Melton et al., 2013; Poulter et al., 2017; Saunois et al., 2020; Tian et al., 2015; 
Zhu et al., 2015) across different historical periods, different estimation approaches, different climatic 
forcing, and wetland area fractions. Here, we estimated an average CH4 global emission of 135 Tg C-CH4 
year−1 between 2000 and 2017. On average, our estimates are slightly greater than other bottom-up es-
timates in Saunois et  al.  (2020) (Figure  S10b) but still in the range of top-down estimated emissions. 
Most of the current models linked CH4 production to NPP, temperature, pH, and redox conditions using 
multiplication factors, but without accounting for microbial growth and carbon sequestration dynamics, 
the latter being very important in C-rich northern peatlands. Rising temperature and permafrost thawing 
make part of prestocked C in these areas available to microorganisms, thus increasing GHG emissions 
significantly (Baldwin et al., 2014; Davidson & Janssens, 2006; Kuhn et al., 2018). The tropical area is 
also the primary contributor to intra-annual variations given its favorable temperature and persistently 
large wetland fractional area. The northern latitudes contribute most of the high intra-annual variability 
(Figure 3).

Agronutrient inorganic fertilization had minor effects on wetland CH4 and CO2 emissions but significantly 
affected the N2O emissions (Barnard et al., 2005; Kroeze & Seitzinger, 1998). Neglecting runoff of N from 
fertilization would underestimate the available concentration of 

4
NH  and 

3
NO  in wetland soils (Morse 

et al., 2012), resulting in 13% reduction in N2O emissions in the Northern Hemisphere. The overall emis-
sion of N2O from wetlands is not particularly high compared to agriculture's contribution. However, N2O 
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is almost 300 times more powerful as a GHG than CO2, which could represent a potential problem, both in 
terms of global warming and biodiversity conservation. Nutrient-rich inputs to wetlands also increase plant 
productivity and may change the dominant plant composition (Egertson et al., 2004; Hagerthey et al., 2008; 
Johnson & Rejmánková, 2005), thus directly affecting nutrient decomposition, retention, and turnover rates 
(Verhoeven et al., 2006). Increased nutrient inputs, together with an increase in temperature, may increase 
N2O emissions synergistically after considering the positive correlation between the two variables (Fig-
ure 5). The relationship between emissions and either temperature or SOM input shows a high degree of 
complexity (Figure 7) as it strongly depends on the type of major biomes present. A deeper understanding 
of these dynamics in each climatic region may give a better description of SOM input in terms of quality 
(C:N and C:S litter ratio) and quantity (amount of litter entering the soil) and could be used to improve 
descriptions of biogeochemical cycles in wetlands. Moreover, N fertilization was positively correlated with 
CH4 emissions in arid climates, where additional N helped to sustain microbial activity in a nutrient-poor 
environment.

The addition of fertilizers interferes not only with the biogeochemical cycles of a wetland but also with the 
ecological system. Reis et al. (2017) estimated the impact of human pressure on inland wetlands and found 
that tropical areas, although generally pristine, have the highest “human influential factor” due to forest 
conversion into agricultural land and for population expansion. Both contributions may result in a high 
nutrient load reaching the wetland, thus altering the emissions, and the ecological equilibrium, that is, in-
creasing eutrophication and threatening the local fauna. The actual impact of agriculture is more complex, 
and it involves consideration of essential ecosystem services (McBratney et al., 2014). A better framework 
that combines complex biogeochemical and ecosystem service assessment is essential to set up a more ef-
fective conservation plan.

Our results demonstrated the importance of accounting for coupled protection, dissolved, and gaseous 
phases. We found that the tropical and temperate climates showed the highest rates of nutrient seques-
tration, followed by continental, polar, and arid climates, in agreement with previous literature (Table 1). 
Our modeled global average C sequestration rate is 120.4 g C m−2 year−1 regardless of the type of wetland 
or climatic class and is lower than in Cheng et al. (2020), who reported 185.2 g C m−2 year−1. We also found 
that high C and N sequestration rates (e.g., 350 g C m−2 year−1 and 22 g N m−2 year−1) coincide with high 
gas emission rates, similar to field experiments in Nahlik and Mitsch (2010) and Bernal and Mitsch (2013). 
This result indicates that high SOM input rates positively affect emissions, supplying substrate to soil mi-
croorganisms, and concurrently leading to a high potential sequestration rate. It also highlights the strong 
link between factors that affect microbial dynamics and soil sequestration and the need for these processes 
to be described together (Villa & Bernal, 2018). BRTSim-BAMS4 can allocate the carbon input in different 
pools, that is, slow and fast biodegradable constituents. Having highly mobile species and highly protected 
species that dynamically change according to local conditions provides a better nutrient budget balance at 
different time scales.

We found that fertilization inputs do not promote C, N, and S sequestration, and the two variables are 
weakly negatively correlated in contrast to results from Cheng et al. (2020). However, additional N inputs 
help sustain plant growth particularly in nutrient-poor environments such as in arid areas, thus resulting in 
greater emissions and also sequestration (Hobbie, 2005). Another important factor controlling the emission 
is the temperature, which indirectly affects the plant yield, hence the SOM input, and the biological reaction 
rates, even if only the latter feature was included in our model formulation.

As with all models, uncertainties exist in our model projections. BRTSim-BAMS4 includes a wide range of 
complex biogeochemical reactions and feedback responses from the environment. Here, we did not inves-
tigate the errors in parameters that may affect the level of uncertainty of this study, although a sensitivity 
analysis was developed in previous works with the parent reaction network (Ceriotti et  al.,  2020; Pasut 
et al., 2020), highlighting the main biogeochemical processes that controls GHG emissions and C and N 
stocks in different ecosystems and hydroclimatic conditions. Whether the 13% decrease in N2O emissions 
is within the order of magnitude of the model error is uncertain. More long-term observations of N2O 
emission from flux towers in wetlands are required, but these are still a great challenge. In addition, both 
the reaction networks and simulation setup may be improved. For instance, both wetland and cropland 
areas have likely changed in these last 18 years, while we only account for changes in wetland area. A better 
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description should also include cropland expansion and therefore variable quality and quantity of runoff. 
Additionally, the biochemical kinetic parameters in the model are all spatially homogeneous, except for 
a few specific parameters that are vegetation dependent (e.g., C:N ratio of NPPAG, N2 fixation, root depth, 
and CH4 plant emission efficiency). Neglecting the spatial distribution of these parameters results in a 
simplified description of microbial adaptation, which may introduce uncertainties in tropical areas, where 
pH is, on average, very low (Menne et al., 2012) and the temperature is mostly continuously high, and in 
northern latitudes, where temperatures are very low (Meng et al., 2012; Zhu et al., 2015). The effect of pH 
on each biologically mediated reaction was taken into account using a Michaelis–Menten term describ-
ing the microbial growth as neutrophil (Paul, 2014), hence with optima between pH 5 and 8. However, 
it has been found that the reduction of N2O to N2 is slowed down, sometimes even prevented, in acid 
soils, thus resulting in high N2O emissions (B. Liu et al., 2014). This may significantly affect the estimated 
emissions in peat soil, where the average pH is lower than 6. Despite the complexity of the reaction net-
work described here, some biogeochemical processed are still missing in BAMS4. For instance, we do not 
account for iron, manganese, and copper cycles, and their relationship with sulfur precipitation, C cycle 
mineralization rate (Luke et al., 2015), and toxicity to plants and bacteria, because these processes have 
not been fully understood yet. For the simulation setup, we used a dynamic wetland area to postprocess 
the data, thus potentially introducing uncertainties in our estimates (Petrescu et al., 2010). Neglecting a 
proper description of the expansion and contraction of the wetland area may only partially describe the 
O2 diffusion in soil, hence the redox potential control on microbial processes. In addition, the effect of 
catchment drainage can be improved by accounting for point sources such as urban drainage, wastewater, 
and livestock discharges, which have recently been addressed as major sources of N input in watersheds 
(Bao et al., 2019). Finally, the runoff model does not explicitly account for river and stream flow. It has 
been found that N2O emission rates strongly depend on the flow rate, river size, and the order of the stream 
of the river (Marzadri et  al.,  2017; Turner et  al.,  2015). Hence, similar pattern may occur to wetlands: 
depending on their position in the catchment, they can be affected differently by dilution and previous 
degradation, affecting the nutrients turnover.

5. Conclusions

We found that fertilizer inputs mainly affect N2O emissions in the Northern Hemisphere, and neglecting 
them may underestimate by 13% the N2O emissions. SOM input, SOC, temperature, and methanogenic 
bacteria are the major variables affecting GHG emissions and C, N, and S sequestration. We also found 
hysteresis in the relationship of temperature with CH4 and CO2 emissions over a year, but not with N2O. 
Fertilization does not modify this relationship; however, CH4 emissions slightly decrease and CO2 emissions 
slightly increase with fertilization. Nutrient sequestration is one of the most important features of wetlands, 
and we found that for an equal C and N stock, wetlands affected by agriculture have higher GHG emissions. 
Our results show that coupling SOM with N and S cycles may support a more comprehensive biogeochem-
ical model assessment of a wetland, both in terms of emissions and sequestration, including ecological 
feedbacks regulating microbial responses. Our results point out the need to focus future research on linking 
nutrient cycles and their complex dynamics in different phases to improve past, present, and future assess-
ment of global nutrient budgets.

Data Availability Statement

We distribute the model output of CH4, CO2, and N2O emissions, soil temperature, soil moisture, long-term 
average soil pH, carbon input, long-term average annual carbon, long-term average soil carbon, nitrogen, 
and sulfur sequestration rate. We include also CH4 plant emission efficiency for aerenchyma transport, 
C:N and C:S ratio of litter in grassland, forest, and shrubland, N2 fixation rate in grassland, forest, shrub-
land, and wetland, and the average root density for forest, grassland, shrublands, and wetland. All the data 
are at 0.5° × 0.5° resolution, released in .NC format and available at https://figshare.com/s/e50db94ddff-
baa0f8304. DOI: 10.6084/m9.figshare.12904385.
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