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ABSTRACT

We present a reverberant speech enhancement algorithm which, op-
erating on the linear prediction residual of spatially averaged multi-
microphone observations, utilizes temporal averaging of neighbour-
ing larynx cycles. The enhanced larynx cycles are used to design
an equalization filter, which is applied in order to dereverberate both
voiced and unvoiced speech. The DYPSA algorithm is employed
and evaluated for larynx cycle segmentation of reverberant speech.
Simulation results show reverberation reduction with up to 5 dB in
terms of segmental signal-to-reverberant ratio and 0.34 in terms of
normalized Bark spectral distortion score.

Index Terms— Speech dereverberation, GCI identification

1. INTRODUCTION

Hands-free speech acquisition is often desired in modern telecom-
munications applications operating inside typical office environ-
ments. When a speech signal, s(n), is produced in an enclosed
space at some distance from an array of M microphones, the ob-
served signals are affected by noise, νm(n), and reverberation.
The latter arises from multipath propagation of the acoustic sig-
nal due to reflections off walls and surrounding objects, and is
characterized by the L-tap room impulse response (RIR), hm =
[hm,0 hm,1 . . . hm,L−1]

T . The observed signals are given by

xm(n) = hm
T
s(n) + νm(n), m = 1, 2, . . . , M, (1)

where s(n) = [s(n) s(n − 1) . . . s(n − L + 1)]T .
Reverberation reduces the perceived quality of speech and alters

the characteristics of the speech signal which can be problematic in
applications including speech recognition and source localization.
The deleterious effects are magnified as the distance between talker
and microphones is increased. Thus, dereverberation is important
for the future of hands-free applications. The aim of dereverberation
is to process the observations, xm(n), so as to form ŝ(n), an esti-
mate of s(n). This is a blind problem since, in most practical cases,
neither the signal s(n) nor the RIRs hm are available.

Dereverberation algorithms can be classified into [1]: (i) beam-
forming, where the microphone signals are delayed, weighted and
summed [2]; (ii) speech enhancement, where the speech signals
are modified to better fit some a priori model of the speech sig-
nal [2, 3, 4, 5, 6]; (iii) blind deconvolution, where the RIRs are iden-
tified blindly and equalized [7]. In theory, blind deconvolution pro-
vides a means for exact dereverberation. However, existing methods
suffer many practical problems such as RIR order estimation, noise
robustness and high computational load. Speech enhancement meth-
ods, on the other hand, are computationally efficient; they do not
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require explicit RIR identification and, although they only achieve
limited dereverberation, form practically applicable algorithms.

In this paper, we present the Spatiotemporal averaging Method
for Enhancement of Reverberant Speech (SMERSH): a speech en-
hancement algorithm based on processing of the linear prediction
(LP) residual. The speech signals are first spatially averaged fol-
lowed by temporal larynx cycle averaging of voiced speech LP resid-
ual. The effect of the intercycle averaging in the LP residual do-
main is embodied into an equalization filter which is subsequently
applied to both voiced and unvoiced LP residual. Finally, a speech
signal with reduced reverberation is synthesized with the enhanced
LP residual. In this way, SMERSH provides a more delicate and lin-
ear processing compared to previous LP residual processing meth-
ods [2, 3, 5]. In such previous methods the aim has been to attenuate
the signal between glottal closure instants (GCIs), without specific
consideration of the actual shape of the signal. This often results
in distortions and reduced naturalness of the processed speech. An
early version of the ideas behind SMERSH was presented in [8]. The
new developments and results presented here include: multichannel
calculation of the LP coefficients, DYPSA for larynx cycle segmen-
tation, a new weighting function for the inter-cycle averaging, and
the design and use of the equalization filter.

The remainder of the paper is organized as follows. LP residual
processing for dereverberation is reviewed in Section 2. In Section 3,
the building blocks of the spatiotemporal averaging method are de-
scribed. Simulation results are provided in Section 4 and conclusions
are drawn in Section 5.

2. REVERBERANT LP RESIDUAL PROCESSING

A speech signal, s(n), can be written in terms of pth order linear
prediction as [9]

s(n) = −a
T
s(n − 1) + e(n), (2)

where a = [a1 a2 . . . ap]
T are the LP coefficients, e(n) is the

prediction residual and s(n−1) = [s(n−1) s(n−2) . . . s(n−p)]T .
Similarly, the mth reverberant observation, xm(n) can be written

xm(n) = −b
T
mxm(n − 1) + em(n), (3)

with bm = [bm,1 bm,2 . . . bm,p]
T and xm(n − 1) = [xm(n −

1) xm(n − 2) . . . xm(n − p)]T . The LP coefficients can be found
by minimizing e(n) or, in the multichannel case, em(n). Alterna-
tively, in our approach the LP coefficients, b, are obtained by jointly
minimizing the M -channel cost function

JM = 1

M

PM

m=1

P
∞

n=−∞
e2

m(n). (4)

It was shown in [10] that this provides a close estimate of the LP co-
efficients calculated from clean speech, a. Consequently, the effects
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Fig. 1. LP residuals obtained from (a) clean, (b) reverberant, and
(c) spatially averaged speech.

of reverberation mainly reside in the LP residual, and a dereverber-
ated speech signal, ŝ(n), can be obtained by processing em(n) to
find an estimate of the true LP residual, ê(n) ≈ e(n).

3. THE SPATIOTEMPORAL AVERAGING METHOD

The observed speech signals are spatially averaged using a delay-
and-sum beamformer (DSB) [2]

x̄(n) = 1
M

PM

m=1 xm(n − τm), (5)

where τm is a delay to compensate for the different propagation
times between the source and the mth microphone, and is assumed
here to be known. We next introduce the inter-cycle averaging.

Consider Fig. 1 showing a portion of the LP residual obtained
from (a) clean speech, (b) reverberant speech, and (c) the output of
a DSB. The effect of reverberation on the LP residual can be clearly
seen, constituting many random peaks of similar strength to the pe-
riodic peaks representing the GCIs in clean speech. The following
specific observations can be made from the LP residuals in this and
in other examples:

(i) The LP residual from the DSB speech differs from that in clean
speech by seemingly random peaks that are left unattenuated
after the spatial averaging; these appear uncorrelated among
consecutive larynx-cycles.

(ii) The main features between consecutive larynx-cycles in the
clean speech LP residual change slowly and show high inter-
cycle correlation.

(iii) Strong periodic peaks in the LP residual from the DSB speech
appear to represent the GCIs seen in the clean speech.

Property (i) arises from the quasi-periodic nature of voiced excita-
tion. Property (ii) is well-known in speech processing and has been
applied in, for example, TD-PSOLA [9]. Motivated by these ob-
servations, it is proposed that applying a moving average operation
on neighbouring larynx cycles in voiced speech will suppress the
uncorrelated features and, hence, enhance the LP residual. There
are two issues to consider: first, it is necessary to correctly iden-
tify the peaks that belong to the original excitation so as to segment

the larynx cycles; secondly, peaks attributed to GCIs are important
to speech quality [11] and should remain unchanged. Thus, they
should be excluded from the averaging process.

DYPSA performs automatic GCI identification in speech [12].
GCI candidates are generated based on the positive zero-crossings
of the phase-slope function; additional candidates are obtained by
phase-slope projection when a local minimum is followed by a local
maximum without crossing a zero. Next, characteristics of voiced
speech are used to form a cost function, which is minimized using
dynamic programming so to select a subset of the GCI candidates
which are most likely to correspond to the true ones. Thus, at the
output of DYPSA we obtain the estimated time, n�, of the �th GCI.
The dynamic programming makes DYPSA robust to spurious peaks
in the prediction residual. This is attractive for GCI identification
in reverberant (or spatially averaged) speech and can be expected to
discriminate many of the erroneous candidates due to reverberation.
Experimental results confirming this are given in Section 4.

In order to leave the glottal pulse undisturbed, a weight function
is applied on each larynx frame prior to the averaging. The weight
function should, ideally, exclude only the true glottal pulse. How-
ever, in practice, GCIs are identified to an uncertainty in the order
of 1 ms [12] and the glottal pulse is not a true impulse but is spread
in time [9]. A weight function which was found suitable, with a
reasonable trade-off between the issues described above, is the time-
domain Tukey window defined as [13]

wu =

8>><
>>:

0.5 + 0.5 cos
“

2πu

β(L−1)
− π

”
, u < βL

2

0.5 + 0.5 cos
“

2π

β
− 2πu

β(L−1)
− π

”
, u > L − βL

2
− 1

1.0, otherwise,
(6)

where L is the length of one larynx-cycle (in samples) and
0 ≤ β ≤ 1 is the taper ratio of the window. An example of the
weighting function with β = 0.3 is shown in Fig. 2. The taper ratio
offers a tunable parameter with the beneficial ability to control the
amount of the larynx cycle to be included in the averaging process
and can be adjusted, for example, in some proportion to the estima-
tion error variance of the GCI identification algorithm. Following
the averaging procedure, the inverse weight function with weights ,
1−wu, is applied to the larynx frame under consideration to restore
the original glottal pulse shape.

Thus, each enhanced larynx cycle in a voiced speech segment
is obtained by averaging the current weighted larynx cycle frame
under consideration with I of its neighbouring weighted larynx cy-
cles. The result is then added to the original larynx cycle weighted
with the inverse weight function. The final expression for the �th
enhanced larynx cycle becomes

ê� = (I− W)ē� + 1
2I

P
I

i=−I
Wē�+i, (7)

where ē� = [ē(n�) ē(n� + 1) . . . ē(n� + L − 1)]T is the �th
larynx-cycle at the output of the DSB with its GCI at time n�,
ê� = [ê(n�) ê(n� + 1) . . . ê(n� + L − 1)]T is the �th lar-
ynx cycle of the enhanced residual, I is the identity matrix and
W = diag{w0 w1 . . . wL−1} is a diagonal weighting matrix. Since
the larynx-cycles are not strictly periodic but may vary within a few
samples, L is set to equal the length of the larynx cycle being pro-
cessed. Other larynx cycles used in the averaging that have less than
L samples are padded with zeros while those with more than L sam-
ples are truncated.

The choice of I is important: if too many cycles are included,
the averaging will remove uncorrelated portions from the original
excitation; if too few cycles are considered, erroneous peaks due to
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Samples normalized to one Larynx cycle,

Fig. 2. Larynx weighting function defined in (6) with β = 0.3.

reverberation will remain. For the results presented here, the num-
ber of cycles for averaging was set to I = 4. Generally, it was
found through several experiments that I > 4 provides less accurate
results.

Although the spatiotemporal averaging attenuates the reverber-
ant components in the prediction residual, two unresolved issues
remain: (i) only voiced speech segments are processed, leaving
reverberant effects clearly audible in the unvoiced speech and si-
lence, and (ii) the algorithm does not take advantage of past correct
larynx-cycle frames in case of erroneous larynx-cycle segmentation
due to inaccuracies in the GCI identification. These issues are ad-
dressed here by introducing an Li-tap FIR filter with coefficients
g� = [g�,0 g�,1 . . . g�,Li−1], which performs the equivalent oper-
ation of the inter-cycle averaging. A least squares estimate of g� is
found from ĝ� = ming�

‖gT
� ē� − ê(n�)‖

2 and is used to update a
slowly varying filter

ĝ(n�) = γĝ(n�−1) + (1 − γ)ĝ�, (8)

where 0 � γ � 1 is a forgetting factor with typical values in the
range {0.1 − 0.3}. The filter is initialized to ĝ(0) = [1 0 . . . 0]T

with the update performed only during voiced speech segments; in
unvoiced speech or silence it is applied at its last update.

4. SIMULATIONS AND RESULTS

Simulation results are provided to demonstrate the performance of
the DYPSA and SMERSH algorithms. The APLAWD database [14]
was used for evaluation with the sampling frequency set to fs =
8 kHz; it contains anechoic recordings comprising ten repetitions
of five sentences uttered by five male and five female talkers. Each
recording includes a Laryngograph signal, accommodating accurate
GCI identification with the HQTx algorithm [15, 12]. Autocorre-
lation LPC with 30 ms frames overlapping by 50% and prediction
order p = 13 was used in all experiments. Reverberation was
simulated by convolution of RIRs, generated with the source-image
method [16], and the anechoic speech samples. The simulated room
dimensions were arbitrarily set to 5× 4× 3 m with an eight element
linear microphone array with 0.05 m uniform element separation.
The talker was positioned at a distance of 2.5 m from the centre of
the microphone array. The reverberation time, T60, was varied be-
tween 0.1 s and 0.5 s.

We begin by evaluating the robustness of the DYPSA algo-
rithm’s GCI identification in the presence of reverberation. Follow-
ing the approach in [12], the GCIs obtained with HQTx were used
as the reference. Two metrics were employed for performance eval-
uation of the DYPSA algorithm on voiced speech: detection rate,
defined as the percentage of reference GCIs for which exactly one
GCI is detected with DYPSA, and identification accuracy defined as
the standard deviation of the distance between the reference and the

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

50

60

70

80

90

100

D
e

te
c

ti
o

n
R

a
te

(%
)

Reverberation Time (s)

Clean Reverberant DSB

Fig. 3. Detection rate of DYPSA for clean, reverberant, and DSB
pre-processed speech.
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Fig. 4. Identification accuracy of DYPSA for (a) reverberant,
(b) DSB pre-processed, and (c) clean speech.

identified GCIs. The GCIs from the HQTx algorithm were used as a
voiced speech detector. Only those GCIs obtained with DYPSA that
are within a voiced region were kept. However, within this voiced re-
gion, the GCIs were left as found by DYPSA, i.e. including possible
false or inaccurate estimates.

Figure 3 shows a plot of the detection rate versus reverberation
time, for clean, reverberant, DSB pre-processed speech, and the cor-
responding identification accuracy is shown in Fig. 4. These results
are the average over utterances in APLAWD. The clean speech re-
sults are the same as in [12], showing a detection rate of 95.7% and
identification accuracy of 0.71 ms. The detrimental effect of rever-
beration is apparent, with detection rate drop of up to 40% and accu-
racy in excess of 1 ms at T60 = 0.5 s. Remarkably, DYPSA with the
DSB as a pre-processor, provides 71.8−93.9% in detection rate with
accuracy in the range 0.71 − 0.85 ms, which, although worse than
for anechoic speech, is comparable to other algorithms operating on
clean speech as seen from the results presented in [12].

The sentence ‘George made the girl measure a good blue vase’
was used as an illustrative example for the dereverberation experi-
ment. Segmental signal-to-reverberation ratio (SRR) and Bark spec-
tral distortion (BSD) [1] were employed as evaluation metrics.

The results in terms of segmental SRR, averaged over all ten
talkers in APLAWD, are shown in Fig. 5 for (a) reverberant speech at
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Fig. 5. Segmental SRR vs. reverberation time for (a) reverberant,
(b) DSB processed, and (c) SMERSH processed speech.

Fig. 6. BSD vs. reverberation time for (a) reverberant, (b) DSB
processed, and (c) SMERSH processed speech.

the microphone closest to the talker, (b) DSB speech and (c) speech
processed with SMERSH; the corresponding results in terms of BSD
are shown in Fig. 6. Reverberation reduction of up to 5 dB in seg-
mental SRR and 0.34 in BSD score is observed at T60 = 0.5 s,
which corresponds to an improvement of 2.4 dB and 0.07 over the
DSB. The following can be noted regarding perceptual quality of the
processed speech: (i) the reverberant effects are reduced and (ii) the
talker appears to be closer to the microphone.

5. CONCLUSIONS

We have presented a multimicrophone method for enhancement of
reverberant speech using spatial averaging of the speech signals and
temporal inter-cycle averaging in the LP residual. Since the lat-
ter relies on accurate GCI identification, we have demonstrated that
the DYPSA algorithm can successfully identify GCIs in reverberant
speech pre-processed with a delay-and-sum beamformer. Moreover,
we introduced the use of an equalization filter, calculated from the
enhanced larynx cycles, in order to tackle processing of both voiced
and unvoiced speech. Example simulation results confirm the im-
provement achieved by the proposed algorithm.
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