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ABSTRACT Identifying the changes and relationships between regional eco-environment quality and land-
scape pattern in an urban agglomeration have a great significance in realizing sustainable development goal.
However, limited research has been performed to understand the spatiotemporal change of eco-environment
quality, the variation of landscape pattern, and their relationship in an urban agglomeration. This study
selected the Jing-Jin-Ji (JJJ) urban agglomeration as the study area. A comprehensive index, the remote
sensing ecological index (RSEI), was utilized to understand the eco-environment spatiotemporal change
and landscape pattern variation at class-level and landscape-level of JJJ during 2001∼2015, then, their
relationship was explored. The major conclusions were as follows: (1) The average RSEI value of JJJ
increased from 0.43 to 0.46, which represented that the eco-environment of JJJ had improved in the fourteen
years. Among it, the improved region was mainly located in Zhangjiakou city, while the degraded region was
mainly distributed in the eastern Hebei plain. (2) The landscape characteristics of entire JJJ eco-environment
were becoming more aggregated, connected, diverse, and regular. However, fair, moderate, and good grades
were getting more concentrated and continuous; poor grade indicated a more fragmented and disconnected
trend; excellent grade displayed an expanded and concentrated situation. (3) Human factors have an
increasing influence on regional eco-environment changes. (4) Fair, moderate, and good grades showed
a more dominant and stronger influence on the variation of landscape pattern in JJJ. Specifically, the fair
grade had a positive correlation with the variation of landscape pattern, while moderate and good grades
had a negative one. All of these conclusions could be valuable information for relevant decision-makers in
managing or achieving the optimal eco-environment landscape pattern.

INDEX TERMS Jing-Jin-Ji urban agglomeration, landscape pattern, remote sensing ecological index,
spatiotemporal change.

I. INTRODUCTION

The eco-environment, defined as ‘‘the total quantity and qual-
ity of water resources, land resources, biological resources
and climate resources that affect human survival and devel-
opment’’, is a social-economic-natural compound system.
It not only provides human natural resources and living
environment service but also is the foundation and core of
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regional social and economic sustainable development [1].
Its quality can effectively indicate the degree of coordi-
nation between human production activities and the envi-
ronment of a region [2]. Since the implementation of the
policy of reform and opening up in 1978, great changes have
taken place in mainland China, especially in the aspects of
spatial urbanization, population expansion, industrialization,
etc. [3], [4]. However, accompanied by the spatial urban-
ization process, the eco-environment has also been greatly
influenced, for example, water and soil loss [5], urban heat
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islands [6], a decrease of vegetation coverage [7], air pollu-
tion [8], and so forth, which can pose a threat to the realiza-
tion of sustainable development goals. Hence, it is of great
importance to assess and analyze regional eco-environment
quantitatively.
Since the concept of Ekistics was promoted by Dox-

iadis in the 1950s, developed countries had carried out
some researches to analyze and evaluate urban living
environment quality [9], [10]. In 1992, Fu evaluated
eco-environmental qualities of China systematically [11].
To date, numerous studies have been conducted to assess
regional eco-environment at various scales, such as inter-
national [12], intercontinental [13], national [14], provin-
cial [15], city [16], etc. As for the evaluation methods,
it can be mainly divided into two types, which are qual-
itative and quantitative evaluation methods [1]. Till now,
there has developed several methods, for example, index
evaluation method [17], analytic hierarchy process [18],
ecological footprint method [19], artificial neural net-
work evaluation method [20], [21], matter element analy-
sis method [22], fuzzy integrated assessment method [23],
and so forth [1], [24]. Generally speaking, compared with
qualitative evaluation, quantitative evaluation gives more
objective judgement about the eco-environment. However,
numerous traditional methods could only evaluate the
whole regional eco-environment by one calculated value,
which is unable to provide the evaluation value of any
location.
Advances in remote sensing technology have shown

great potential in evaluating numerous aspects of regional
eco-environment at various scales, which owes to the prin-
cipal that remote sensing imagery acquires reflected radia-
tion of the earth surface. For example, regional vegetation
situation can be detected by one widely used index—
Normalized Difference Vegetation Index (NDVI) [25]; EVI-
derived ecosystem functional attributes (EFAs), promoted
by Alcaraz-Segura in 2017 [26], could be applied as one
important biodiversity variables in species distribution mod-
els. Besides, land surface temperature (LST), acquired from
remote sensing thermal imagery has also been an important
parameter to analyze the urban heat island and the dynamics
and evolution of regional thermal environments [27]. Over-
all, a single remote-sensing index can only reflect a limited
aspect. Considering the complexity of an eco-environment,
aggregated remote sensing index has drawn the attention
of scholars all over the world. He et al. [28] developed a
comprehensive evaluation index (CEI) to assess urban envi-
ronment change in China; Wei et al. [29] integrated six
indexes to evaluate the environment. What’s more, numer-
ous researchers combined remote sensing data and other
datasets to assess regional eco-environment. Wei et al. [30]
integrated 23 indices to assess environmental vulnerability;
Chang et al. [31] constructed an index system combined
14 indices to evaluate the ecological environment; Chai and
Lha [32] assessed ecological environmental quality (EEQ)
by selecting key indicators; Sun et al. [33] evaluated the

eco-environmental quality of Hainan island by establishing
an eco-environmental quality index (EQI), which was devel-
oped and published by the ministry of ecology and environ-
ment of China.

Generally, single remote sensing indices or existing aggre-
gated remote sensing indices mostly assess one certain
aspect of a regional eco-environment. Constructing one index
system is an effective way to comprehensively evaluate a
regional eco-environment, however, index system mostly
requires multi-source datasets, which is time-consuming
and inconvenient, moreover, the establishment of an appro-
priate sub-index system can exert a great influence on
the final evaluation result [34]. So, does there exist one
aggregated remote sensing index that can comprehensively
evaluate a regional eco-environment? One index promoted
by Prof. Xu in 2013 has made some progress [35]. This
index is named as remote sensing ecological index (RSEI),
it encompasses four sub-indexes representing climatic and
land-surface biophysical variables [36]. To be specific, these
four sub-indexes are normalized difference vegetation index
(NDVI), wetness (WET), normalized difference build-up and
soil index (NDBSI) and land surface temperature (LST),
respectively. Among it, NDVI represents the greenness aspect
of a regional eco-environment; WET represents the wetness
aspect; NDBSI represents the dryness aspect; LST represents
the heat aspect. Spatial principal component analysis (SPCA)
is an effective way to aggregate the most valuable infor-
mation [37]. By utilizing the SPCA method, RSEI can be
acquired. Till now, it has been widely applied in numerous
studies, which has proven to be an effective and convenient
index in quickly evaluating a regional eco-environment, such
as Fuzhou city [38]–[40]; Xiong’an New Area [41]; Nan-
chang city [42]; Dingcheng district in Changde city [43];
Zhengzhou city [44], etc. However, these existing studies
mostly applied RSEI to evaluate regional eco-environment at
city level based onmedium resolution remote sensing images,
like Landsat series image [38], which failed to evaluate at
the large region level. The major reason was that at the
large region level, it was inappropriate and difficult to apply
this index. For instance, one large region mostly requires
multiple Landsat images to cover the entire region, however,
due to the cloud pollution and the 16 days revisit period,
it was extremely hard to acquire all cloud-free images at
the same time. To solve this problem, integrating this index
with MODIS datasets and Google Earth Engine platform has
shown great potential.

Landscape ecology is one subject that aims to study and
improve the relationships between specific ecosystems and
their ecological processes [45]. Landscape pattern, as one of
the key research topics of landscape ecology [46], focuses
on the quantification of changes in the land elements’
configurations and compositions based on landscape met-
rics [47]–[49]. Moreover, landscape pattern is considered
to be an important indicator of landscape heterogeneity
and its effects on a variety of ecological processes [50].
Monitoring land use/cover changes and landscape pattern
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analysis have drawn much concern from scholars around the
world [51]. It was concluded that land use/cover changes
and landscape pattern variations have certain ecological
effects [52]. A literature review revealed that three main
issues had been studied, which were the changes in land-
scape patterns [53], [54], the influences of these changes on
ecological processes [55], [56], and the relationship between
landscape pattern changes and their driving forces [57]–[59].
For example, Wang et al. [47] found that cultivated land and
water bodies had a close relationship with four landscape-
level metrics. Besides these studies, the spatial configuration
of the urban thermal environment and its relationship with
landscape pattern metrics have been investigated by some
researchers [45], [60]. To date, however, existing studies
seldom investigated the relationship between different eco-
environment grades and landscape metrics.

An urban agglomeration is a highly developed spatial
form of integrated cities, with a research history traced back
to 100 years ago [61]. In 2014, the Chinese government
issued a development roadmap of ‘‘National New Urban-
ization Plan’’, which clearly pointed out to optimize and
upgrade eastern urban agglomerations, establish a coordi-
nated mechanism for urban agglomerations development,
and to achieve the green development goals based on pro-
tecting the eco-environment [62]. Till now, China has pro-
posed building a hierarchical urban agglomeration system
with five national-level large urban agglomerations, nine
regional-level medium-sized urban agglomerations and six
sub-regional-level small-sized urban agglomerations [61].
Jing-Jin-Ji urban agglomeration (JJJ), which is one of the
five large urban agglomerations and considered as ‘‘the three
engines of China’s economic growth’’ in the 21st century
(the other two are Yangtze Delta urban agglomeration and
Pearl River Delta urban agglomeration), was selected as the
study area. The aims of this study were to (1) analyze the
spatiotemporal changes of RSEI; (2) evaluate the landscape
pattern variation of RSEI grades based on class-level and
landscape-level metrics; (3) identify the relationship between
RSEI grades and landscape pattern.

II. MATERIALS AND METHODS

A. STUDY AREA

JJJ is located in north China (36◦05′∼42◦40′N,
113◦27′∼119◦50′E) and covers approximately 218,000 km2.
It includes two municipalities and eleven prefecture-level
cities, which are Beijing (BJ), Tianjin (TJ), Shijiazhuang
(SJZ), Tangshan (TS), Qinhuangdao (QHD), Handan (HD),
Xingtai (XT), Baoding (BD), Zhangjiakou (ZJK), Chengde
(CD), Cangzhou (CZ), Langfang (LF) and Hengshui (HS)
(Figure 1). This region has a temperate semi-humid and
semi-arid monsoon climate with the average temperature in
July and annual precipitation of 18∼27 ◦C and 524.4 mm
respectively. In 2017, the total population and gross domes-
tic product of JJJ reached 95.74 million and 8058.04 bil-
lion yuan, which accounted for 6.89% and 9.77% of that
of the whole country (http://www.stats.gov.cn). However,

FIGURE 1. Location of the study area.

along with the fast urbanization, quantitatively evaluating
the change of JJJ’s eco-environment has become a topic of
discussion.

B. DATA PREPARATION AND RSEI CONSTRUCTION

In this paper, MOD09A1 and MOD11A2 datasets were uti-
lized to construct RSEI. Specifically, MOD09A1 dataset pro-
vides an estimate of the 8-day Terra MODIS seven bands
surface spectral reflectance corrected for atmospheric con-
ditions such as aerosols, gasses, and Rayleigh scattering at
500 m resolution; MOD11A2 dataset provides an average
8-day land surface temperature (LST) at 1000 m resolu-
tion based on the generalized split-window algorithm [63].
In order to keep the results comparable, both datasets in
the time span of 1st June to 31st October were processed
on Google Earth Engine (GEE) platform (https://code.earth
engine.google.com).

RSEI is composed of four sub-indexes, which are normal-
ized difference vegetation index (NDVI), wetness (WET),
normalized difference build-up and soil index (NDBSI) and
land surface temperature (LST). Different from previous
studies, RSEI integrates MODIS high-temporal datasets,
making it possible to assess large-scale regional eco-
environment. Except that LST is directly acquired from
MOD11A2 dataset, NDVI [25], WET [64] and NDBSI [35]
are acquired based on the following formulas, where ρ is the
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band surface reflectance, blue, green, red, nir, mir1, mir2,
mir3 are the MODIS bands at 459-479 nm, 545-565 nm,
620-670 nm, 841-876 nm, 1230-1250 nm, 1628-1652 nm,
and 2105-2155 nm respectively.

NDVI = (ρnir − ρred ) / (ρnir + ρred ) (1)

WET = 0.1084 × ρred + 0.0912 × ρnir

+ 0.5065 × ρblue + 0.4040 × ρgreen

− 0.2410 × ρmir1 − 0.0.4658 × ρmir2

− 0.5306 × ρmir3 (2)

NDBSI =
1

2







2×ρmir2
ρmir2+ρnir

−
ρnir

ρnir+ρred
−

ρgreen
ρgreen+ρmir2

2×ρmir2
ρmir2+ρnir

+
ρnir

ρnir+ρred
+

ρgreen
ρgreen+ρmir2







+
1

2

{

(ρmir2 + ρred ) − (ρmir2 + ρblue)

(ρmir2 + ρred ) + (ρmir2 + ρblue)

}

(3)

After acquired all 8-day sub-indexes results during the
period, a final average value of each sub-index was firstly
calculated andwas rescaled to 0∼1, then principal component
analysis (PCA) was performed in ArcGIS 10.6 software.
Normally, the first component of PCA (PC1) integrates the
largest information of the input dataset. Therefore, PC1 was
adopted to derive original RSEI value and the expression
could be written as follows.

RSEIorigin = 1 − PC1 [f (NDVI ,WET ,NDBSI ,LST )] (4)

Finally, RSEI was obtained by rescaling to 0∼1. The for-
mula of rescaling was as follows.

Xrescale = (Xi − Xmin) / (Xmax − Xmin) (5)

where Xrescale represents the rescaled result; Xmax and Xmin
represent the maximum and minimum value of X ; Xi means
X value at the ith pixel. Figure 2 is a flowchart.

C. RSEI SPATIOTEMPORAL CHANGE ANALYSIS

Normally, spatiotemporal change includes two aspects, which
are spatial change and temporal change. Before analyze RSEI
spatiotemporal characteristics, we set 0.2 as the interval to
divide RSEI into five grades, which are poor [0.0, 0.2), fair
[0.2, 0.4), moderate [0.4, 0.6), good [0.6, 0.8), and excellent
[0.8, 1.0], respectively. The dynamic model is one of the
frequently used models [47]. It can reflect the change degree
of a certain RSEI grade in a certain period quantitively. The
formula is as follows.

D =
Tend − Tstart

Tstart
×

1

P
× 100% (6)

where D is the dynamic degree; Tstart and Tend indicate the
area of a certain RSEI grade at the start and end of the
comparison period, respectively; P is the time interval.

Besides, the transition matrix method is applied to deeply
understand the area transition situation between different

FIGURE 2. RSEI construction flowchart.

RSEI grade [65]. The formula is as follows.

S =











S11 S12 · · · S1n
S21 S22 · · · S2n
...

...
. . .

...

Sn1 Sn2 · · · Snn











(7)
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TABLE 1. The brief introduction of selected landscape metrics.

where S represents the area of a certain RSEI grade; n is
the number of RSEI grade; Sij indicates the transformed area
from grade i to grade j in a certain period; Sii represents the
unchanged area in a certain period.

D. LANDSCAPE METRICS SELECTION AND CALCULATION

Numerous landscape metrics have been promoted to explain
the relationships between ecological processes and spatial
patterns. Till now, many programs have been developed and
promulgated, which acquires numerous landscape metrics
become more accessible [47]. Among it, Fragstats 4.2 soft-
ware is one of the most used platforms, it can compute hun-
dreds of landscape metrics for three levels: patch level, class
level, and landscape level [66]. However, previous studies
have found that redundancy between various metrics was
widely existed [51], [67].

Therefore, the selection of an optimal landscape metrics
is the key step for further landscape pattern analyses. Here,
correlation analysis of 54 metrics, including 24 metrics at the
class level and 30 metrics at the landscape level, was firstly
performed, then criterion |r| ≥ 0.9 was applied to exclude
unsatisfied metrics [67]; Next, combined with previous stud-
ies [47], [51], [60], [68], [69], ten represented landscape met-
rics were finally selected to quantitatively evaluate landscape
pattern variations at the different period with the support of
Fragstats 4.2 (use 8 cell neighbour rule). Table 1 is the brief
introduction of ten selected landscape metrics.

III. RESULTS

A. RSEI SPATIOTEMPORAL CHANGE ANALYSIS

Figure 3 illustrates the spatial distribution of four years of
RSEI. The average RSEI value of 2001, 2005, 2010 and
2015 were 0.43, 0.42, 0.51 and 0.46 respectively, which
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FIGURE 3. Spatial distribution of RSEI in JJJ.

presented an inverted ‘‘N’’ change trend. Generally, the eco-
environment of JJJ degraded slightly (2001∼2005), then
improved sharply (2005∼2010), and deteriorated again in the
last period (2010∼2015); however, from the perspective of
the entire period, the eco-environment of JJJ had improved.
To be specific, it could be found that the northern part
of JJJ had a better eco-environment compared with north-
western, central, and south-eastern part, which was following
the actual situation, as the northern part was mainly covered
with vegetation and belonged to a mountainous area named
Yanshan Mountain.
Table 2 displays RSEI five grades statistical result. It could

be found that area in poor eco-environment contracted from
2001 to 2010, and slightly expanded towards 2015; The fair
grade expanded and contracted alternately, with the greatest
shrinkage from 2005∼2010 (−28.71%); The area of moder-
ate grade also expanded and decreased alternately from the
first (2001) to the last year (2015), with the greatest change
from 2005 to 2010 (about +20%); The eco-environment in
the good and excellent grades expanded continuously from
2001 to 2010, then slightly declined to 2015. In general,
the extent of poor and excellent grades accounted for less than
5% of the study area in four periods, while the area with a fair
and moderate eco-environment was dominant.

In order to deeply understand different RSEI grades
change situation, dynamic transition analysis was performed
(Table 3 and Table 4). Generally, JJJ’s eco-environment had
undergone a remarkable change. To be specific, in the first
period (2001∼2005), the area of poor and moderate grade
decreased at a rate of 446.94 km2 ·y−1 and 2514.38 km2 ·y−1,

TABLE 2. RSEI grades statistical result.

TABLE 3. RSEI grades dynamic change of JJJ.

respectively; Among it, poor grade area mainly changed into
fair grade (4796.50 km2), accounting 99.13% of entire poor
grade changed area; moderate grade areamainly changed into
fair grade (19601.75 km2) and good grade (6072.00 km2),
accounting 76.34% and 23.65% of entire moderate grade
changed area. Fair, good and excellent grade showed sim-
ilar dynamic degree value, which was 2.28%, 2.57% and
2.55% per year, respectively. Among it, fair grade areamainly
changed into moderate and poor grade, accounting 79.13%
and 19.84% of entire fair grade changed area; as to good
grade, there had 3414.00 km2 and 458.00 km2 that changed
into the moderate and excellent grade. To excellent grade,
the area changing into good grade accounted for 99.77% of
the total excellent grade changed area.

In the second period (2005∼2010), poor and fair grade
displayed negative dynamic degree, which was −18.56%
and −11.36%, respectively. Besides, moderate, good and
excellent grade showed positive dynamic degree, among
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TABLE 4. RSEI grades transition matrix of JJJ.

it, the excellent grade had the highest dynamic degree
(+29.12%). To be specific, poor grade area mainly changed
into fair grade (4395.75 km2), accounting 98.66% of the total
poor grade changed area; Fair grade area mainly changed
into moderate grade (66984.25 km2), accounting 99.89%
of the total fair grade changed area; Moderate grade area
mainly changed into good grade (24049.50 km2), accounting
95.76% of the total moderate grade changed area; As to
good grade, it mainly changed into excellent and moderate
grade, which accounted 78.16% and 21.84% of the total good
grade changed area, respectively; To excellent grade, there
has 107.75 km2 that changed from excellent grade into good
grade, accounting 100% of the total excellent grade changed
area.

In the third period (2010∼2015), the poor grade had the
highest dynamic degree (+91.62%), followed by fair grade
(+19.35%); however, different from the second period, mod-
erate, good and excellent grade all had a negative dynamic
degree, which was −6.26%, −3.78% and −10.05%, respec-
tively. Combined with Table 4, poor grade area mainly
changed into fair grade (43.75 km2) and moderate grade
(3.25 km2), accounting 93.09% and 6.91% of the total poor
grade changed area; Fair grade mainly changed into poor and
moderate grade, accounting 26.72% and 73.28% of the total
fair grade changed area; Moderate grade mainly converted
to fair grade (51246.00 km2), accounting 95.66% of the
total moderate grade changed area; To good grade, the area
mainly changed into moderate grade (13529.80 km2), which
accounted 98.91% of the total good grade changed area; As

for the excellent grade, there had 1952.50 km2 that changed
into good grade, accounting 100% of the total excellent grade
changed area.

During the entire period (2001∼2015), poor, fair and
moderate grade all had a negative dynamic degree, while
good and excellent grade had positive one, representing the
eco-environment of JJJ had improved. According to area
transition matrix, poor grade mainly changed into a fair
grade (4820.50 km2) and moderate grade (1027.50 km2),
which accounted 82.43% and 17.57% of the total poor grade
changed area, respectively. Different from the former three
periods, fair grade mainly changed into a moderate grade
(25945.05 km2), accounting 93.74% of the total fair grade
changed area. Moderate grade mainly changed into a fair
and good grade equally, which accounted for 50.24% and
49.68% of the total moderate grade changed area, respec-
tively. To good grade, only 6.30% of the total grade area has
changed into other four grades, and mainly were moderate
grade (853.25 km2) and excellent grade (706 km2). As for the
excellent grade, it mainly changed into good grade, account-
ing 99.70% of the total excellent grade changed area.
In general, in a different period, area transition between

grades mainly happened in one adjacent grade, which rep-
resented that the range of RSEI variation mainly occurred
in ±0.2. Moreover, dynamic degree of all grade in the for-
mer three periods (2001∼2005, 2005∼2010 and 2010∼2015)
demonstrated positive and negative value alternatively. How-
ever, in the entire period (2001∼2015), the eco-environment
of JJJ represented an improved trend at the change rate

125540 VOLUME 8, 2020



J. Ji et al.: Spatiotemporal Change and Landscape Pattern Variation of Eco-Environmental Quality

FIGURE 4. Difference results in JJJ during 2001∼2015.

of −329.95 km2 · y−1 (poor), −517.55 km2 · y−1 (fair),
−225.09 km2 · y−1 (moderate), +1039.73 km2 · y−1 (good),
+32.86 km2 · y−1 (excellent), respectively. Here, we set
1∼5 to poor, fair, moderate, good and excellent grade, respec-
tively; then, difference method was performed by using RSEI
grade in 2015 minus RSEI grade in 2001; finally, we divided
the image into five types based on the pixel value, which
were highly degraded {−3, −2}, degraded {−1}, unchanged
{0}, improved {1}, and highly improved {2}, respectively
(Figure 4).

According to Figure 4, we found that improved region
was mainly distributed in the northwestern region (Zhangji-
akou city). To be specific, these highly improved regions
were mostly located in the central and southwestern part
of Zhangjiakou city. This had a great relationship with the
series policies implemented by the government, such as
‘Returning Farmland to Forest (grass) Project’, ‘Three-North
Shelter Forest Program’, ‘Beijing-Hebei Ecological Water
Resources Protection Forest Project’, etc. The degraded area
was mainly distributed in the eastern Hebei plain, where
there had intensive anthropogenic activities. One important
reasonwas that construction land and arable landweremainly
located in this region. To be specific, there had two highly
degraded regions, which were marked as A and B (Figure 4).
By importing these regions’ shapefile to Google Earth Pro,
we found that Region A was the lake named Angulinao,
which was dried since 2004. As for Region B, it belonged
to the Beidagang wetland located in Tianjin city. However,

TABLE 5. Four class-level metrics of each RSEI grade in JJJ from 2001 to
2015.

in the past years, natural wetlands showed an artificialization
trend, while these artificial wetlands were increasing occu-
pied by urban sprawl [70]. Generally, during 2001∼2015,
notable effects have been achieved in JJJ by putting a series
of environmental protection projects into practice. However,
more measures should be promoted to seek a coordinated
development between anthropogenic activities and natural
environment. Also, we found that these highly degraded and
highly improved regions accounted for a larger proportion
of JJJ, indicating that the change of JJJ’s eco-environment
almost occurred in one RSEI grade.

B. LANDSCAPE PATTERN VARIATIONS OF DIFFERENT RSEI

GRADES

Class-level landscape metrics can provide addition aggregate
properties at the class level that result from the unique config-
uration of patches across the landscape. In this study, after a
careful selection, the values of four class-levelmetrics, named
NP, LPI, AREA_MN, and COHESION, are shown in Table 5.
Besides, four class-level metrics variations across time were
analyzed (Figure 5).

NP, a shortened form of ‘number of patches’, repre-
sents the number of patches in each RSEI grade. Based on
Table 5, the fair and moderate grade had the largest NP value,
indicating that they had higher fragmentation. Combined
with Table 2, in 2005 and 2010, the NP of the fair grade
was 976 and 2047, however, the area was 108418.75 km2

and 46817.75 km2, respectively, indicating that fair grade
in 2010 was more fragmented and average patch size was
small. From 2001 to 2015, only the NP of excellent grade
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FIGURE 5. Four class-level metrics changes from 2001 to 2015.

increased, further indicating the eco-environment of JJJ had
improved.
LPI, the abbreviation of ‘largest patch index’, interprets the

percentage of the landscape comprised by the largest patch
of each RSEI grade. In 2001, 2005, and 2015, fair grade all
acquired the highest LPI value, followed by moderate grade,
indicating there existed large clumpy patch of both grades.
The LPI values of poor and excellent grades were less than 1,
which meant that both grades patches were dispersed.
AREA_MN, shortened of ‘mean patch size’, demonstrated

the average area of all patches in one RSEI grade. Fair,
moderate, and good grade all had higher AREA_MN value.
From 2001 to 2015, AREA_MN value of poor grade sharply
decreased, excellent grade changed a little, while fair, moder-
ate, and good grade all increased partially. Combinedwith NP
and LPI, during 2001∼2015, fair, moderate, and good grade
indicated an expansion and more continuous representation
of existing dominant patches, however, the decrease of total
fair grade and moderate grade area showed that some small
patches changed into other grades. Here, the decrease of
NP, the increase of LPI, and the almost unchangeableness
of AREA_MN of excellent grade deeply indicated that the
improvement of JJJ’s eco-environment.
COHESION measures the physical connectedness of the

corresponding patch type. In 2001∼2015, the COHESION
values of fair, moderate, and good grades were much high
(reaching 100%), representing three grades had extremely
good connectedness. Besides, the COHESION values of poor
and excellent grade in 2015 were lower and higher than that
one in 2001, respectively, indicating the decrease of poor
grade area and the increase of excellent grade area.
Generally, combined with Figure 5, from 2001 to 2015,

fair, moderate, and good grades were dominant. However,
we found that fair grade had the highest NP value, lowest LPI,

TABLE 6. Six landscape-level metrics of each RSEI grade in JJJ from
2001 to 2015.

AREA_MN, and COHESION value in 2010, indicating that
fair grade achieved the most fragmented situation. As to mod-
erate grade, it had the highest LPI and AREA_MN value, and
the second-highest NP and COHESION value in 2010, rep-
resenting that moderate grade accounted for the largest per-
centage of JJJ. Compared with 2001, in 2015, fair, moderate,
and good grades showed an increase of LPI and AVER_MN,
and a decrease of NP, indicating that patches were getting
more concentrated and continuous; however, the decrease of
four metrics of poor grade indicated the more fragmented and
disconnected situation. Besides, the increase of NP, LPI, and
COHESION value of excellent grade conveying the expanded
and concentrated situation, more importantly, the improve-
ment of JJJ eco-environment. As mentioned above, the
acquisition of these changes had a relationship with
the implementation of those environmental improvement
projects, such as ‘Returning Farmland to Forest (grass)
Project’, ‘Three-North Shelter Forest Program’, ‘Beijing-
Hebei EcologicalWater Resources Protection Forest Project’,
etc.

C. LANDSCAPE PATTERN VARIATION OF THE ENTIRE JJJ

URBAN AGGLOMERATION

Landscape-level metrics can measure the overall structure,
function or changes of the entire region by computing all
patches. Besides, these metrics can also be used to inter-
pret other characteristics, like fragmentation, connectedness,
diversity, etc. In this study, six landscape-level metrics after
careful selection were applied to identify these features
(Table 6).

CONTAG, the abbreviation of ‘contagion index’,
is inversely related to edge density. For example, when a
single class occupies a very large percentage of the landscape,
the value of CONTAG is high, and vice versa. From 2001 to
2015, the value of CONTAG increased first, then decreased,
but was still higher than the first period, representing the
enhancement of aggregation.

AI, shortened of ‘aggregation index’, measures the level of
aggregation of spatial patterns. From 2001 to 2015, the AI
value increased by 1.07%, combined with CONTAG, further
indicating the improvement of patches’ aggregation.

SHDI, the abbreviation of ‘Shannon’s diversity index’, is a
popular measure of diversity in community ecology, applied
here to reflect the diversity of RSEI grades. Compared with
2001, SHDI increased to 1.1272 in 2015, representing the
patches were getting more complex.
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IJI, shortened form of ‘interspersion and juxtaposition
index’, measures the patch adjacency and the degree of the
interspersion or intermixing of patch types. In the fourteen
years, IJI value had increased from 44.2041 to 44.6309, indi-
cating the patches of all RSEI grade in JJJ were integrated
gradually.
SHAPE_MN, shortened of ‘mean patch shape index’, is the

ration between the perimeter of a patch and the perimeter of
the simplest patch in the same area, which can be used to
reflect the shape complexity. Compared with 2001, in 2015,
the value of this metric decreased from 1.3182 to 1.3015, rep-
resenting that the shape of patches was getting more regular.
FRAC_MN, the abbreviation of ‘mean patch fractal dimen-

sion’, also measures the patch shape complexity. Same
as SHAPE_MN metric, the value of FRAC_MN metric
decreased from 1.0316 to 1.0306, further demonstrating that
patches’ shape was more regular.
In general, based on six metrics in landscape level,

we found that the patches of all RSEI grades in JJJ were
getting more aggregated, connected, diverse, and regular.

D. RSEI CHANGE IMPACT ON LANDSCAPE PATTERN

The changes of RSEI grades have a direct influence on land-
scape pattern. The above content has analyzed the RSEI grade
area change situation and the landscape pattern variations in
both class-level and landscape-level. Here, the relationship
between RSEI grades and landscape-level metrics was ana-
lyzed (Figure 6). The order of six metrics average R2 was
CONTAG (R2 = 0.0263) < AI (R2 = 0.1397) < SHDI
(R2 = 0.2796) < IJI (R2 = 0.5612) < SHAPE_MN (R2 =

0.7921) < FRAC_MN (R2 = 0.8898). CONTAG metric had
an extremely weak correlation with five RSEI grades, with
the average R2 of 0.0263, representing that the changes of
RSEI grade area hardly exerted influence on the variation of
CONTAG metric; As to AI metric, it had a higher correlation
with fair and moderate grades, which were the two dominant
grades. The left four metrics (SHDI, IJI, SHAPE_MN, and
FRAC_MN) all had a stronger correlation with fair and mod-
erate grades, moreover, poor, good, and excellent grades all
had an increasing correlation.

Generally, except those poor correlations, five RSEI grades
all had relatively good correlation, representing the changes
of RSEI grades influenced the variation of the landscape.
However, the effects were different. Poor and Fair grades
had a positive correlation with landscape-level metrics, while
moderate, good, and excellent grades had a negative one.
Besides, taking the small area proportion occupied by poor
and excellent grades (total less than 5%) into consideration,
the changes of left three grades showed a more dominant and
stronger influence on the variation of landscape pattern in JJJ.

IV. DISCUSSION

A. COMPARISON OF ECO-ENVIRONMENT QUALITY FROM

RSEI AND EI

In our study, ecological index (EI), announced by theministry
of ecology and environment of China [71], was adopted to

compare its result with the RSEI result. Here, to compare
EI and RSEI at the same dimension, RSEI value was mul-
tiplied by 100, accordingly, the range of five grades was
also multiplied by 100. Besides, the grading standard of EI
was also given by the ecological index technical criterion,
which was poor [0, 20), fair [20, 35), moderate [35, 55), good
[55, 75), and excellent [75, 100), respectively. Table 7 was
a comparison of thirteen cities’ EI and RSEI calculation
results. Among it, the changing trend column had two types,
the upward-pointing arrow meant the eco-environment of
this city during the fourteen years had improved, while the
downward-pointing arrow meant the eco-environment of this
city had deteriorated. Table 8 was a comparison of EI and
RSEI in JJJ during 2001∼2015.

According to Table 7, we found that EI value of
each city showed different change trend. To be specific,
from 2001 to 2015, Beijing, Tianjin, Shijiazhuang, Tang-
shan, Handan, Baoding, Zhangjiakou, Chengde, Cangzhou,
and Langfang all showed an increasing trend; however,
Qinhuangdao, Xingtai, and Hengshui all displayed a
decreased trend. As for RSEI, Beijing, Qinhuangdao, Baod-
ing, Zhangjiakou, Chengde, Cangzhou, and Shijiazhuang all
displayed an increasing trend, while Tianjin, Tangshan, Han-
dan, Xingtai, Langfang, and Hengshui showed the opposite
one. Generally, eight cities showed the same change trend in
both EI and RSEI, five cities showed the opposite change
trend. This might have a relationship with the difference
between the two indexes’ data acquisition and calculation
methods. The RSEI was purely calculated and derived from
remote sensing datasets, therefore, it could reflect the region’s
eco-environment anywhere. As for EI, it not only relied on
part remote sensing data but also relied on statistical data.
More importantly, statistical data could not be acquired data
the gridded level, therefore using one value to represent the
entire region might be inappropriate, which might have led to
their difference. Based on the grading standard of each index,
we compare them in four periods (Table 8). The grades of EI
in 2001, 2005, and 2010 all belonged to fair grade, while the
grades of RSEI in the same years belonged tomoderate grade.
In 2015, RSEI and EI all belonged to the moderate grade.
In general, RSEI and EI belonged to different grade in 2001,
2005, and 2010, but the EI value in three years was close to the
threshold value (35); moreover, the RSEI value in 2001 and
2015 was just slightly higher than the threshold value (40),
which meant that there existed little difference between RSEI
and EI. More importantly, during 2001∼2015, RSEI and EI
represented the same conclusion that the eco-environment
of JJJ had improved, which further validated our findings.
Numerous previous studies have validated the RSEI index
from several aspects at the city or provincial level. For exam-
ple, Yue et al. [38] constructed one PSR evaluating index
system, which integrated remote sensing data, statistical data,
meteorological data, and so forth, to compare its results with
RSEI result, although the area percentage of five grades was
different, the spatial distribution of their results was quite
similar with each other; Xu et al. [36] also found that RSEI
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FIGURE 6. Relationships between six landscape-level metrics changes and the area percentage of RSEI poor, fair, moderate, good, and excellent grades.
(a1) ∼(a5) were five RSEI grades and CONTAG. (b1) ∼(b5) were five RSEI grades and AI. (c1) ∼(c5) were five RSEI grades and SHDI. (d1) ∼(d5) were five
RSEI grades and IJI. (e1) ∼(e5) were five RSEI grades and SHAPE_MN. (f1) ∼(f5) were five RSEI grades and FRAC_MN.
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TABLE 7. A comparison of EI and RSEI calculation results of four years.

TABLE 8. A comparison of average EI and RSEI during 2001∼2015.

showed a small difference in monitoring eco-environment
condition by comparing EI and RSEI results. Generally,
although there existed a small difference, RSEI was proven
to be an effective index to evaluate region eco-environment,
whether in the city level, provincial level or large level, like
an urban agglomeration.

B. THE DRIVING FORCING OF JJJ’S ECO-ENVIRONMENT

CHANGE

To explore the driving factors’ influence on JJJ’s eco-
environment change in a different year, we have carefully
selected three natural factors, which were annual average
temperature (AT), annual precipitation (PR), and eleva-
tion (EV), and three human factors, which were land use
(LU), gross regional product per square kilometre (GP), and
population density (PD) [72], [73]. The Geodetertor method
was one method that could investigate the spatially strati-
fied heterogeneity of the geographic variable Y and explore
how factor X explains the spatial pattern of Y [74], [75].
The importance of a factor could be represented by the q
value, which ranges from 0 to 1. A higher q value indicates
that Y has a stronger spatially stratified heterogeneity and
factor X can explain 100 × q of the spatial pattern of Y .
In this study, Y represents the RSEI gridded result in 2001,
2005, 2010, and 2015; X represents each driving factor.
Table 9 was six driving factors q values in 2001, 2005, 2010,
and 2015.

TABLE 9. Six driving factors q values in 2001, 2005, 2010, and 2015.

According to Table 9, we found that, in the third natu-
ral factors, AT and EV had an increased influence during
2001∼2015, however, PR had a decreased one. Among it,
AT and EV could explain a relatively higher spatial stratified
heterogeneity of the RSEI, showing that the spatial distri-
bution of AT and EV might be consistent with the RSEI
spatial distribution; as for PR, the lower q value represented
that it had limited influence on the JJJ’s eco-environment
changes, In the third human factors, LU, GP, and PD all
represented an increased influence from 2001 to 2015. To be
specific, three human factors had the highest q value in 2015,
which reflected that the intensity of anthropogenic activities
was also getting stronger, which might be connected with
the urbanization process [7]. Generally, the eco-environment
of JJJ in the different years was driven by both natural
and human factors, and during the process of urbanization,
anthropogenic activities could play an important role in
changing the regional eco-environment [76], [77].

C. IMPLICATIONS FOR REGIONAL ECOLOGICAL

LANDSCAPE MANAGEMENT

The analysis of investigating the relationship between
landscape-level metrics and RSEI grades percentage rep-
resented that mostly landscape-level metrics had a pos-
itive or negative correlation. Although in the field of
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region heat islands or LULC studies, the relationship was
explored [47], [78], our finding was still interesting. As our
finding firstly validated that there existed a relationship
between different RSEI grades and landscape-level metrics.
Moreover, it provided some implications for regional ecolog-
ical landscape management. As a better spatial configuration
could be achieved based on these relationships. To be specific,
if the regional ecological landscape managers want the whole
region’s landscape pattern more regular, then based on the
relationship, they can try to decrease the area of poor and
fair grades, and increase the area of moderate, good, and
excellent grades. Considering the area percentage of different
grades, focusing on the fair, moderate, and good three dom-
inant grades can achieve the regular landscape pattern more
efficiently. Generally, our finding may provide new insight
for the regional eco-environment landscape management and
configuration.

D. LIMITATIONS AND FURTHER STUDY

Even the variations of JJJ’s eco-environment and the dynam-
ics of landscape pattern have been investigated, there still
exist some limitations. Firstly, only four-time periods have
been performed, however, more deep information needs to
be studied. For instance, whether the eco-environment exists
natural fluctuations in the scale of per year still needs to dis-
cover. Secondly, we only selected limited landscape pattern
metrics to study the relationship, whether these metrics can
appropriately reveal these relationships still needs to explore
in the future. Thirdly, more driving factors influencing the
eco-environment also needs to investigate. Finally, simulation
tools may help achieve the optimal eco-environment land-
scape pattern and providing useful suggestions for relevant
policy-makers.

V. CONCLUSIONS

Four remote sensing ecological index (RSEI) maps of JJJ
from 2001 to 2015 were firstly acquired and equally divided.
Then spatiotemporal changes of RSEI and landscape pattern
variation in class-level and landscape-level were analyzed.
Finally, the relationship between the area percentage of five
grades and six landscape-level metrics were performed.
This study found that the eco-environment of JJJ had

improved in the fourteen years, with the RSEI value
increased from 0.43 to 0.46, with the improved region was
mainly located in Zhangjiakou city, while the degraded
region was mainly distributed in the eastern Hebei plain.
We also found that the landscape characteristics of entire
JJJ eco-environment were becoming more aggregated, con-
nected, diverse, and regular. Besides, this study found that
the eco-environment of JJJ was dominated by three RSEI
grades, which were fair, moderate, and good. More impor-
tantly, we found that anthropogenic activities exert increas-
ingly importance on the regional eco-environment changes
and different RSEI grades had a positive or negative cor-
relation with the variation of landscape pattern, which may
provide an view in managing and achieving the optimal eco-
environment landscape pattern.
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