
Spatiotemporal Compression Techniques
for Moving Point Objects

Nirvana Meratnia1 and Rolf A. de By2

1 Department of Computer Science
University of Twente

P.O. Box 217, 7500 AE, Enschede
The Netherlands

meratnia@cs.utwente.nl
2 Intl. Inst. for Geo-information Science & Earth Observation (ITC)

P.O. Box 6, 7500 AA, Enschede
The Netherlands
deby@itc.nl

Abstract. Moving object data handling has received a fair share of
attention over recent years in the spatial database community. This is
understandable as positioning technology is rapidly making its way into
the consumer market, not only through the already ubiquitous cell phone
but soon also through small, on-board positioning devices in many means
of transport and in other types of portable equipment. It is thus to be
expected that all these devices will start to generate an unprecedented
data stream of time-stamped positions. Sooner or later, such enormous
volumes of data will lead to storage, transmission, computation, and
display challenges. Hence, the need for compression techniques.
Although previously some work has been done in compression for time
series data, this work mainly deals with one-dimensional time series. On
the other hand, they are good for short time series and in absence of
noise, two characteristics not met by moving objects.
We target applications in which present and past positions of objects are
important, so focus on the compression of moving object trajectories. The
paper applies some older techniques of line generalization, and compares
their performance against algorithms that we specifically designed for
compressing moving object trajectories.

1 Database Support for Moving Objects Is Wanting

This is a crowded world with mobile inhabitants. Their mobility gives rise to
traffic, which, due to various behavioural characteristics of its agents, is a phe-
nomenon that displays patterns. It is our aim to provide tools to study, analyse
and understand these patterns. We target traffic in the widest sense: commuters
in urban areas (obviously), a truck fleet at the continental scale, pedestrians in
shopping malls, airports or railway stations, shopping carts in a supermarket,
pieces of luggage in airport logistics, even migratory animals, under the assump-
tion that one day we will have the techniques to routinely equip many of them

E. Bertino et al. (Eds.): EDBT 2004, LNCS 2992, pp. 765–782, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [594.962 841.96] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: AbbrechenEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Error /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

766 N. Meratnia and R.A. de By

with positioning devices. Fundamental in our approach is that we are not only
interested in present position, but also in positional history.

In recent years, positioning technology, location-based services and ubiqui-
tous applications have become a focus of attention in different disciplines. Per-
haps, most importantly, positioning technology is becoming increasingly more
available — cheaper, smaller, less power consumption — and more accurate.
This development does not depend on GPS technology alone: in-house tracking
technology applies various techniques for up-to-date positional awareness, and
adaptable antenna arrays can do accurate positioning on cell phones [1].

Databases have not very well accommodated such data in the past, as their
design paradigm was always one of ‘snapshot representation’. Their present sup-
port for spatial time series is at best rudimentary. Consequently, database sup-
port for moving object representation and computing has become an active re-
search domain. See, for instance [2,3,4,5,6].

As indicated above, there is a multitude of moving object applications. We
use the phrase as a container term for various organic and inorganic entities that
demonstrate mobility that itself is of interest to the application. Our principal
example is urban traffic, specifically commuter traffic, and rush hour analysis.
The mobile object concept, however, doesn’t stop there.

Monitoring and analysing moving objects necessitates the availability of com-
plete geographical traces to determine locations that objects have had, have or
will have. Due to the intrinsic limitations of data acquisition and storage devices
such inherently continuous phenomena are acquired and stored (thus, repre-
sented) in a discrete way. Right from the start, we are dealing with approxima-
tions of object trajectories. Intuitively, the more data about the whereabouts of
a moving object is available, the more accurate its true trajectory can be deter-
mined. Availability of data is by no means a problem as the coming years will
witness an explosion of such positional data for all sorts of moving objects. More-
over, there seem to be few technological barriers to high position sampling rates.
However, such enormous volumes of data lead to storage, transmission, compu-
tation, and display challenges. Hence, there is a definite need for compression
techniques of moving object trajectories.

Perhaps an example could help to better illustrate the essence of an effective
compression technique. Let us assume that a moving object data stream is a
sequence of 〈t, x, y〉, in which x, y represent coordinates of the moving object at
time t, respectively. If such data is collected every 10 seconds, a simple calculation
shows that 100 Mb of storage capacity is required to store the data for just over
400 objects for a single day, barring any data compression. We obviously want
to be monitoring many more moving objects, and for much longer time periods.

In this paper, various compression techniques for streams of time-stamped
positions are described and compared. We compare them against two new spatio-
temporal compression techniques, which are described in Sect. 3.3. The superi-
ority of the proposed methods for our application is demonstrated in Sect. 4.3.
We have previously reported on this work in [7].

Spatiotemporal Compression Techniques for Moving Point Objects 767

2 Spatial Compression Techniques

Object movement is continuous in nature. Acquisition, storage and processing
technology, however, force us to use discrete representations. In its simplest
form, an object trajectory is a positional time series, i.e., a (finite) sequence
of time-stamped positions. To determine the object’s position at time instants
not explicitly available in the time series, approximation techniques are used.
Piecewise linear approximation is one of the most widely used methods, due to
its algorithmic simplicity and low computational complexity.

Intuitively, a piecewise linear approximation of a positional time series as-
sumes that successive data points are connected by straight segments. There
exist non-linear approximation techniques, e.g., using Bézier curves or splines
[8], but we do not consider these here. In many of the applications we have in
mind, object movement appears to be restricted to an underlying transportation
infrastructure that itself has linear characteristics. This work, however, makes
no assumption as to such positional restrictions.

Our objectives for data compression are:

– to obtain a lasting reduction in data size;
– to obtain a data series that still allows various computations at acceptable

(low) complexity;
– to obtain a data series with known, small margins of error, which are prefer-

ably parametrically adjustable.

As a consequence our interest is with lossy compression techniques. The
reasons for the last objective are that (i) we know our raw data to already
contain error, (ii) depending on the application, we could permit additional
error, as long as we understand the behaviour of error under settings of the
algorithmic parameters.

Compression algorithms can be classified on another basis as well. They are
either batch or online algorithms, based on whether they require the availability
of the full data series. Batch algorithms do; online algorithms do not, and are
typically used to compress data streams in real-time. Batch algorithms consis-
tently produce higher quality results [9] when compared to online algorithms.

Appearing under different names, most compression algorithms relevant here
can be grouped into one of the following four categories [10]:

Top-Down: The data series is recursively partitioned until some halting con-
dition is met.

Bottom-up: Starting from the finest possible representation, successive data
points are merged until some halting condition is met. The algorithm may
not visit all data points in sequence.

Sliding Window: Starting from one end of the data series, a window of fixed
size is moved over the data points, and compression takes place only on the
data points inside the window.

Opening Window: Starting from one end of the data series, a data segment,
i.e., a subseries of the data series, is grown until some halting condition is

768 N. Meratnia and R.A. de By

met. Then, a compression takes place on the data points inside the window.
This will decrease the window size, after which the process is continued. The
‘window’ size is the number of data points under consideration at any one
point during the execution of the algorithm.

We have coined the term ‘opening window’ to do justice to the dynamic
nature of the size of the window in such algorithms. They are, however, elsewhere
sometimes considered ‘sliding window’ algorithms.

Various halting conditions may be applied. Possible conditions are:

– The number of data points, thus the number of segments, exceeds a user-
defined value.

– The maximum error for a segment exceeds a user-defined threshold.
– The sum of the errors of all segments exceeds a user-defined threshold.

An obvious class of candidate algorithms for our problem are the line gener-
alization algorithms. Some of these algorithms are very simple in nature and do
not take into account any relationship between neighbouring data points. They
may eliminate all data points except some specific ones, e.g., leaving in every
ith data point [11]. Another sort of compression algorithm utilizes the charac-
teristics of the neighbouring data points in deciding whether to eliminate one
of them. Particulary, these algorithms may use the Euclidean distance between
two neighbour points. If it is less than a predefined threshold, one is eliminated.
All these algorithms are sequential in nature, that is they gradually process a
line from the beginning to the end.

Although these two groups of algorithms are computationally efficient, they
are not so popular or widely used. Their primary disadvantage is the frequent
elimination or misrepresentation of important points such as sharp angles. A sec-
ondary limitation is that straight lines are still over-represented [12], unless small
differences in angle are used as another discarding condition. An algorithm to
overcome the first limitation was reported by Jenks [13], and involved evaluating
the perpendicular distance from a line connecting two consecutive data points
to an intermediate data point against a user threshold. To tackle the second
disadvantage, [14] utilized the angular change between each three consecutive
data points.

The most important compression algorithms that seem to hold conceptual
promise are reviewed in Sects. 2.1 and 2.2.

2.1 Top-Down Compression Algorithms

The top-down algorithms work by considering every possible split of the data
series — i.e., where the approximation error is above some user-defined threshold
— and selecting the best position amongst them. The algorithm then recursively
continues to split the resulting subseries until they all have approximation errors
below the threshold [10].

An often used and quite famous top-down method is the Douglas-Peucker
(DP) algorithm [12]. It was originally proposed for line simplification, and tries to

Spatiotemporal Compression Techniques for Moving Point Objects 769

Fig. 1. Top-down Douglas-Peucker algorithm. Original data series of 19 points. In this
case, only the first segment was recursively cut at data points 16, 12, 8 and 4.

preserve directional trends in the approximation line using a distance threshold,
which may be varied according to the amount of simplification required. McMas-
ter [15] who gives a detailed study of mathematical similarity and discrepancy
measures, ranks the DP algorithm as ‘mathematically superior’. White [16] per-
formed a study on simplification algorithms on critical points as a psychological
feature of curve similarity and showed that the DP algorithm was best at choos-
ing splitting points; he refers to the obtained results as ‘overwhelming’.

The algorithm works on the following basis. The first point of the data series is
selected as the anchor point ; the last data point is selected as the float point. For
all intermediate data points, the (perpendicular) distance to the line connecting
anchor and float points is determined. If the maximum of these distances is
greater than a pre-defined threshold, the line is cut at the data point that causes
that maximum distance. This cut point becomes the new float point for the
first segment, and the anchor point for the second segment. The procedure is
recursively repeated for both segments. The algorithm is illustrated in Fig. 1.

The DP algorithm clearly is a batch algorithm, as the whole data series is
needed at the start; the time complexity of the original algorithm is O(N2) with
N being the number of data points. Due to its simplicity, different implemen-
tations have been proposed. One such proposal, which succeeded to reduce the
complexity of the method to (N log N) was Hershberger’s proposal [17], who
defined the path hull as a basis for their implementation.

2.2 Opening Window Compression Algorithms

Opening window (OW) algorithms anchor the start point of a potential segment,
and then attempt to approximate the subsequent data series with increasingly
longer segments. It starts by defining a segment between a first data point (the
anchor) and the third data point (the float) in the series. As long as all distances
of intermediate data points are below the distance threshold, an attempt is made
to move the float one point up in the data series. When the threshold is going
to be exceeded, two strategies can be applied: either,

– the data point causing the threshold violation (Normal Opening Window,
a.k.a. NOPW), or

– the data point just before it (Before Opening Window, a.k.a. BOPW)

becomes the end point of the current segment, and it also becomes the anchor of
the next segment. If no threshold excess takes place, the float is moved one up

770 N. Meratnia and R.A. de By

Original data point

Compressed data

Fig. 2. Data series compression result of NOPW strategy: the threshold excess data
point is the break point. The data series was broken at data points 4, 8, 12 and 16.

Original data point

Compressed data

Fig. 3. Data series compression result of BOPW strategy: the data point just before
the threshold excess data point is the break point. The first window opened up to
point 6 (point 4 causing excess), making point 5 the cut point; second window opened
up to point 11 (8 causing excess) with 10 becoming the cut point etc.

the data series — the window opens further — and the method continues, until
the entire series has been transformed into a piecewise linear approximation.
The results of choosing either strategy are illustrated in Figs. 2 and 3.

An important observation, which can clearly be made from Figs. 2 and 3
is that OW algorithms may lose the last few data points. Countermeasures are
required.

Although OW algorithms are computationally expensive, they are popular.
This is because they are online algorithms, and because they can work reasonably
well in presence of noise but only for relatively short data series. The time
complexity of these algorithms is O(N2).

3 Spatiotemporal Algorithms

3.1 Why Line Generalizations Do Not Quite Apply

We discussed the above algorithms because they are well-known techniques for
generalizing line structures. All of them use perpendicular distance of data points
to a proposed generalized line as the condition to discard or retain that data
point. This is the mechanism at work also when we apply these algorithms to
our data series, the moving object trajectories, viewed as lines in two-dimensional
space.

But our trajectories have this important extra dimension, time. Intrinsically,
they are not lines, but historically traced points. As a consequence, the use of
perpendicular distance as condition is at least challenged, and we should look at
more appropriate conditions.

Spatiotemporal Compression Techniques for Moving Point Objects 771

�

(ts, xs, ys)

Ps

�

(te, xe, ye)

Pe

�

(ti, xi, yi)

Pi

��

(x′
i, y

′
i)

P ′
i

���������������

�

�

� �
�

�

�

�

�

�
�
�
�
�
���

Fig. 4. Original data points (open circles), including Pi, the start and end points Ps

and Pe of the approximated trajectory, and Pi’s approximated position P ′
i .

A trajectory is represented as a time series of positions. Generalizing a tra-
jectory means to replace one time series of positions with another one. Like
before, we can measure how effective this generalization is by looking at (a) the
compression rate obtained, and (b) the error committed. Unlike before, the er-
ror committed is no longer measured through (perpendicular) distances between
original data points and the new line, but rather through distances between pairs
of temporally synchronized positions, one on the original and one on the new
trajectory. This is a fundamental change that does justice to the spatiotemporal
characteristic of a moving point trajectory.

3.2 A Simple Class of Spatiotemporal Algorithms

The computational consequence of the above arguments is that the decision of
discarding a data point must be based on its position and timestamp, as well as
on the approximated position of the object on the new trajectory. This gives a
distance not necessarily perpendicular to the new, approximated, trajectory.

The situation is illustrated in Fig. 4, in which the original data point Pi

and its approximation P ′
i on the new trajectory Ps − Pe are indicated. The

coordinates of P ′
i are calculated from the simple ratio of two time intervals ∆e

and ∆i, indicating respectively travel time from Ps to Pe (along either trajectory)
and from Ps to Pi (along the original trajectory), respectively. These travel times
are determined from the original data, as timestamp differences. We have

∆e = te − ts

∆i = ti − ts

x′
i = xs +

∆i

∆e
(xe − xs) (1)

y′
i = ys +

∆i

∆e
(ye − ys) . (2)

After the approximate position P ′
i is determined, the next step is to calculate

the distance between it and the original Pi, and use that distance as a discarding

772 N. Meratnia and R.A. de By

criterion against a user-defined threshold. This is an important improvement not
only because we are using a more accurate distance measure but also because
the temporal factor is now included. The continuous nature of moving objects
necessitates the inclusion of temporal as well as spatial properties of moving
objects.

The application of the above distance notion for moving object trajectories,
in either top-down and opening window algorithms, leads to a class of algo-
rithms that we call here time ratio algorithms. We will later see that under an
improved error notion, this class gives substantial improvements of performance
in compression rate/error trade-offs.

In the sequel, by

– TD-TR we denote a top-down time-ratio algorithm, obtained from the DP
algorithm through application of the above time-ratio distance measuring
technique, and by

– OPW-TR we mean a opening-window algorithm applying the same time-
ratio distance measurement.

3.3 A More Advanced Class of Spatiotemporal Algorithms

Further improvements can be obtained by exploiting other spatiotemporal in-
formation hiding in the time series. Our time-ratio distance measurement was
a first step; a second step can be made by analysing the derived speeds at sub-
sequent segments of the trajectory, when these are available. A large difference
between the travel speeds of two subsequent segments is another criterion that
can be applied to retain the data point in the middle. For this, we will assume a
speed difference threshold will also have been set, indicating above which speed
difference we will always retain the data point.

By integrating the concepts of speed difference threshold and the time-ratio
distance discussed in Sect. 3.2, we obtain a new algorithmic approach, that we
call the class of spatiotemporal algorithms.

Observe that in principle both these concepts allow application in top-down
and opening-window algorithms. We have restricted ourselves here to an opening-
window version, applying both criteria. The pseudocode for the algorithm is
provided below. The notation used is described in Table 1.

The algorithm sets the anchor point, and then gradually ‘opens the window’.
In each step, two halting conditions are verified, one on the synchronous dis-
tance measure (using the time interval ratio), the other being a difference in
speed values between previous and next trajectory segment. These speeds are
not measured speeds, as we do not assume these to be available; rather, they
are speed values derived from timestamps and positions.

procedure SPT (s,max dist error ,max speed error)
if len(s) ≤ 2
thenreturn s
else is error ← false

e← 2

Spatiotemporal Compression Techniques for Moving Point Objects 773

Table 1. Overview of data types, variables and functions used in algorithm SPT

IR, IN the real, natural numbers
T, IL time stamps (T ∼= IR), locations (IL ∼= IR× IR)
IP trajectories (paths), IP ∼= seq (T× IL)

(x, y) : IL (easting, northing) coordinates
p : IP a trajectory (path) p

p : IP

len(p) : IN
the number of data points in trajectory p.

p : IP; 1 ≤ i ≤ len(p)

p[i] : T× IL
the ith data point of p, viewed as a time-stamped
location

p : IP; 1 ≤ k ≤ m ≤ len(p)

p[k, m] : IP
the subseries of p, starting at original index k up
to and including index m

d : T× IL

dt : T, dloc : IL
time stamp, location of the data point d

q, r : IL

dist(q, r) : IR
A function that takes two locations q, r and re-
turns the distance between them

p, s : IP

p ++ s : IP
A function that concatenates two trajectories

while e ≤ len(s) and not is error do
i← 2
while (i < e and not is error) do

∆e← s[e]t − s[1]t
∆i← s[i]t − s[1]t
(x′

i, y
′
i)← s[1]loc + (s[e]loc − s[1]loc) ∆i/∆e

vi−1 ← dist(s[i]loc, s[i− 1]loc) / (s[i]t − s[i− 1]t)
vi ← dist(s[i + 1]loc, s[i]loc) / (s[i + 1]t − s[i]t)
if dist(s[i]loc, (x′

i, y
′
i)) > max dist error or ‖vi − vi−1‖ > max speed error

then is error ← true
else i← i + 1

end if
end while
if is error

then return
[
s[1]

]
++SPT(s[i, len(s)],max dist error ,max speed error)

end if
e← e + 1

end while
if not is error

then return
[
s[1], s[len(s)]

]

end if
end if

774 N. Meratnia and R.A. de By

Table 2. Statistics on the ten moving object trajectories used in our experiments

statistic average standard deviation
duration 00:32:16 00:14:33
speed 40.85 km/h 12.63 km/h
length 19.95 km 12.84 km
displacement 10.58 km 8.97 km
of data points 200 100.9

4 Comparisons and Results

To assess their appropriateness and relative performance, both spatial and spa-
tiotemporal compression techniques were tested using real moving object trajec-
tory data. In total, we obtained 10 trajectories through a GPS mounted on a
car, which travelled different roads in urban and rural areas. The data includes
short and lengthy time series; various statistics of our data set are provided in
Table 2.

In using lossy compression techniques there is always a trade-off between
compression rate achieved and error allowed. In our case, the optimal compres-
sion technique should find a subseries of the original time series that has a high
enough compression and a low enough error. This error notion is the main tool
to evaluate the quality of the compression technique. But the literature has not
paid a lot of attention to explicitly measuring error. Mostly, attention has been
given to the identification of proper heuristics for discarding data points.

Such heuristics may or may not be proper for compressing moving object
trajectories. One of the contributions of this paper is the introduction of an
error formula for moving object trajectory compression; it is described below.
Since writing up this paper, we have found a similar approach was published
by Nanni [18], though in a more general setting, and thus not providing the full
details of the formula that we are after.

4.1 Error Notions

The quality of compression techniques is evaluated by using some notion of
error. Several mathematical measures have been proposed for this error notion,
for instance by [15,19]. Error notions can be based on different principles: length,
density, angularity and curvilinearity. Some of these notions have been used to
improve the appeal of the approximation (usually a line) in cartographic context.

Distance-based error notions seem less biased towards visual effect. In plain
line generalization, perpendicular distance is the error measure of choice. A sim-
ple method determines all distances of original data points to the approximation
line, and determines their average, but this is sensitive to the actual number of
data points. A method least sensitive to this number essentially determines the
area between original line and approximation. It effectively assumes there are
infinitely many original data points.

Spatiotemporal Compression Techniques for Moving Point Objects 775

(a) (b)

Fig. 5. Two error notions for a trajectory p being approximated by a. (a) error mea-
sured at fixed sampling rate as sum of perpendicular distance chords; (b) error mea-
sured at fixed sampling rates as sum of time-synchronous distance chords.

How would such an error measure translate to the spatiotemporal case of ob-
ject movement? Applying still perpendicular distances, insensitivity to the num-
ber of data points can be obtained by considering progressively finer sampling
rates, as illustrated in Fig. 5a. In this figure, p represents an original trajectory
with five segments, a represents its 1-segment approximation. The ti are equally
spaced time instants. On slower segments (like the first and third), distance
chords become more condensed. For progressively finer sampling rates, this er-
ror notion becomes the sum over segments of weighted areas between original
and approximation. The associated formulas are simple and direct.

4.2 A Spatiotemporal Error Notion

Given an original trajectory (p : IP) and an approximation trajectory (a : IP) of
it, we are interested in finding a measure that expresses without bias how well
the second approximates the first. The plain intuition we have for this is that
the average distance between the original object and the approximation object—
both synchronously travelling along their respective trajectories p and a—during
the time interval of their trajectories is the best measure that one can have. In
the remainder of this section, we are developing the formulas for that average
distance.

We will assume that both trajectories (p and a) are represented as series of
time-stamped positions, which we will interpret as piecewise linear paths. Given
the classes of compression algorithms that we study, we can also safely assume
that the time stamps present in the trajectory a form a subseries of those present
in the original p. After all, we have obtained that series by discarding data points
in the original, and we never invented new data points, let alone time stamps.
Assume that p has data points numbered from 1 to k.

Following from the above, we can define the average synchronous error α(p, a)
between p and a as a summation of the weighted contributions of all linear
segments in p.

α(p, a) =
∑k−1

i=1 (p[i + 1]t − p[i]t) · α(p[i : i + 1], a)
∑k−1

i=1 p[i + 1]t − p[i]t
. (3)

776 N. Meratnia and R.A. de By

�
a[j]loc

�
a[j + 1]loc

�

p[i]loc

�

p[i + 1]loc

��

loc(a, ti)

��

loc(a, ti+1)��������������

������
�
�
�
�
���

�
�
�
���

�
δxi

�
δxi+1

�

δyi

�
δyi+1

Fig. 6. Definition of δxi, δxi+1, δyi and δyi+1. Illustrated is the i-th segment of orig-
inal path p (at top), between points p[i]loc and p[i + 1]loc, and its approximation
loc(a, ti)–loc(a, ti+1) on trajectory a. Observe that this approximation will be part
of an a-segment, but that its start and end points may or may not coincide with real
data points of a.

We have not defined the function α fully in this way. Equation 3 covers the
case that p is a multi-segment trajectory, but not the case that it is a single
segment. We will cover that case through (4) below.

Now let us derive the single segment average synchronous error. If q is a single
segment trajectory, we can define loc(q, t) as the moving object position at time
t, in the style of (1) and (2). We generalize this notion of object position for an
arbitrary length trajectory p in the obvious way, such that loc : IP → (T → IL)
is a total function such that for any p, loc(p) is a partial function with domain
[p[1]t, p[len(p)]t].

With the single segment average synchronous error α(p[i : i+1], a) we express
the average distance between original and approximate object during the time
interval between indices i and i + 1, for convenience written as [ti, ti+1]. It can
be expressed as

α(p[i : i + 1], a) =
1

ti+1 − ti

∫ ti+1

ti

dist(loc(p, t), loc(a, t)) dt . (4)

In our further derivations, differences in coordinate values at time instants
ti and ti+1 between p and a (in that order) will be important. We will denote
these (four) differences, respectively as δxi, δxi+1, δyi and δyi+1. E.g., δyi equals
loc(p, ti).y − loc(a, ti).y, and so on. Observe that these are constants; they are
illustrated in Fig. 6.

Since both p and a during the given time interval are represented as straight
segments, the distance formula in (4) can be derived as having a well-known
polynomial format:

dist(loc(p, t), loc(p, t)) =
1
c4

√
c1t2 + c2t + c3,

where

c1 = (δxi − δxi+1)2 + (δyi − δyi+1)2

Spatiotemporal Compression Techniques for Moving Point Objects 777

c2 = 2 · ((δxi+1ti − δxiti+1) · (δxi − δxi+1) + (δyi+1ti − δyiti+1) · (δyi − δyi+1))
c3 = (δxi+1ti − δxiti+1)2 + (δyi+1ti − δyiti+1)2 and
c4 = ti+1 − ti .

Using the above results we can rewrite (4) to

α(p[i : i + 1], a) =
1

(ti+1 − ti)2

∫ ti+1

ti

√
c1t2 + c2t + c3 dt . (5)

The solution to (5) depends on the values for the constants ci. We provide a
case analysis, omitting cases that cannot happen due to the structure—expressed
in the equations for constants ci—of the problem.

Case c1 = 0 : This happens when δxi = δxi+1 ∧ δyi = δyi+1. If so, then also
c2 = 0, and the solution to (5) is

α(p[i : i + 1], a) =
√

c3

ti+1 − ti
.

The geometric interpretation of this case is simple: equality of δ’s indicates
that the approximation of this p segment is a vector-translated version of
that segment. The distance is thus constant, and its average over the time
interval equals that constant. We have:

α(p[i : i + 1], a) =
√

δx2
i + δy2

i .

Case (c1 > 0) : This happens when δxi �= δxi+1 ∨ δyi �= δyi+1. The solution to
the integral part of (5) is non-trivial, and deserves a case analysis in itself.
We have the following cases:
Case c2

2 − 4c1c3 = 0 : In other words, the determinant of the quadratic sub-
formula of (5) equals 0. This happens only when δxiδyi+1 = δxi+1δyi. If
so, the solution to (5) is

α(p[i : i + 1], a) = 1
(ti+1−ti)2

∣
∣
∣ 2c1t+c2

4c1

√
c1t2 + c2t + c3

∣
∣
∣
ti+1

ti

.

The geometric interpretation of this case follows from the δ product
equality mentioned above. That equality holds in three different cases.
These cases are not mutually exclusive, but where they are not, the
formulas coincide value-wise.
Case segments share start point : Consequently, we have δxi =

δyi = 0. The above formula simplifies to

α(p[i : i + 1], a) = 1
2

√
δx2

i+1 + δy2
i+1 .

778 N. Meratnia and R.A. de By

Case segments share end point : Consequently, we have δxi+1 =
δyi+1 = 0. The above formula simplifies to

α(p[i : i + 1], a) = 1
2

√
δx2

i + δy2
i .

Case δ ratios respected : It turns out that under this condition, the
synchronous distance chords (indicated as grey edges in Figs. 5) all
lie parallel to each other, and this simplifies the related formulas.

Case c2
2 − 4c1c3 < 0 : The determinant of the quadratic subformula of (5)

is less than 0. This is the general, non-exceptional case. The resulting
formula is:

α(p[i : i + 1], a) = 1
(ti+1−ti)2

|F (t)|ti+1
ti

where

F (t) = 2c1t+c2
4c1

√
c1t2 + c2t + c3− c2

2−4c1c3
8c1

√
c1

arcsinh
(

2c1t+c2√
4c1c3−c2

2

)
.

4.3 Experimental Results

As mentioned earlier, all the compression techniques were tested on real data as
summarized in Table 2; i.e., ten different trajectories, for fifteen different spatial
threshold values ranging from 30 to 100 m, and three speed difference threshold
values ranging from 5 to 25 m/s. The obtained results for each experiment consist
of error produced and compression rate achieved. We used the time synchronous
error notion derived in the previous paragraph. It is important to note that
the choice of optimal threshold values is difficult and might differ for various
applications.

A first experiment concerned the comparison between conventional top-down
(Normal) DP (NDP) and our top-down time ratio (TD-TR) algorithm. Fig. 7
shows the results. Clearly, the TD-TR algorithm produces much lower errors,
while the compression rate is only slightly lower.

(a)
1 2

0

10

20

30

40

50

60

70

80

90

C
om

pr
es

si
on

 (
pe

rc
en

t)

30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

NDP TD−TR

1 2
0

500

1000

1500

E
rr

or
 (

m
et

er
)

30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

NDP TD−TR (b)

Fig. 7. Comparison between NDP (on left) and TD-TR (on right) algorithms. Colour
bars indicate different settings for distance threshold, ranging from 30 to 100 m.
(a) Comparison of compression percentages achieved; (b) Comparison of errors com-
mitted. Figures given are averages over ten different, real trajectories.

Spatiotemporal Compression Techniques for Moving Point Objects 779

(a)
1 2

0

200

400

600

800

1000

1200

1400

1600

1800

E
rr

or
 (

m
et

er
)

30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

BOPW NOPW

1 2
0

10

20

30

40

50

60

70

80

90

C
om

pr
es

si
on

 (
pe

rc
en

t)

30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

BOPW NOPW (b)

Fig. 8. Comparison between two opening window algorithms, BOPW (on left) and
NOPW (on right) algorithms. For other legend information, see Fig. 7.

(a)
1 2

0

200

400

600

800

1000

1200

E
rr

or
 (

m
et

er
)

30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

NOPW OPW−TR

1 2
0

10

20

30

40

50

60

70

80

90

C
om

pr
es

si
on

 (
pe

rc
en

t)

30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

NOPW OPW−TR (b)

Fig. 9. Comparison between NOPW (on left) and OPW-TR (on right) algorithms. For
other legend information, see Fig. 7.

An important observation is that both compression rate and error monoton-
ically increase with distance threshold, asymptotically reaching a maximum.

The second experiment concerned the choice of break point in opening win-
dow algorithms; i.e., whether to break at the data point causing threshold excess
(NOPW) or at the one just before (BOPW). We found that BOPW results in
higher compression but worse errors. It can be used in applications where the
main concern is compression and one is willing to favour it over error. For most
of our application domains, we aim at lower error and high enough compres-
sion rate, and will therefore ignore the BOPW method. Results of comparison
between BOPW and NOPW algorithms are shown in Fig. 8.

One may observe that error in the case of the NOPW algorithm does not
strictly monotonically increase with increasing distance threshold values. We
have reason to believe that these effects are systematic; they are likely only an
artifact caused by the small set of trajectories in our experiments.

In Fig. 9, we illustrate the findings of a third experiment, comparing our
opening window time ratio with a normal opening window algorithm. It demon-
strates the superiority of the first (OPW-TR) with respect to the latter (NOPW)
algorithm. As can be seen, for OPW-TR a change in threshold value does not dra-
matically impact error level. Therefore, unlike the NOPW algorithm, in which a
choice of threshold is important for the error results, in the OPW-TR algorithm

780 N. Meratnia and R.A. de By

(a) 30 40 50 60 70 80 90 100
50

100

150

200

250

300

350

400

450

500

Threshold (meter)

E
rr

or
 (

m
et

er
)

OPW−TR
TD−SP(5m/s)
OPW−SP(5m/s)
OPW−SP(15m/s)
OPW−SP(25m/s)

30 40 50 60 70 80 90 100

30

35

40

45

50

55

60

65

70

75

80

Threshold (meter)

C
om

pr
es

si
on

 (
pe

rc
en

t)

OPW−TR
TD−SP(5m/s)
OPW−SP(5m/s)
OPW−SP(15m/s)
OPW−SP(25m/s)

(b)

Fig. 10. Comparison between OPW-TR, TD-SP and OPW-SP algorithms. (a) Errors
committed; (b) Compression obtained. In both figures, the graph for OPW-TR coin-
cides with that of OPW-SP-25m/s.

30 40 50 60 70 80 90
0

500

1000

1500

Compression (percent)

E
rr

or
 (

m
et

er
)

NDP
TD−TR
NOPW
OPW−TR
OPW−SP(5m/s)
OPW−SP(15m/s)
OPW−SP(25m/s)

Fig. 11. Error versus Compression in NDP, TD-TR, NOPW, OPW-TR and OPW-SP
algorithms. As before, the graph for OPW-TR coincides with that of OPW-SP-25m/s.

this is not the case. This allows choosing a higher threshold value to improve
compression while not loosing much on error performance.

Our second spatio-temporal algorithm (SP) was applied in both opening
window and top-down fashion. In case of top-down SP (TD-SP), experiments
show a high sensitivity towards speed threshold settings, both for error and
compression. Among the three speed difference threshold values (5, 15, 25 m/s),
only the first value provided reasonable results, and is therefore included in the
comparisons. In opening window fashion SP (OPW-SP) changes in threshold
value did not lead to dramatic changes in the results. This is an important
characteristic of both OPW-TR and OPW-SP algorithms. As can be seen from
Fig. 10, the two OPW-SP (15 m/s, 25 m/s) algorithms as well as OPW-TR have
very similar behaviour in both compression rate and error. On the other hand,
choosing a speed difference threshold of 5 m/s in TD-SP and OPW-SP results
in improved compression as well as higher error in TD-SP.

As experiments show reasonably high compression rates as well as low errors
for our TD-TR, OPW-TR and OPW-SP algorithms, they effectively fulfill the

Spatiotemporal Compression Techniques for Moving Point Objects 781

requirement of good compression techniques. A final comparison between these
algorithms ranks the TD-TR slightly over their counterparts because of better
compression rate. See Fig. 11.

However, two issues should not be forgotten. One is that TD-TR is a batch
algorithm, while OPW-TR and OPW-SP are online algorithms. The other is-
sue is that the higher compression rate in TD-TR is accompanied by slightly
higher error. Therefore, depending on data availability and error allowed, any
of the mentioned algorithms can be used. The results of this final comparison
are shown in Fig. 11. It clearly shows that algorithms developed with spatiotem-
poral characteristics outperform others. Another important observation is that
the choice of threshold value for OPW-SP is crucial, as it may rank it higher or
lower than OPW-TR.

5 Conclusions and Future Work

Existing compression techniques commonly used for line generalization are not
suitable for moving object trajectory applications. Mostly because they oper-
ate on the basis of perpendicular distances. Due to the continuous nature of
moving objects, both spatial and temporal factors should be taken into account
compressing their data.

In this paper, problems of existing compression techniques for moving object
application are addressed. Two spatio-temporal techniques are proposed to over-
come the mentioned problems. The quality of the methods was tested using a
new and advanced error notion. The experiments confirm the superiority of the
proposed methods to the existing ones. The proposed algorithms are suitable to
be used as both batch and online.

Obtained results strongly depend on the chosen threshold values. Choosing
a proper threshold is not easy and is application-dependent. However, having a
clear understanding of moving object behaviour helps in making these choices,
and we plan to look into the issue of moving objects of different nature.

Piecewise linear interpolation was used as the approximation technique. Con-
sidering that other measurements such as momentaneous speed and direction
values are sometimes available, other, more advanced, interpolation techniques
and consequently other error notions can be defined. This is an issue that we
want to address in the future.

Acknowledgements. We thank the anonymous reviewers for their elaborate
and detailed comments that helped us to improve the paper.

References

1. Cooper, M.: Antennas get smart. Scientific American 283 (2003) 48–55
2. Abdelguerfi, M., Givaudan, J., Shaw, K., Ladner, R.: The 2-3TR-tree, a trajectory-

oriented index structure for fully evolving valid-time spatio-temporal datasets. In:
Proc. 10th ACM-GIS, ACM Press (2002) 29–34

782 N. Meratnia and R.A. de By

3. Zhu, H., Su, J., Ibarra, O. H.: Trajectory queries and octagons in moving object
databases. In: Proc. 11th CIKM, ACM Press (2002) 413–421

4. Güting, R. H., Böhlen, M. H., Erwig, M., Jensen, C. S., Lorentzos, N. A., Schneider,
M., Vazirgiannis, M.: A foundation for representing and querying moving objects.
ACM TODS 25 (2000) 1–42

5. Šaltenis, S., Jensen, C. S., Leutenegger, S. T., Lopez, M. A.: Indexing the positions
of continuously moving objects. In: Proc. ACM SIGMOD, ACM Press (2000) 331–
342

6. Agarwal, P. K., Guibas, L. J., Edelsbrunner, H., Erickson, J., Isard, M., Har-
Peled, S., Hershberger, J., Jensen, C., Kavraki, L., Koehl, P., Lin, M., Manocha,
D., Metaxas, D., Mirtich, B., Mount, D., Muthukrishnan, S., Pai, D., Sacks, E.,
Snoeyink, J., Suri, S., Wolfson, O.: Algorithmic issues in modeling motion. ACM
Computing Surveys 34 (2002) 550–572

7. Meratnia, N., de By, R. A.: A new perspective on trajectory compression tech-
niques. In: Proc. ISPRS DMGIS 2003, October 2–3, 2003, Québec, Canada. (2003)
S.p.

8. Foley, J. D., van Dam, A., Feiner, S. K., Hughes, J. F.: Computer Graphics:
Principles and Practice. Second edn. Addison-Wesley (1990)

9. Shatkay, H., Zdonik, S. B.: Approximate queries and representations for large data
sequences. In Su, S.Y.W., ed.: Proc. 12th ICDE, New Orleans, Louisiana, USA,
IEEE Computer Society (1996) 536–545

10. Keogh, E. J., Chu, S., Hart, D., Pazzani, M. J.: An online algorithm for segmenting
time series. In: Proc. ICDM’01, Silicon Valley, California, USA, IEEE Computer
Society (2001) 289–296

11. Tobler, W. R.: Numerical map generalization. In Nystuen, J.D., ed.: IMaGe Discus-
sion Papers. Michigan Interuniversity Community of Mathematical Geographers.
University of Michigan, Ann Arbor, Mi, USA (1966)

12. Douglas, D. H., Peucker, T. K.: Algorithms for the reduction of the number of
points required to represent a digitized line or its caricature. The Canadian Car-
tographer 10 (1973) 112–122

13. Jenks, G. F.: Lines, computers, and human frailties. Annuals of the Association
of American Geographers 71 (1981) 1–10

14. Jenks, G. F.: Linear simplification: How far can we go? Paper presented to the
Tenth Annual Meeting, Canadian Cartographic Association (1985)

15. McMaster, R. B.: Statistical analysis of mathematical measures of linear simplifi-
cation. The American Cartographer 13 (1986) 103–116

16. White, E. R.: Assessment of line generalization algorithms using characteristic
points. The American Cartographer 12 (1985) 17–27

17. Hershberger, J., Snoeyink, J.: Speeding up the Douglas-Peucker line-simplification
algorithm. In: Proc. 5th SDH. Volume 1., Charleston, South Carolina, USA, Uni-
versity of South Carolina (1992) 134–143

18. Nanni, M.: Distances for spatio-temporal clustering. In: Decimo Convegno
Nazionale su Sistemi Evoluti per Basi di Dati (SEBD 2002), Portoferraio (Isola
d’Elba), Italy. (2002) 135–142

19. Jasinski, M.: The compression of complexity measures for cartographic lines. Tech-
nical report 90–1, National Center for Geographic Information and Analysis, De-
partment of Geography. State University of New York at Buffalo, New York, USA
(1990)

	Database Support for Moving Objects Is Wanting
	Spatial Compression Techniques
	Top-Down Compression Algorithms
	Opening Window Compression Algorithms

	Spatiotemporal Algorithms
	Why Line Generalizations Do Not Quite Apply
	A Simple Class of Spatiotemporal Algorithms
	A More Advanced Class of Spatiotemporal Algorithms

	Comparisons and Results
	Error Notions
	A Spatiotemporal Error Notion
	Experimental Results

	Conclusions and Future Work

