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Abstract. Modern computed tomography (CT) equipment allowing fast
3-D imaging also makes it possible to monitor dynamic processes by 4-D
imaging. Because the acquisition time of various 3-D–CT systems is still in
the range of at least milliseconds or even hours, depending on the detec-
tor system and the source, the balance of the desired temporal and spatial
resolution must be adjusted. Furthermore, motion artifacts will occur, es-
pecially at high spatial resolution and longer measuring times. We propose
two approaches based on nonsequential projection angle sequences al-
lowing a convenient postacquisition balance of temporal and spatial res-
olution. Both strategies are compatible with existing instruments, needing
only a simple reprograming of the angle list used for projection acquisition
and care with the projection order list. Both approaches will reduce the
impact of artifacts due to motion. The strategies are applied and validated
with cold neutron imaging of water desorption from originally saturated
particles during natural air-drying experiments and with x-ray tomogra-
phy of a polymer blend heated during imaging. C© 2011 Society of Photo-Optical

Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3660298]
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1 Introduction

Tomography of dynamic processes is a challenging task. In
the best case, the acquisition system is so fast that the mo-
tion of the process is less than the spatial resolution of the
imaging device. Then it is possible to acquire 3-D data with-
out significant motion-related artifacts. This paper will focus
on the case when the sample shape or material distribution
changes significantly during the course of acquisition. Un-
der such circumstances, motion artifacts will appear near the
moving parts of the sample unless the acquisition protocol
is modified to cope with the motion. In medical imaging
where the motion is cyclic, the acquisition can be guided by
a gating signal given by, e.g., the patients respiration.1, 2 This
makes is possible to complete the projection data over sev-
eral cycles of the process. The noncyclic case is intrinsically
more difficult because the process is unlikely to return to the
same condition again. Hence, each projection will contain
new information about the progress of the studied process.

In this paper, two alternative strategies for the acquisi-
tion of projections for noncyclic processes are proposed (see
Sec. 2). These strategies are based on nonsequential decom-
positions of the sample rotation angle sequence. In addition
to making the reconstructions less sensitive to motion arti-
facts, these acquisition strategies also allow the reconstruc-
tion of subsets of the projection data with variable temporal
resolution.

The performance of the schemes with respect to the occur-
rence of the motion artifacts in the reconstructed computed
tomography (CT) images is compared to the standard sequen-
tial acquisition strategy on a series of air-drying experiments
(see Sec. 3). An example with a polymer blend imaged dur-
ing sample heating using synchrotron x-rays is also given.
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In Sec 4, the potential of the alternative strategies regarding
the possibility of postacquisition selection of the appropriate
spatial and temporal resolutions of the 3-D imaging of the
dynamic process is investigated. Finally, the advantages and
the drawbacks of the alternative acquisition strategies are
discussed in Sec. 5.

2 Alternative Scan Decomposition Strategies

In computed tomography, a large number of projection im-
ages are captured from many different angular positions.
Usually, these projections are distributed as a monotonic in-
creasing (or decreasing) sequence over either the interval
[0,π ) or [0,2π ), and with a constant angular increment be-
tween each projection.

The basic idea of the proposed alternative acquisition
schemes is to adapt the angle sequence of projections so
that subsets of chronologically contiguous projections con-
tain sufficient information for reconstruction. These subsets
can be interpreted as time frames. Thereby, it will be possible
to select between high temporal resolution by reconstructing
small time frames and high spatial resolution by reconstruct-
ing large time frames. The potential of such projection sets is
illustrated in Fig. 1 by a pyramid with the ordinate symboliz-
ing the temporal and the abscissa the spatial resolution. The
top rectangle represents the reconstruction of the full data
set resulting in the highest spatial resolution yet averaged
over the entire time frame; the bottom rectangles feature the
lowest spatial resolution but the highest time resolution.

By increasing the temporal resolution, the number of pro-
jections for each reconstruction decreases. This has the con-
sequence that the projection data must be downsampled for
the reconstruction to fulfill the requirement of the Nyquist
theorem for tomography.3 The following sections present two
different methods to achieve the above benefits.
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2.1 Binary Decomposition

The full binary decomposition scheme with K nesting levels
consists of a set

SK
1 =

{

s0
1 , s0

2 , . . . , s0
M

}

(1)

of M sequential sparse subscans s0
i = { } with equidistant

angles distributed over π , each

�0
i = {βi + j · ψ� | j ∈ [0, . . . , N − 1], i ∈ Z

+}, (2)

where β i = iψ�/M is the starting angle, ψ� = π /N is the
angular increment between two chronologically consequent
projections, and N is the number of projections in the set
s0

i . Therefore, β i are chosen such that binary counts 2k of

interleaved s0
i may be merged to new sets

Sk
i =

{

s0
i , . . . , s0

i−1+2k

}

(3)

holding complete sets of N2k equispaced projection angl-
es �k

i ∈ [0, π ), each. The nesting level k ∈ [0, . . . , K] implies

the currently selected balance between spatial and tempo-
ral resolution: Sk=0

i (i.e., the sparse subscans) contain the
smallest spatial and the highest available temporal resolu-
tion, while Sk=K

1 at the topmost nesting level K = log2(M)
holds the highest spatial resolution with N · M projections,
yet at only one single instant of time.

The sequence SK
1 is generated by starting with the set

A1 = {0} at i = 1 and iteratively expanding by

Ai+1 =
{

Ai , Ai +
M

2i

}

. (4)

The angular sequence for Sk=K
1 results after log2(M) itera-

tions. A pyramidal scale structure of merged new sets Sk
i (see

Fig. 1) can now be obtained by using 1,2,4,. . . ,2m subsequent
subscans per reconstruction according to Eq. (1) and (3).

As an example, the sequence S4
1 for M = 16 subscans

together with its pyramidal scale structure with all possible
Sk

i is given as follows:

β =
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Figure 2 graphically shows the distribution of the scanning
angles for the sequence S2

1 with N = 16 and M = 4.

2.2 Golden-Ratio Decomposition

The idea of organizing the projections using the Golden ratio
was introduced by Köhler,4 who used the scheme to orga-
nize the projections for iterative reconstruction methods. The

method uses the Golden ratio φ = (1 +
√

5)/2 to determine

Fig. 1 Scale pyramid showing spatial versus temporal resolution al-
lowed by nonsequential scan decomposition schemes.

the next acquisition angle. In this scheme, the acquisition
angle of projection pi is described by

θi = i φ π mod π. (6)

The consequence of Eq. (6) is that two consequent projec-
tions in time are nearly orthogonally separated in rotation.
By rotating the sample in this manner, every chronological
contiguous subsequence of the projection data represents a
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Fig. 2 Realization of the binary scan decomposition with M = 4
subscans and N = 16 projections in the single sparse subscan.
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Fig. 3 Information theoretical entropy of the angular difference be-
tween two projections in a sorted subsequence.

complete coverage of the scan arc (π or 2π ). This is an im-
portant feature for the ability to reconstruct the data with dif-
ferent spatiotemporal resolutions. This scheme can be started
with no predefined end and arbitrarily terminated at any con-
venient end point.

2.2.1 Irregular angle distribution

To evaluate the distribution and coverage of the acquisition
angles for different subsequence lengths, a numerical exper-
iment was made. In the experiment, the information entropy
[Eq. (7)] of the angle difference probability for a number of
realizations was computed,

H (X ) = −
∑

i

p(xi ) log[p(xi )]. (7)

The M subscan realizations 	N
i with length N and i ∈ [0, M

− 1] were computed using

	N
i = {(i N + j) · φ · π mod π | j ∈ [0, N − 1], j ∈ Z

+}.

(8)

Each set 	i was sorted, and the difference between adjacent
angles was computed. For a [0, 2π ) scan, the modulo op-
eration uses 2π instead of π . The histogram of these angle
differences was then used in Eq. (7). An experiment with
M = 50 resulted in the entropy curve shown in Fig. 3. This
curve shows that the entropy varies between 0.66 and 1.027.
These values corresponds to two distinct angle distance his-
tograms. For the minima, two angle distances are present
while for the maxima, three angle distances are present. The
ideal case for filtered backprojection (FBP) is equidistant
angles, which would result in H(X) = 0. The local minima
in Fig. 3 indicates the ideal lengths of the subsequences for
the spatiotemporal reconstructions. It can be noted that the
locations of the local minima are found at subset sizes given
by the Fibonacci numbers. This is related to filling complete
levels of projections that are close to equidistant. In nature,
the same pattern can be seen in the seed arrangement of a
sunflower.5 Figure 4 shows a realization for 	34

0 , which cor-
responds to a local minimum in the entropy curve Fig. 3. In
Fig. 4 it can be seen that the acquisition angles are almost
uniformly distributed.

The effect of using a number of projections (N) given by
a local minimum or a local maximum in the entropy curve is
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Fig. 4 Realization of the Golden ratio decomposition for N = 34.

visualized in Fig. 5. The test consisted of reconstructing the
sinogram of the eight-bit phantom [Fig. 5(a)] using different
numbers of projections. Error images [Fig. 5(b) and 5(c)]
are computed as the difference between the original phan-
tom and the reconstructed images. The error images clearly
show that the image corresponding to the local minimum has
less reconstruction artifacts even though it uses 76% of the
projections used for the image reconstructed at the entropy
maximum.

2.3 Weighting Scheme for Irregular Angles

The FBP algorithm requires equidistant projections for best
performance. The Golden ratio scan does not fulfill this re-
quirement as shown in Sec. 2.2. To produce more accurate
results, each projection must be weighted to correct for the
deviation from the ideal position.

In postacquisition data processing, the first operation to
determine the projection weights is to sort the sequence of
acquisition angles. The sorted list (q) contains tuples (qj, i)
= (θ i mod π , i). The first element (qj) of the tuple is used
as sorting key and, later, to compute the projection weight.

(d) (e)

(c)(b)(a)

Fig. 5 Phantom image used for the test (a). Images reconstructed
using (b) 610 and (c) 798 projections, respectively (gray-level interval
[ − 10, 260]). The error images for the reconstructed images using (d)
610 and (e) 798 projections using the gray-level interval [ − 10,10].
The error is the difference between phantom and its reconstructed
sinogram.
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Fig. 6 Illustration of the projection weighting.

The index variable i is saved as the second element of the
tuple and used to connect the weight to the correct projection.
This information would otherwise be lost in the process of
sorting the angles. The modulo operation is used to fold the
projections in [π , 2π ) back into the interval [0, π ).

The weight wj is computed using the sorted angle se-
quence q:

w j =
(q j+1 + q j ) − (q j + q j−1)

2(kπ )
j = [2, M − 1]; (9)

the index j indicates the position in the sorted list q. Figure 6
shows the coverage arcs for some weights. The value of k is
1 for a [0, π ) scan and 2 for a [0, 2π ) scan. The first and last
elements in the list require some special handling,

w1 =
(kπ − qM ) + (q2 − q1)

2(kπ )
, (10)

w M =
(kπ − qM ) + (qM − qM−1)

2(kπ )
. (11)

Using this weighting scheme, sparsely distributed projections
will have greater impact on the result than denser distributed
ones. We note that this weighting scheme is also appropriate
for many other projection orderings, including random an-
gle projection ordering. A further feature of this weighting
scheme is that prematurely terminated scans can be recon-
structed using all data.

Figure 7 shows the reconstruction of the same data as
in Fig. 5, but here the weights from Eqs. (9)–(11) were
applied to the sinogram. The images show that most of the
streak artifacts that were found in the uncorrected images
now are gone. The best improvement can be seen in the N
= 798 image. Using the proposed weighting, the choice of
N becomes less crucial for the image quality.

3 Experiment

3.1 Sample Description and Data Acquisition

In order to test the above-mentioned acquisition strategies
with neutron tomography, three samples exhibiting a model
dynamic process were prepared in a similar manner. Each
sample consisted of an aluminum cylindrical sample con-
tainer with an internal diameter of 10 mm, a height of 13 mm,
and a wall thickness of 1 mm that served as a container for
an assembly of lightweight aggregate (LWA) and superab-
sorbent polymer (SAP) particles.

(c) (d)

(b)(a)

Fig. 7 Sinograms used in Fig.(5) reconstructed with the weighting
scheme described in Eq. (9)–(11), (a) and (b). Error images for the
reconstructed images are shown in (c) and (d) with gray-level interval
[ − 10,10].

Seven particles of D2O-prewetted expanded clay LWA
(Liapor) were first surfacedried using a soft tissue paper and
then placed at the bottom of the aluminum container in a sin-
gle layer. Three round SAP particles were allowed to absorb
D2O for several minutes, surface dried using a soft tissue
paper, and placed as a second layer of the LWA. The sam-
ple was quickly transferred to the neutron tomography hutch
for imaging; a fresh sample was used for each tomography
experiment.

3.2 Neutron Microtomography Test Arrangement

The samples were scanned using the tomographic setup of the
cold neutron-imaging beamline ICON, Kaestmer et al.6 at the
Paul Scherrer Institut, Switzerland, with a neutron beam neu-
tron intensity of 1.3 × 107 neutrons cm− 2 s− 1 mA− 1, a mean
energy of 8.53 meV, and a collimation ratio of L/D=343. The
detector was composed of a 20-μm-thick gadolinium-oxy-
sulfide (Gadox) scintillator screen and a CCD camera. The
exposure time for each projection was 20 s, and the image
pixel size was 13.5 μm.

In order to provide a reference measurement, the first
sample was scanned using the traditional sequential acquisi-
tion strategy with 512 projections uniformly distributed over
180-deg rotation.

The second sample was scanned using the binary acqui-
sition strategy (cf. Sec.2.1) with the same total number of
projections N × M = 32×16 = 512. The size of the smallest
subset Si in the binary acquisition strategy was 16 projections
(M = 16).

The third tomography experiment employed the Golden
ratio acquisition strategy (cf. Sec.2.2). This experiment was
terminated at 924 projections.

The replicate nature of the investigated sample assemblies,
and the stable environmental conditions in the experimental
hutch led in all three cases to a similar dynamic process.
The water release from the originally water-saturated particle
assemblies led to the decrease in the SAP diameter ∼0.005
pixels/s. This rate translated to a motion of ∼1 pixel in every
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(a) (b) (c)

Fig. 8 Reconstructed slices of 512 projection data sets using (a)
sequential, (b) binary decomposition, and (c) Golden ratio scan
schemes.

10 projections, which was a large-enough displacement to
cause significant motion artifacts in reconstructed images.

3.3 Reconstruction

As the spatiotemporal scanning schemes proposed above im-
ply, high temporal resolution is associated with a low number
of projections. In such cases, the Nyquist theorem Kak and
Slaney,3 and Nyquist7 which states that the number of pro-
jections (Np) should be related to the number of samples Nu

for each projection with

Np =
π

2
Nu (12)

cannot be fulfilled for the reconstructed image except for the
regions close to the image center. This involves a consid-
erable drop of the spatial resolution over the entire image.
Different reconstruction algorithms respond differently to

this situation. In particular, FBP, Kak and Slaney,3 which
is most popular due to its time efficiency, produces strong
streak artifacts.

The flat and dark-field corrected projections were there-
fore reconstructed using an algebraic reconstruction tech-
nique (ART) based on the penalized likelihood image
reconstruction.8 A reconstruction obtained by FBP was used
as the initial approximation in this iterative algorithm. In this
approach, the failure to fulfill the Nyquist theorem causes
blurring of the structural details rather than introducing ad-
ditional erroneous pattern. FBP was therefore mainly used in
the case of large numbers of projections.

4 Results

4.1 Motion Artifacts

The reconstruction of the full projection sets, comprising
512 projections, are presented in Fig. 8, showing one single
slice through the image volumes received with the sequential
[Fig. 8(a)], binary decomposition [Fig. 8(b)], and Golden
ratio [Fig. 8(c)] acquisition schemes. Sequential strategy
leads to clear snail-shell like artifacts that are typical for
the motions of a shrinking sphere [see Fig. 8(a)]. These
artifacts affect the image quality even in the regions out-
side the locations where motions occurred. As is evident
for both proposed alternative schemes, binary decomposi-
tion and Golden ratio, the motion artifacts now manifest
themselves as blurring contained only within the altering
regions. The shrinking volume is presented as a gray-level

Fig. 9 Scale pyramid of a volume recorded by a binary decomposition scheme. The possible balances between spatial and temporal resolution
are demonstrated in these reconstructions of a single tomography data set. The bottom row shows a few of the 16 time steps available with the
low spatial resolution option. In this pyramid, image size is fixed and printed resolution is allowed to vary.
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Fig. 10 A fresh sample imaged with the Golden ratio scheme. Because most of the sample motion is expected within particle layers and to
increase the image signal-to-noise ratio, the reconstruction images are shown here as the cumulated sum along the sample rotation axis; the
sum image generates the additional detail, such as the contacts between SAP and LWA particles. The pixel size and number of projections used
to reconstruct each image are appended at the top and bottom rows. In this pyramid, printed resolution is fixed and image size is allowed to vary,
in contrast to Fig. (9).

gradient within the sample (i.e., the artifacts are confined
within the largest sample boundaries). In particular, note
the bright SAP particles, which are noticeably decreasing
in size. Hence, ongoing processes during monitoring do not
degrade the images when using the proposed acquisition
schemes.

4.2 Exploiting the Spatiotemporal Potential

As discussed in Sec. 2, the binary decomposition and Golden
ratio schemes allow for retrieval of spatiotemporal informa-
tion from a single tomography scan. Moreover, the balance
between spatial and temporal resolutions can be selected
during data processing, leaving data acquisition relatively
unconstrained by the as-yet unknown dynamics of the sam-
ple to be imaged.

Data from a single tomography experiment, acquired with
the binary decomposition scheme, can be processed as de-
scribed in the Fig. 1 scale pyramid so as to show the many
possible options of spatial versus temporal resolution.

Figure 9 shows the scale pyramid of spatial versus tempo-
ral resolution as designed in Fig. 1. The topmost figure gives
the greatest spatial resolution for the static components in
the image, whereas the bottom row gives the best temporal
resolution for the dynamic components in the sample. In fact,
a user may wish to select several options, one to highlight
object positions and another to calculate rate of change of
the objects.

Figure 10 shows the strength of pyramidal reconstruction
by displaying results from a Golden ratio scan. The number
of projections in each subset was selected to give the least
angular entropy according to Fig. 3. The many possible re-
constructed 3-D data sets are represented as cumulative 2-D
projections along the z-axis (i.e., the acquisition axis of the
volume). The FBP method was used for these reconstruc-
tions with the projection weights given in Eqs. (9)–(11). The
leftmost image shows the volume at highest spatial resolu-
tion while the subsequent rows show the time series of the

ongoing process during data capture, yet at lower spatial
resolutions.

Figure 11, shows two of the eight 3-D renderings of sub-
sets from the pyramidal volumetric data, as it was attained
from the binary decomposition scheme. The data volumes
are reconstructed from sets of 64 projections by ART, each
yielding eight time frames.

For tomography data acquired with both the binary de-
composition and the Golden ratio schemes, three types of
ongoing processes occurring during acquisition time are
observed. These are (i) the shrinkage of the SAP parti-
cles (three bright spheres in the top layer), (ii) the for-
mation of spherical patterns within the LWA particles due
to water desorption (seven dark particles in the bottom
layer), and (iii) the coupled translation motions of all
particles.

Figure 12 shows single slices through each of the eight
3-D volumes, including the initial and final conditions as
represented in Fig. 11. They are all taken at the same height
(i.e., level on the z-axis). Both particles types, SAP (bright)
and LWA (dark) particles are transected. As in Fig. 11,
the dynamic process of water release from the originally
saturated particles and their corresponding spatial motions
are clearly visible. In contrast to Fig. 8, the motion arti-
facts are suppressed to low levels. There are two reasons
for the suppression: (i) the proposed alternative schemes
are much more tolerant to motions during data acquisition
(see Sec. 4.1), and (ii) the selected volume sampling rate is

(a) (b)

Fig. 11 3-D representations of the (a) initial and (b) final conditions
created from the binary decomposition scheme using 64 projections
per 3-D frame.

Optical Engineering December 2011/Vol. 50(12)123201-6

Downloaded from SPIE Digital Library on 01 Feb 2012 to 152.88.140.76. Terms of Use:  http://spiedl.org/terms



Kaestner et al.: Spatiotemporal computed tomography of dynamic processes

(e)

(a)

(f)

(b)

(g)

(c)

(h)

(d)

Fig. 12 Slices through 3-D data volumes created from the binary decomposition scheme with 64 projections per slice.

sufficient to capture the dynamic process. At the same time,
the image sequence demonstrates that sufficient spatial res-
olution can still be attained at low numbers of projections in
the case when using a low-noise amplification reconstruction
technique.

4.3 Application of the Golden Ratio to Polymer Blend
Imaging with Synchrotron X-ray Tomography

There has been an interest in polymer blends made
from polystyrene and thermodynamically compatible flame
retardants.9 Some blends were prepared with intentionally
poor initial mixing and tomography was used to study the
dissolution of the flame retardant in the blend.10 Cylindrical
samples are observed with synchrotron x-ray tomography
with in situ heating. In addition to dissolution, the sample is
observed to swell and slump during the tomography data ac-
quisition. It is extremely convenient to begin the tomography
acquisition with the Golden ratio scheme and terminate the
run at the end of the available beam time. Then, time windows
are assigned based on estimated sample motion and image
signal-to-noise ratios. Figure 13 shows a slice from the sixth
time window and the reconstructed volume after ten time
windows. Figure 13(a) shows the deleterious effect of minor
sample motion during a time window, yet the results are still

sufficiently accurate to enable tracking of 20 undissolved
flame retardant particles [Fig. 13(b)]. The original location
of the polymer cylinder is outlined by the semi-transparent
surface.

5 Discussion

The experiments show that both decomposition schemes,
binary and Golden ratio, are less sensitive to motion during
data acquisition. In both approaches, the affected regions are
blurred only within the boundaries where motions occur.

With regard to the reconstructibility of the projection sets,
the binary scheme is privileged with regard to the equis-
paced angular sequence. In the case of Golden ratio scans,
deviations from equidistant angles will require projection
weighting as described by Eqs. (9)–(11).

The utilization of the binary and the Golden ratio ac-
quisition strategies might be limited by the fact that their
respective total sample rotations are significantly larger than
the one of the standard sequential acquisition strategy. In the
case of the experiments reported in this paper, the total sam-
ple rotation was equal to about π , 59π , and 241.5π , for the
sequential, the binary, and the Golden ratio strategies, respec-
tively. For suitable use of binary and Golden ratio strategies,
the exposure and readout times must be such that the total

(a) (b)

Fig. 13 Dissolution of a flame retardant into polystyrene is monitored with synchrotron x-ray tomography while heated. Even though the sample
is moving during acquisition, high-quality images can be (a) obtained and (b) compiled over time for particle tracking. The semi-transparent
surface indicates the initial surface of the sample.
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acquisition time is not significantly increased by the time
necessary for sample rotational positioning. This is usually
true for the neutron tomography experiments in which (i) the
exposure time is significantly longer than the time necessary
for the sample rotation and (ii) the majority of the sample
rotation occurs during the detector readout time. However,
such conditions may not be met in the case of other types
of computed tomographies (such as synchrotron-based x-ray
tomography).

Yet, with respect to the flexibility, the Golden ratio decom-
position scheme outperforms the binary scheme, because the
number of scans per reconstruction can basically be selected
arbitrarily, even though certain optimum numbers regarding
to equidistance turn out to be preferable.(Sec. 2.2.1) Thereby,
for the reconstruction, the optimal spatial resolution can be
chosen at an arbitrary time frame. Furthermore, the duration
of a Golden ratio scan can be varied. This means that for
experiments with unknown length, the acquisition can con-
tinue until the process has ended or until a certain time slot
of registered beamtime expires.

The great flexibility of the presented schemes, in particu-
lar, the Golden ratio decomposition, enables the reconstruc-
tion of entire pyramids of varying spatiotemporal resolution
instead of just one single image, as in the case of the ordi-
nary sequential projection data. However, this flexibility may
lead to the reconstruction of an enormous amount of image
data. This may also involve huge reconstruction times, be-
cause time-consuming iterative reconstruction algorithms are
preferable to FBP, especially for a reduced number of pro-
jections. The future work may focus on efficient determina-
tion of the optimal path in the spatiotemporal reconstruction
pyramid.

6 Conclusions

The paper presents two alternative acquisition strategies that
are suitable for the assessment of spatiotemporal 3-D image
information. The first one is based on binary interleaved ac-
quisition schemes, and the second one is based on a Golden
ratio angular sequence. They hold the potential for the ac-
quisition of dynamic processes by means of CT, as it was
verified on projection sets from particle arrangements ac-
quired by means of cold neutron CT. The sequences permit
both, alleviation of motion artifacts, as well as a posteriori
monitoring of dynamic processes in three dimensions, while
allowing the selection of appropriate spatial or temporal res-
olution. They are thus suitable for recording motions and
for surveying structural changes in processes of originally
unknown or variable dynamics.11
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