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Greater exposure to environmental microorganisms has been hypothesized to reduce

the likelihood of developing autoimmune disorders, and vegetation is known to be

a source of diverse microbiota to the air. However, the spatiotemporal dynamics of

airborne microbial communities in urban environments with varying amounts and types

of vegetation are poorly understood. In this study we used high-throughput sequencing

of the bacterial 16S rRNA gene to assess whether fine-scale variation in urban vegetation

influences the diversity, composition, or structure of airborne bacterial communities

over time. We used passive settling dishes to collect airborne bacteria from 36 sites

representing three urban land cover types (forest, grassland, paved) over a 3-month

period in Eugene-Springfield, Oregon, USA. We used remote sensing data (aerial 4-band

orthoimagery and LiDAR) and geographic information systems (GIS) to assess detailed

site characteristics (e.g., total vegetation cover and structural diversity) for each site.

Our initial analysis indicated that site was the most important factor explaining variation

in bacterial community structure (R2
= 0.32, p < 0.001), followed by sampling date

(R2
= 0.24, p < 0.001), while land cover type was a significant but weak predictor

(R2
= 0.06, p < 0.001) and other vegetation metrics were even less predictive. However,

when samples were analyzed separately by date, the explanatory power of land cover

type increased substantially; six of nine dates showed significant effects (p < 0.05) with

R2 ranging from 0.16–0.31, indicating that land cover type had a marked influence on

bacterial community structure that was obscured by the effects of site and sampling date.

Despite the importance of site as a predictor of bacterial community structure, Mantel

tests for spatial correlation were insignificant for most sampling dates, suggesting that

localized site characteristics were driving this relationship. We use our results to propose

a space-time conceptual model of the interactions between site-scale environmental

features (e.g., vegetation characteristics) and regional-scale temporal processes and

events (e.g., agricultural harvesting) to understand and perhaps manage intraurban

airborne bacterial communities.
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INTRODUCTION

Humans inhale an estimated one microgram of DNA daily,
which, if it all belonged to bacteria, would represent on the
order of 108 bacterial genomes (Després et al., 2007). Yet
little is known about the composition and diversity of airborne
microorganisms—the aerobiome—particularly in outdoor urban
environments. Understanding how landscape features, such as
vegetation, influence the urban aerobiome may represent a new
approach for improving public health. Connections between
airborne microbial exposures and human health have long been
recognized in the context of infectious disease (West et al., 2008),
and data on the potential health benefits of certain microbial
exposures are beginning to emerge (Ege et al., 2011; Hanski
et al., 2012; Ruokolainen et al., 2015). Recent research suggests
that microbes commonly associated with vegetation, soil, water,
and wildlife are critical to human immune function (Sorci et al.,
2016; Rook et al., 2017). A lack of adequate childhood immune
priming through exposure to environmental microbes has been
implicated in a variety of autoimmune disorders later in life,
including allergies, asthma, and mental disorders (Haahtela et al.,
2013; Raison and Miller, 2013; Rook, 2013).

Is it possible to manage the urban aerobiome through
managing the landscape? The answer to this question depends, in
part, on whether landscape design influences the local aerobiome.
Although we know that regional aerobiome composition varies
dynamically across space and time in association with factors
such as land use, meteorological conditions, and season (Burrows
et al., 2009; Bowers et al., 2010), few studies have investigated
these interactions at a fine spatial scale. Vegetation represents
a substantial source of airborne microorganisms (Lindemann
et al., 1982; Lindemann and Upper, 1985; Pedgley, 1991). The
global phyllosphere hosts up to 1026 microorganisms (Morris
and Kinkel, 2002), which may be released to the air via
evapotranspiration, wind, rain, and other processes. Vegetation
is comprised of numerous plant species, each of which may host
distinct microbial communities (Lambais et al., 2014; Laforest-
Lapointe et al., 2016) and may have differential rates of microbial
emission to the air (Kinkel, 1997). Although some studies have
found striking contrasts between microbial composition on plant
leaves and in nearby air (Vokou et al., 2012), others have
found that a significant fraction of airborne bacteria originates
from nearby vegetation (Lymperopoulou et al., 2016). We might
therefore hypothesize that urban neighborhoods with varying
proportions of vegetated vs. sealed soils or different types of
vegetation would have different aerobiome composition and/or
diversity (Mhuireach et al., 2016).

To date, most studies have investigated only a limited number
of sites and land cover types, usually at single points in time.
The propensity for different land cover types to harbor distinctive
airbornemicrobial communities that maintain a detectable signal
over time remains poorly understood. Furthermore, although
differences in microbial communities have been observed across
large-scale land uses like agricultural vs. urban (Bowers et al.,
2010), few studies have examined whether there is substantial
variation in community composition or structure across typical
intraurban land cover types or vegetation cover at the scale of the

city block or neighborhood. Importantly, the most appropriate
vegetation metric(s) for capturing site-scale influences on
aerobiome community structure are largely unknown, e.g., the
cover of surrounding vegetation as seen from above, its structural
diversity, or its species composition.

In this study, we investigated the influence of land cover
and vegetation on urban airborne bacterial communities across
space and time. Our primary objectives were to determine: (a)
whether common urban land cover types representing extremes
of vegetation cover, type, and diversity (i.e., forest, grassland,
paved) exhibited differences in airborne bacterial richness or
structure1 over time; (b) which metrics best captured landscape
features that influenced bacterial community structure over
time; and (c) which bacterial taxa contributed to differences
in community structure across land cover types. A greater
understanding of urban aerobiome assembly will be foundational
for designers, planners and land managers to one day engineer
green spaces that promote public health.

METHODS

Overview and Site Descriptions
The study took place in the Eugene-Springfield metropolitan
area of Oregon, USA, during July-September, 2015. Eugene-
Springfield is located in theWillamette Valley, a region known for
its agriculture, especially grass seed production, and its forests.
The study area has a Mediterranean climate (Köppen climate
class Csb; Kottek et al., 2006); weather during the sampling
period is typically warm and dry, with winds blowing primarily
from the north until the wet-season precipitation begins in
late summer/early fall and winds shift to originate from the
south-southwest.

A total of 36 urban sites were selected, representing three
land cover types—forest, grassland (e.g., urban turf or meadow),
and paved. We attempted to select sampling sites such that
vegetated sites (forest and grassland) had >75% vegetation cover
within a 50-meter radius and non-vegetated sites (paved) had
<25% (Supplementary Figure 1). Within the vegetated sites,
forest and grassland differed by both plant species’ composition
and vertical structural diversity. Furthermore, we stratified the
sites across a broad range of vegetation cover within the
greater surrounding context (i.e., within 800m), so that not
all vegetated sites sat within large areas of high vegetation
cover and not all paved sites sat within large areas of low
vegetation cover.

Site locations were chosen to disperse samples of each
land cover type across the study area (Figure 1). The majority
of forest and grass sites were publicly owned parks and
natural areas, while the paved sites were all privately owned
business parking lots. Samples were collected in 2015 on July
14 (pilot), August 4, 14, 18, and 25, and September 1, 15,
22, and 29. The 36 sites were split into two groups of 18
to allow for set-up and take-down of all sampling stations

1Following Nemergut et al. (2013) we use the term “richness” to indicate the

number of different sequence variants (i.e., species) observed, and “structure” to

describe both the composition and relative abundance of taxa.
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FIGURE 1 | Sample selection criteria and site locations in Eugene-Springfield, Oregon, USA.

within a specified time window while achieving adequate
spatial representation. Samples were collected from each group
every other sampling day during August and September, for
a total of four samples per site, not including the July
samples (Supplementary Table 1).

Vegetation Analysis
Vegetation analyses were performed using ArcGIS 10.3 (ESRI,
2011) and FUSION (McGaughey, 2016). Vegetation cover within
50, 100, 200, 400, and 800-meter circular buffer zones (i.e.,
radii from sampling point) around each site was measured
by summing the proportions of trees and shrubs, green grass,
and senesced grass within each buffer zone (Figure 2A). To
do this, we differentiated land cover into six categories (trees
and shrubs, green grass, senesced grass, dirt, and light-colored
and dark-colored built surfaces) using pixel-based supervised
classification with maximum likelihood estimation of aerial 4-
band orthoimagery (acquired fromNational Agriculture Imagery
Program). Water was lumped into the dark-colored built
surface category because separating it was not important to
our study and is difficult to accurately achieve. All sites
were visited in person for ground-truthing and classification
accuracy was validated at numerous (∼30) random locations
within the GIS map by comparing classified pixels with
known values. One site (WSC) was found to be artificial
turf rather than living vegetation and was excluded from
microbial analyses.

Vegetation structural diversity within 25-m buffers for
forest and grassland sites was measured using LiDAR (Light
Detection And Ranging) point clouds (Figure 2B) obtained from

the Oregon Department of Geology and Mineral Industries
(DOGAMI). We extracted vertical cylinders from the point
cloud and partitioned all the points into 1.5-m height bins. The
number of points within each height bin was used to calculate
a Shannon-Wiener index of vertical structural diversity for each
site. Plant species composition within a 25-m radius of the
sampling point was recorded with ocular estimates of cover using
Daubenmire (1959) cover classes with the Bailey and Poulton
(1968) modification. Plant species diversity was also calculated
using the Shannon-Wiener index.

Meteorological Conditions
At each sampling location we measured air temperature at
1-min intervals for the entire sampling period using iButton
dataloggers (Fondriest Environmental, #DS1921G) 2m above
the ground. Prior to the sampling campaign iButtons were
evaluated against a HOBO Datalogger (Onset, #U12) to ensure
accuracy. Results showed that all iButton measurements were
within ±1◦C of the HOBO datalogger. Wind speed and
direction data for the study area as a whole were obtained
from the Eugene airport weather station after the sampling
campaign ended, and the average, minimum, and maximum
speeds, as well as dominant direction, were calculated for each
sampling period.

Bacterial Collection and Analysis
We collected airborne bacteria at selected sites using passive
settling dishes (sterile plastic petri dishes; Fisher Scientific,
100 × 15mm) for a 24-h period on each sampling day.
Passive settling dishes have been shown to collect samples of
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FIGURE 2 | (A) False color vegetation map (site AMA) with buffer zones; and (B) LiDAR point cloud showing vertical vegetation structure (site ABF).

airborne bacteria with community structure similar to samples
collected simultaneously by vacuum-powered “button” samplers
(Mhuireach et al., 2016; Leppänen et al., 2018). At each site, three
settling dishes and their lids were installed two meters above the
ground on portable sampling towers. Set-up occurred between
the hours of 06:00 and 11:00 and take-down was during the same
time period the following day. After collection, all samples were
immediately placed on ice, transported to the lab and stored at
−80◦C until processing.

The three petri dishes and lids from each sample site were
individually swabbed with nylon-flocked swabs (COPAN
FLOQSwabs, 502CS01) and then pooled before extraction.
Samples were randomized and processed for sequencing
following protocols used in Mhuireach et al. (2016). We
included negative controls for all processing steps (collection,
extraction and PCR), as well as PCR positive controls.
Manufacturer’s instructions were used to extract DNA
using MoBio PowerWater kits. Polymerase chain reaction
(PCR) amplification was performed in triplicate using
515F/806R primers targeting the V4 region of the bacterial
16S rRNA gene (5′ -GTGCCAGCMGCCGCGG- 3′/5′ -
TACNVGGGTATCTAATCC- 3′; Caporaso et al., 2012). PCR
triplicates were pooled, cleaned using AMPure beads and
quantified with Quant-iT PicoGreen dsDNA Assay kit (cat#:
P7589). The final library consisted of equal molar amount
from each sample, normalized to the lowest concentration, and
sequenced in one sequencing run at the University of Oregon on
the Illumina NextSeq platform, (PE-150).

All bioinformatic processing was performed in R, using the
dada2 package (Callahan et al., 2016). The dada2 workflow
automates filtering, trimming, dereplication, inference of
sequence variants, merging of paired-end reads, sequence table
construction, chimera removal, and taxonomy assignment.

After reviewing read quality plots, we truncated forward reads
at 140 bp and reverse reads at 135 bp, which still allowed a
minimum overlap of 20. Reads were also truncated when base
quality score dropped to 2 or lower. Reads with maximum
expected error >2 {calculated by EE = sum [10( − −Q/10)]}
were discarded. The dada2 package outputs amplicon sequence
variants (SV), which represent individual taxa that are resolved
down to single-nucleotide differences (Callahan et al., 2016). The
Ribosomal Database Project (RDP) Classifier was used to assign
taxonomy. SVs of interest were identified to putative species level
by querying the National Center for Biotechnology Information
(NCBI) Basic Local Alignment Search Tool (BLAST) with exact
rRNA sequences when the RDP-assigned taxonomy was in
question. Fourteen samples (ABF-8.04, BRA-8.04, CEM-8.14,
GRA-8.04, MAU-9.15, MIC-8.04, SFC-8.18, TSF-8.04, USF-8.14,
USF-9.29, WEF-8.14, WEF-9.22, WEG-8.04, and WIL-8.14), had
fewer than our threshold of 10,000 sequence reads and were
removed from downstream analyses. Data files are accessible at
Figshare doi: 10.6084/m9.figshare.7266707.

To reduce the impact of potential laboratory and reagent
contaminants in low-biomass samples (Salter et al., 2014;
Glassing et al., 2016), we identified all potential contaminants
by listing the taxa observed in the negative controls (sterile
petri dishes, extraction reagents, PCR reagents). Potentially
consequential contaminants were determined by plotting
the relative abundances of all taxa found in controls
against their relative abundance in experiment samples
(Supplementary Figure 2). We found three taxa, identified
as belonging to the genera Vibrio, Methylobacterium, and
Acinetobacter, that were above our arbitrary 0.05 threshold for
relative abundance in controls (all three were well under 0.05
relative abundance in collected samples) and removed them
from downstream analyses.
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Statistical Analyses
We used R (version 3.5.0) for all statistical analyses, specifically
the following packages: DESeq2, ggplot2, phyloseq, and vegan.
Singletons and doubletons were included for species richness
calculations and removed prior to other analyses. We performed
rarefaction analysis to compute species richness since our sample
sizes were unequal, which can lead to inaccurate diversity index
comparisons (Gihring et al., 2012). To accomplish this, we
used the rarefy function in the vegan package, which we set to
randomly subsample from all samples at the minimum sample
size of 26,180 to estimate expected numbers of species. We then
tested for significant differences in expected numbers of species
using the Kruskal-Wallis test, followed by pairwise Wilcoxon
Rank Sum Test with Bonferroni correction for multiple testing.

For all beta diversity visualizations and analyses, we used
the variance stabilizing transformation function in DESeq2,
which adjusts for variation in dispersion due to differing sample
sizes (Love et al., 2014), and the Morisita-Horn distance.
Overall temporal patterns in beta diversity were visualized using
principal coordinates analysis (PCoA) ordination. We used
direct gradient analysis in the form of a constrained PCoA to
assess the amount of bacterial community structural variation
attributable to land cover type. This is a useful technique for
identifying real patterns in noisy data sets, since the ordination
axes are required to be linearly related to the variable(s) of
interest (Erb-Downward et al., 2012). To calculate statistically
significant associations between bacterial community structure
and environmental variables of interest we used permutational
multivariate analysis of variance (PERMANOVA; Anderson,
2017), as implemented in the adonis function of the vegan
package (Oksanen et al., 2018), where values were obtained using
type III sums of squares with 9999 permutations of residuals
under a reduced model. The PERMANOVA was performed first
to test for the effect of land cover type while controlling for
time (i.e., sampling date), followed by a post hoc pairwise test
also based on the adonis function (Martinez Arbizu, 2017) to
determine which land cover comparisons contributed most to
observed variation. Site effect, other vegetation metrics, and
meteorological factors, were tested individually, since they were
confounded in various ways. We performed PERMANOVA tests
for land cover separately for each sampling date to evaluate effects
that may have been obscured by the effect of time. Separately
by date, we also executed a Mantel test based on Spearman’s
rank correlation to assess whether there was an effect of spatial
autocorrelation (i.e., samples close together in space being more
similar to each other than to samples at a distance). For this test,
we created a matrix of spatial distances between pairs of sites
based on their latitude and longitude, which was used as input,
along with theMorisita-Horn distance. Finally, generalized linear
models (GLMs) based on the negative binomial distribution were
executed using DESeq2 to determine which bacterial classes,
families, and genera contributed to differences in community
structure across land cover types. To perform this test, we split
up the dataset into pairwise groups of forest vs. paved, grass
vs. forest, and grass vs. paved sites. All statistical analyses used
a significance level of p < 0.05 and were adjusted for multiple
testing using Bonferroni correction.

RESULTS

Vegetation Analysis
Average vegetation cover proportion within 50m of each
sampling site was 0.11 for paved sites, 0.90 for grass sites,
0.97 for forest sites (all vegetation analysis outputs shown in
Supplementary Table 2). Two of the forest sites were located
within 50m of water bodies and thus have lower values for
proportion of vegetation cover; one of the grass sites was
later found to be artificial turf, which resulted in vegetation
values similar to those of paved sites (this site is included in
Supplementary Table 2, but excluded from microbial analyses);
and some of the paved sites were planted with individual
landscaping planters, increasing their values to as high as 0.34.
Proportion of vegetation cover within the 800-m buffer ranged
from 0.21 to 0.85, where the averages were 0.48 for paved sites,
0.53 for grass sites, and 0.60 for forest sites. Shannon-Wiener
index values for structural diversity of forest sites ranged from
2.33 to 3.35 and values for grass sites ranged from 0.22 to 1.41.
Two forest sites were outside the boundary of our LiDAR data
and could not be assessed. We also computed Shannon-Wiener
indices for plant species diversity of each site, which ranged from
0.54 to 2.52.

Meteorological Conditions
Daily average temperatures across sampling dates ranged from
13.1 to 23.7◦C (Supplementary Table 3). Paved sites tended to
have the highest average temperatures and greatest fluctuation
between the daily minimum and maximum, while forested sites
tended to have the lowest temperatures and least fluctuation.
Dates earlier in the season were generally warmer than later
sampling dates; September 15 was the coolest of all dates. Average
wind speeds for the study area ranged from 2.1 m/s on August
25 to 5.0 m/s on September 22 (Supplementary Table 4). The
prevailing wind direction for most dates was from the north,
except on August 14, September 1, and September 29, when
it blew primarily from the south. There was no precipitation
recorded during sampling, however, it did rain heavily on the
2 days prior to the September 1 sampling date, and in between
sampling dates on September 2 and 17.

Bacterial Community Diversity,
Composition, and Structure
After quality filtering there were 12,531,851 total sequence
reads, including singletons. Singletons and doubletons comprised
1,362 reads, which were removed for all analyses except species
richness. After removing singletons and doubletons, the number
of reads per sample ranged from 26,180 to 215,283. The total
number of sequence variants observed was 34,417, comprising 30
different phyla. Across the entire study, the most abundant phyla
were Proteobacteria (47%), Actinobacteria (26%), Firmicutes
(10%), Bacteroidetes (9%), and Planctomycetes (3%). Within
the Proteobacteria, the Alphaproteobacteria class comprised
29%, Gammaproteobacteria 9%, Betaproteobacteria 7%, and
Deltaproteobacteria 2%. The most ubiquitous SV in the study
comprised 901,173 reads (7% of the total) and was putatively
identified as Sphingomonas faeni. Species richness computed by
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FIGURE 3 | Constrained PCoA ordination plot for all samples, using

Morisita-Horn dissimilarity distance on variance-stabilizing transformed counts,

colored by land cover type.

rarefaction analysis (subsampled at 26,180 reads) ranged from
448 to 2,106 expected SVs and was significantly associated with
sampling date (F = 16.5, p < 0.001) and site (F = 1.9, p= 0.007),
but not with land cover type (F = 1.7, p= 0.2).

Land cover type explained a small but significant portion of
variation in beta diversity among samples when using direct
gradient analysis (Figure 3). The first axis (CAP1) accounted for
the large majority of variance explained. Variability in grass and
paved sites was largely constrained to the second axis (CAP2),
while forests exhibited similar variability across both axes, and
showed less intermixing with grass and paved sites than did grass
and paved sites with each other. Post hoc pairwise testing of land
cover types confirmed that the largest difference was between
forest and paved sites (R2 = 0.06, p < 0.001), followed by forest
and grass sites (R2 = 0.04, p < 0.001), and the smallest difference
was between grass and paved sites (R2 = 0.03, p < 0.001).
The significant but relatively minor effect of land cover type
when samples across all dates were included was substantiated
by a PERMANOVA testing for the effect of land cover type
while controlling for sampling date, which showed that land
cover type was a significant but weak predictor of similarity
(R2 = 0.06, p < 0.001).

Sampling date explained four times more variation among
samples than land cover type (R2 = 0.24, p < 0.001).
We visualized the effect of sampling date in a principal
coordinates analysis (PCoA) plot of Morisita-Horn distances on
the variance-stabilizing transformed counts (Figure 4), where
samples represented by points that are closer together have
more similar community structure than points further away. In
particular, samples collected in July and early August formed
tight and distinct clusters, while those collected later were more
dispersed. Within each cluster, paved sites tended to form a
discrete subgroup from the vegetated sites, especially for the
September sampling dates, indicating that paved sites had more
similar community structure to each other than to vegetated

sites, particularly during periods when there was large variability
among samples.

The large effect of sampling date appears to be driven by
changing relative abundances of the dominant bacterial taxa
over the course of the sampling campaign (Figure 5). On the
first sampling date, for example, communities were dominated
by members of the bacterial families, Sphingomonadaceae,
Microbacteriaceae, and Cytophagaceae which decreased in
relative abundance on each of the next two sampling dates,
while taxa from other families, including Acetobacteraceae and
Enterobacteriaceae, became more dominant.

The interactions between spatial and temporal trends became
clearer when community composition (for the top 25 most
abundant SVs) was broken out for each site separately across
sampling dates (Figure 6; genera and relative abundance values
in Supplementary Materials). Some taxa had high relative
abundance across all sites on certain dates—for instance,
the members of Sphingomonadaceae, Microbacteriaceae and
Cytophagaceae on the first two sampling dates, which may
explain the tighter clustering of points for those two dates in the
ordination. On other dates, some taxa were extremely abundant
at only certain sites. For example, on September 1, the relative
abundance of Gluconobacter sp. (family Acetobacteraceae)
rose to over 50% of all sequences at two paved sites
(BIM and SAF). Importantly, the spikes in Acetobacteraceae
abundance at two forest sites on 8.14 and 8.25 are due to a
different SV—Granulibacter sp. Another notable feature was
the high relative abundance of a taxon belonging to family
Enterobacteriaceae, putatively Erwinia billingiae, which was
found at highly maintained grass sites (e.g., irrigated and
mowed—cemetery CEM, park MAU, golf course LAU) across
several dates.

When we performed individual PERMANOVA tests for
all major variables of interest, site was the dominant factor
explaining variation in community structure and, in fact, was
a stronger predictor than sampling date, while other vegetation
and meteorological variables had marginal, though significant,
associations (Table 1). Each of these factors was tested separately,
since they were substantially confounded with one another (e.g.,
site with land cover type, sampling date with wind direction).
The results for sampling date and land cover type were virtually
identical to the results from the multivariate PERMANOVA.

We next analyzed samples separately by date to see whether
the strong effects of sampling date and site masked other
important relationships. The explanatory power of land cover
type increased dramatically in this analysis—six out of the nine
dates were highly significant with R2 ranging from 0.16 to 0.30
(Table 2 and Supplementary Figure 3). We also tested whether
community similarity was associated with spatial proximity for
each sampling date. Despite the strong predictive power of
site when samples across all dates were analyzed together, the
Mantel test showed no spatial autocorrelation for eight of nine
sampling dates, while one date (August 25) showed significant
effects of spatial proximity. Because we sampled two sets of sites
on alternating dates, we tested for the effect of sampling set
and found a minor effect on community analyses (R2 = 0.037,
p < 0.0001), including the temporal patterns shown in Figure 4.
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FIGURE 4 | PCoA ordination plot for all samples, using Morisita-Horn dissimilarity distance on variance-stabilizing transformed counts, colored by sampling date.

Ellipses represent 1 standard deviation from the mean.

FIGURE 5 | Community composition at the family level for all sites split by sampling date.

We examined each analysis for possible sampling set effects and
found no evidence of any impact.

Finally, we examined whether individual taxonomic groups
contributed to the observed variation in community structure
across land cover types, using a negative binomial GLM to
identify differentially abundant taxa. We first tested at the class
level and found that the relative abundance of 29 of 53 bacterial
classes varied significantly across forest, grass, and paved sites

(Figures 7A,B), with 17 of these classes present in very low
abundances (<1%). For example, Gammaproteobacteria, a high-
abundance class, was enriched at vegetated sites (both grass and
forest), while Deinococci, Thermomicrobia, and Anaerolineae,
all low-abundance classes, were enriched at paved sites.

Because comparisons at higher taxonomic levels can mask
important distinctions at lower taxonomic levels, we performed
the same test for differential abundance of genera. We chose
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FIGURE 6 | Top 25 most abundant SVs on each sampling date, colored by family.
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TABLE 1 | Results from individual PERMANOVA analyses on selected

environmental factors, using Morisita-Horn distance on variance-stabilizing

transformed counts.

Factor R2 p

Site 0.33 <0.001*

Sampling date 0.24 <0.001*

Land cover type 0.06 <0.001*

Prevailing wind direction (entire study area) 0.05 <0.001*

Structural diversity (only vegetated sites) 0.04 <0.001*

Average temperature 0.03 <0.001*

Plant species diversity 0.03 <0.001*

Vegetation cover (50-meter) 0.04 <0.001*

Vegetation cover (800-meter) 0.02 <0.001*

P-values with an asterisk remain significant after Bonferroni correction.

TABLE 2 | Results of PERMANOVA analyses on land cover type and Mantel

spatial correlation test for each sampling date, using Morisita-Horn distance on

variance-stabilizing transformed counts.

Date Land cover type (PERMANOVA) Spatial correlation (Mantel)

R2 p Statistic Significance

07.14 0.30 0.007* −0.02 0.52

08.04 0.18 0.124 0.22 0.25

08.14 0.18 0.039 0.09 0.25

08.18 0.19 0.000* 0.25 0.11

08.25 0.13 0.088 0.25 0.03*

09.01 0.22 0.000* −0.24 0.95

09.15 0.18 0.000* 0.12 0.18

09.22 0.22 0.008* 0.00 0.44

09.29 0.16 0.001* −0.08 0.70

P-values with an asterisk remain significant after Bonferroni correction.

genera because many taxa were not resolved to species. A total
of 37 differentially abundant taxa were found for the forest-
grass contrast, while the forest-paved contrast showed more than
twice as many (80), and the grass-paved contrast nearly twice as
many again (154). Forests showed the fewest enriched indicators,
comprising only 35% of the forest-grass indicators, and 37% of
the forest-paved indicators. For the grass-paved contrast, 57%
were enriched in grass sites and 43% enriched in paved sites.

At the genus level, we noted that within the family
Acetobacteraceae (class Alphaproteobacteria) one
genus (Granulibacter) was highly indicative of forests,
while other genera in the same family (Gluconobacter,
Rubritepida, Acidicaldus) were indicative of paved areas
(Supplementary Figure 4). Likewise, several genera within the
family Enterobacteriaceae (class Gammaproteobacteria) had
contrasting abundance patterns. For example, when comparing
forest with paved sites, Arsenophonus and Erwinia were enriched
in forest sites and Citrobacter was enriched in paved sites, but
Citrobacter was enriched in grass sites when compared with
either forests or paved sites (Supplementary Figures 4–6).

DISCUSSION

Despite decades of study of aerobiome structure and dynamics
(e.g., Carnelley et al., 1887; Pedgley, 1991; Shaffer and Lighthart,
1997; Womack et al., 2010; Gandolfi et al., 2013), we
still have only a rudimentary understanding of the relevant
environmental, spatial, and temporal drivers. Although the basic
processes through which microorganisms become airborne from
vegetation (e.g., evapotranspiration, rain splash, wind gusts)
have been identified, prediction and quantification of the actual
numbers emitted from plant leaves remains challenging (Morris
et al., 2014). Microorganisms, like dust particles of the same
size order (i.e., 0.1–10µm for bacteria), can remain airborne
for hours to weeks, and can be transported long distances
via movement of the regional air mass (Després et al., 2012).
Modeling spatiotemporal patterns of aerobiome structure is also
challenging, since air is a fluid medium exhibiting complex
movement patterns and physical interactions ranging in scale
from relatively stable continental air cells to localized turbulent
eddies. Within an urban environment, these interactions may
be influenced by neighborhood features, such as topography,
vegetation structure, and the shape, size, and distribution of
nearby buildings. Supporting this, Després et al. (2012) suggested
that urban areas might show more distinctive patterns of
aerobiome variation than, for example, agricultural regions due
to greater heterogeneity of different point sources. On the other
hand, air movement may dilute the signals of localized sources,
in effect, washing out differences across sites.

Similar to other 16S surveys of airborne bacterial communities
(e.g., Bowers et al., 2013; Seifried et al., 2015; Lymperopoulou
et al., 2016; Genitsaris et al., 2017), we found that the phyla
Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes
comprised most of the observed taxa, perhaps indicating either
that airborne communities are broadly similar regardless of
geographic location and season, or that high-level taxonomic
assessment masks important species-level variation. Supporting
the former, it has been suggested that there is a well-mixed
collection of “background” microbiota originating from large-
area sources, like extensive forest, grass fields, or marine
environments (Gandolfi et al., 2013; Seifried et al., 2015), and
that they tend to be highly resilient against the hostile conditions
of long-range atmospheric transport (Fierer et al., 2008; Wéry
et al., 2018). Despite high-level similarity of our results to
those of other bacterial surveys, at finer taxonomic resolutions
we uncovered subtle compositional patterns related to site-
scale features, such as land cover and management, as well
as temporal shifts possibly associated with regional agricultural
activities, prevailing wind direction, and vegetation phenology,
suggesting a constant interplay between microbes transmitted by
regional and continental air masses and those emitted from local
sources (Seifried et al., 2015; Innocente et al., 2017). To begin
understanding this spatiotemporal interplay, we developed a

conceptual model of potential influences on aerobiome assembly
across different scales (Figure 8) to guide our discussion.

We propose that at individual sampling sites, airborne

microbial community structure is influenced both by local

features, such as land cover, microclimate, management, biotic
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FIGURE 7 | (A) Low-abundance (<1%) and (B) high-abundance (>1%) bacterial classes that were differentially abundant across land cover types, using a negative

binomial GLM. Bars show mean relative abundance for each land cover type, error bars indicate standard error of the mean.

processes, and physical geography, with greater retention or
dilution of locally-sourced microbes depending on the degree
of mixing with the regional air mass (Gandolfi et al., 2013).
The latter is likely affected by both local topography and
nearby vegetation (Wuyts et al., 2008), which could attenuate
or increase local air movement. Air movement could affect
the local aerobiome in complex ways. Air movement of ∼1.4
m/s is enough to release bacterial cells from plant leaves
when they are not firmly adhered or tucked into leaf surface
topography; gentle gusts of ∼5.6 m/s are more effective at
removing bacteria in quantity (Morris et al., 2014). Thermal
convection and turbulent eddies produced by interactions
between air mass movement and earth surface roughness could
also influence the degree of overall mixing of local- and distant-
sourced bacteria.

At broader spatial and temporal scales, we surmise that
microbial community structure of the regional air mass
is primarily driven by larger-scale features that include
periodic events, human activities, biotic processes, land uses,
and physical geography, as well as macroclimatic influences
such as prevailing winds and tropospheric transport from
distant continents (Lighthart, 1984; Womack et al., 2010;
Smith et al., 2012; Mhuireach et al., 2016). A recent study
indicated that aerobiome composition in the Spain’s Pyrenees
Mountains was strongly correlated with the air mass regional
origin at different times of the year, with the result that
bacteria associated with freshwater, agricultural, and urban
areas were more dominant in the summer, while forest
and marine-associated taxa were more dominant in the
winter (Cáliz et al., 2018).
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FIGURE 8 | Conceptual model of potential controls on aerobiome assembly across spatiotemporal scales.

Space Is More Important Than Time
Within the spatial and temporal scope of our study, space (site)
explained bacterial community similarity better than any other
variable, followed by time (sampling date). Other vegetation
and meteorological variables, while significant, explained far less
community variation (Table 1). Consistent with our results, other
recent studies also have found airborne bacterial composition
to be closely coupled with individual sampling sites (Seifried
et al., 2015; Docherty et al., 2018). In contrast, several earlier
culture-independent aerobiome studies found spatial location
within an urban area to be insignificant compared to the effect
of time (e.g., Brodie et al., 2007; Fierer et al., 2008; Bowers
et al., 2013). In our study, proximity to other sites did not
influence similarity in bacterial community structure for most
sampling dates (Table 2), perhaps indicating that the larger
urban air mass was well-mixed and distributed across the study
area and that unique microbial taxa originating from individual
sites became undetectable short distances away due to rapid
dilution with distance. This idea is supported by the diminishing
importance of the proportion of vegetation cover with increasing
buffer size around sampling points (Supplementary Figure 7).
For richness on the other hand, time (sampling date) was
more important than space (site), and cover type was not
significant. Variation in richness may have been most strongly
influenced by the strength of local sources as a function of wind
speed and changes in the dominance of regionally abundant
microbes under the influence of prevailing winds. We expect
that air movement at the local scale of individual sites has a
strong effect on airborne microbial community dynamics and

that nearby vegetation, especially multilayered forests with tall
trees, alters patterns of air movement. Using wind dataloggers
at individual sites in future studies may help disentangle the
dual roles of vegetation as microbial source and mediator of
air movement.

We conjecture that site serves as a proxy variable that
captures a suite of local features such as vegetation structure,
plant species composition and diversity, microclimate, and
site management regimes, that can alter bacterial sources,
dispersal capabilities, and survival rates, and thus affect bacterial
community structure. Land cover type, our principal variable
of interest, had a significant but subtle association with
bacterial community similarity (Figure 3). To lesser degrees,
the same held for structural diversity, plant species diversity,
vegetation cover, temperature, and prevailing winds (Table 1).
Vegetation structure, species diversity and cover are site-
specific, quantitative characteristics influenced by cover type,
while local temperature and windspeed (the latter likely
affecting the dispersion of locally sourced microbes) will also
be influenced by microclimates created by vegetation and
topography under the influence of daily weather. As we discuss
later, vegetation and microclimate may be modified by site
management. It is thus possible that each of these variables
captures a small component of the much larger, overall effect
of “site.”

When samples were analyzed separately for each date, the
association with land cover type increased from R2 = 0.06 to a
daily average of R2 = 0.20 (Table 2), suggesting a much stronger
role of land cover type that was obscured by the substantial
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changes in bacterial community structure associated with time.
This emphasizes the need for models and analyses that can
disentangle local and distant influences on microbial community
structure at any given point in time.

We further investigated whether certain bacterial taxa
were associated with each of the three land cover types
by examining differentially abundant taxa at the class and
genus levels. Paved sites were characterized by enrichment
of the classes Deinococci, Thermomicrobia, Anaerolineae, and
Cyanobacteria (Figures 7A,B). Many of these groups, especially
Deinococci, are known for their ability to survive hostile
conditions, such as intense radiation, desiccation, and heavy
metal contamination, suggesting that they may originate and
persist on the asphalt of parking lots, with its extreme physical
environment and pollutant deposition from automobiles. Paved
sites had large numbers of enriched taxa at the genus level, as well
(Supplementary Figures 4, 6), possibly because they represent a
unique but relatively consistent type of biophysical environment.

Bacterial communities of forested sites were both the most
distinctive and variable (Figure 3), yet they had the fewest
differentially abundant genera (Supplementary Figures 4, 5)
and only two classes—Armatimonadia and Planctomycetia
(Figures 7A,B)—that were enriched compared to both other
cover types. A potential explanation for these seemingly
contradictory findings is that individual forest sites are
characterized by different sets of indicator taxa and, therefore,
the differential abundance test shows fewer enriched taxa when
all forest sites were aggregated. This idea is consistent with
results from Mhuireach et al. (2016) showing that while bacterial
communities collected from parking lots tended to be similar
to each other, those from grassy parks were different both from
parking lots and—importantly—other parks. In terms of the
mechanisms that might underlie this idea, we note that: (a)
different plant species host distinct bacterial communities and
each forest site had different plant species composition; (b) trees
are large sources of bacteria due to their large surface area; and
(c) forests moderate microclimate (e.g., air flow, temperature,
radiation) such that more bacteria from local sources may survive
and be retained than at other land cover types. If this is the
case, then testing for differential abundance by aggregating all
forest sites may have resulted in fewer indicator taxa than
grassland or paved sites, even though individual forests might
host bacterial communities that are distinct from other land
cover types. This possibility is consistent with our finding that
site identity was a stronger predictor of bacterial community
similarity than land cover type when samples across all dates were
analyzed together.

Grassland sites in this study were particularly enriched in the
classes Flavobacteriia, Erysipelotrichia, Gammaproteobacteria,
and Clostridia, and they had the greatest number of enriched
genera (Supplementary Figures 5, 6). One member of the
genus Erwinia was notably abundant at three different grass
sites—a cemetery, a golf course, and a public park—each of
which undergoes intensive management regimes (e.g., mowing,
irrigation, fertilization). We further examined the life history of
this SV, which was putatively identified as Erwinia billingiae in
the NCBI BLAST database, and found that it is a non-pathogenic

plant-associated bacterium commonly found on fruit tree flowers
and leaves (Kube et al., 2010). Interestingly, this same SV
was found in high abundance at another intensively managed
grassland park in our earlier (2013) pilot study, leading us to
speculate that this bacterium may have been released in high
quantities at these sites during mowing or irrigation events
that coincided with our sampling dates. This would agree with
Maron et al. (2006), who suggested that daily and weekly
variations in urban bacterial community structure were related
to anthropogenic activities.

Temporal Patterns Appear to be
Associated With Regional- and
Local-Scale Events
Even the brief three-month duration of our study revealed
strong temporal patterns and fluctuations from one sampling
date to the next. These fluctuations tended to mask relationships
between bacterial community structure and fine-scale vegetation
metrics, while suggesting key interactions across larger spatial
and temporal scales. As indicated by our conceptual model
(Figure 8), our study encompassed multiple processes occurring
across a range of days to months that could be expected
to impact the aerobiome. In particular, seasonal biotic
processes (e.g., vegetation senescence), changes in weather
and prevailing winds, and regional-scale human activities
(e.g., agriculture) appeared to play roles in the observed shifts
in dominant taxonomic groups, as has been noted in other
studies (Gandolfi et al., 2015; Lee et al., 2017).

Taxa that were distributed relatively equally across all sites
suggest a regional rather than local source. For instance, we
found that July samples for all sites were dominated by an
SV putatively identified as Sphingomonas faeni whose relative
abundance generally decreased over the course of the sampling
campaign. S. faeni has been previously isolated from air in
agricultural barns where bales of hay were being broken open
(Andersson et al., 1999). While undisturbed agricultural fields
contribute modest numbers ranging from 46 to 6,500 CFU/m3

of bacteria to the air (Lindemann et al., 1982), crop harvesting
may increase that by several orders of magnitude to an estimated
average of 6.4 × 108 CFU/m3 (Lighthart, 1984). Because our
study area was located downwind of a large grass seed production
region (Linn County, Oregon) and July is a prime harvesting
month, we posit that S. faeni may have been released through
seasonal agricultural activities, which corroborates previous
work (Mhuireach et al., 2016).

Several taxonomic groups changed in relative abundance
over the course of the campaign. For example, families
Sphingomonadaceae, Cytophagaceae, and Microbacteriaceae
decreased over the first three sampling dates, while
Acetobacteraceae, Enterobacteriaceae, and Oxalobacteraceae
showed individualistic patterns of change (Figure 5). These
changes may reflect both seasonal trends and daily fluctuations
associated with late summer, such as lowering temperatures,
precipitation events, or switches in prevailing winds, and were
often observed as an interaction between time and space.
For example, Gluconobacter (family Acetobacteraceae), was
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primarily found in paved locations on several different dates and
was particularly abundant on September 1 after 2 days of heavy
rain, following months of summer drought.

Notably, four of these six abundant families were relatively
evenly distributed across all sites on most days despite changes
to overall abundance (again suggesting a regional origin), while
on the other hand, Acetobacteraceae and Enterobacteriaceae,
emerged as dominants on some days largely because of extreme
spikes of abundance at a small number of individual sites,
suggesting a response to localized conditions. In some cases, we
have been able to link these spikes to a potential interaction
between a particular cover type and a disturbance, such as
precipitation or irrigation.

The temporal results provide two major take-home points.
First, microbes from the broader regional landscape, where large
areas of single land cover types such agriculture or forest are
found, may have the capacity to overwhelm local microbial
sources at particular times of the year or under the influence of
abrupt shifts in regional weather patterns that alter the primary
sources of microbes to an entire city. Second, both seasonal
fluctuations and localized events can lead to highly site-specific
responses from day to day. Although these findings are far
from definitive, they begin to shed light on possible aerobiome
assembly mechanisms suggested in our conceptual model that
warrant further investigation. In particular, they suggest that
attempts to shape the urban aerobiome could require actions that
range from site scale interventions to landscape planning.

CONCLUSIONS

Our investigation revealed patterns of fine-scale spatial and
temporal variability in the urban aerobiome and suggests
potential controls over its community structure and richness
that range from regional land uses and air movement, to
localized vegetation and site management. In particular, our
space-time model of aerobiome assembly posits that the shifting
interplay of multiple drivers across multiple scales—many of
which are influenced or controlled by people—collectively shape
the aerobiome at any given location and point in time, including
the degree of homogenization or localization of bacterial
communities. Our work also suggests that the effects of coarse-
scale urban land cover types on bacterial communities can be
substantially influenced by finer-scale influences at individual
sites, such as irrigation and mowing regimes, the presence of
asphalt surfaces and automobile use, and variation in plant
species composition and vegetation structure. These findings
offer evidence that it may be possible to manage the urban
microbiome to some degree through actions ranging from
regional land-use planning to site-scale design and management.
Although our work revealed that certain bacterial groups varied
in abundance and diversity across land cover types, further
research is needed to confirm whether differential degrees of
exposure to these airborne bacteria can impact health.

The idea of shaping the urban aerobiome through vegetation
management is virtually unexplored. Extensive evidence suggests
that vegetation is a key factor in creating healthy neighborhoods
(see Kuo, 2015; Frumkin et al., 2017), but we have limited
knowledge of how to design green spaces for optimal benefits.

With green space decreasing rapidly in many cities due to
population growth and increasing density (Dallimer et al., 2011;
Gan et al., 2014; Chen et al., 2017), there is a critical need for
evidence-based guidelines for designing and managing urban
vegetation. Over 150 years ago, the landscape architect Frederick
Law Olmsted revolutionized the practice of urban design by
pioneering the development of publicly accessible parks to
improve the health and well-being of urban residents through
contact with nature (Roper and Olmsted, 1973; Rybczynski,
1999; Eisenman, 2013). At a time when industrialization was
leading to crowded, unhealthy cities, his innovations were
based on observation and principles but no data. This study
provides empirical evidence that urban vegetation design
and planning can change the urban aerobiome. The societal
implications of that finding depend on whether such changes
affect human well-being.
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